Skip to main content
Log in

Geometrically nonlinear analysis of 3D fluid actuated cellular structures using extended multiscale finite element method

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

An efficient three-dimensional (3D) multiscale method has been introduced to simulate the geometrically nonlinear behaviors of the plant inspired smart cellular structures. In this method, the scale gap between the geometrical information of motor cells in the small-scale and mechanical behaviors of the cellular structures at the macroscale is bridged through a multiscale framework named multiscale finite element method. The heterogeneous information of the microstructure is then equivalent to the macroscopic coarse elements through the multiscale base functions about the displacements for the solid matrix as well as the fluid pressure. Combined with the “element-independent” corotational algorithm, both the tangent stiffness matrix of the coarse grid elements and their nodal forces can be directly deduced, which will be utilized to decompose the geometrically nonlinear motions of equivalent coarse grid elements at the macroscale level. Consequently, the initial geometrically nonlinear behaviors of the 3D fluidic cellular structures could be simulated by the iteration procedures on the coarse-grid meshes, which will greatly reduce the computation time and memory cost. At the same time, the mechanical responses of the motor cells in the microscale could be easily computed from the obtained macroscopic solutions by the downscaling technique of the multiscale method. To verify the proposed nonlinear multiscale method, some numerical examples are presented. The results demonstrated that the developed nonlinear multiscale formulation for the 3D problems could provide high precision solutions as well as acceptable numerical efficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Barrett, R., Barrett, C.: Biomimetic FAA-certifiable, artificial muscle structures for commercial aircraft wings. Smart Mater. Struct. 23, 074011 (2014)

    Article  Google Scholar 

  • Chen, Z.D.: Large Deflection Theory of Truss, Plate and Shell. Science Press, Beijing (1996). (in Chinese)

    Google Scholar 

  • Chillara, V.S.C., Headings, L.M., Dapino, M.J.: Multifunctional composites with intrinsic pressure actuation and prestress for morphing structures. Compos. Struct. 157, 265–274 (2016)

    Article  Google Scholar 

  • Forterre, Y., Skotheim, J.M., Dumals, J., Mahadevan, L.: How the venus flytrap snaps. Nature 433, 421–425 (2005)

    Article  Google Scholar 

  • Freeman, E., Weiland, L.: High energy density nastic materials: parameters for tailoring active response. J. Intell. Mater. Syst. Struct. 20(1), 233–243 (2009)

    Article  Google Scholar 

  • Gramüller, B., Hühne, C.: PACS: numerical approach and evaluation of a concept for dimensioning pressure-actuated cellular structures. CEAS Aeronaut. J. 6(4), 575–588 (2015)

    Article  Google Scholar 

  • Gramüller, B., Tempel, A., Hühne, C.: Shape variable seals for pressure actuated cellular structures. Smart Mater. Struct. 24(9), 095005 (2015)

    Article  Google Scholar 

  • Lv, J., Liu, H., Zhang, H.W.: A multiscale co-rotational method for geometrically nonlinear shape morphing of 2D fluid actuated cellular structures. Mech. Mater. 79, 1–14 (2014a)

    Article  Google Scholar 

  • Lv, J., Liu, H., Zhang, H.W., Liu, L.: Multiscale method for geometrical nonlinear analysis of fluid actuated cellular structures with arbitrary polygonal microstructures. J. Aerosp. Eng. 29(4), 04015082 (2015)

    Article  Google Scholar 

  • Lv, J., Zhang, H.W., Chen, B.S.: Shape and topology optimization for closed liquid cell materials using extended multiscale finite element method. Struct. Multidiscip. Optim. 49(3), 367–385 (2014b)

    Article  MathSciNet  Google Scholar 

  • Li, S., Wang, K.W.: Fluidic origami with embedded pressure dependent multi-stability: a plant inspired innovation. J. R. Soc. Interface 12(111), 20150639 (2015)

    Article  Google Scholar 

  • Moita, G., Crisfield, M.: A finite element formulation for 3-d continua using the co-rotational technique. Int. J. Numer. Methods Eng. 39, 3775–3792 (1996)

    Article  MathSciNet  Google Scholar 

  • Pagitz, M., Lamacchia, E., Hol, J.M.A.M.: Pressure-actuated cellular structures. Bioinspiration Biomim. 7(1), 016007 (2012)

    Article  Google Scholar 

  • Pagitz, M., Pagitz, M., Hühne, C.: A modular approach to adaptive structures. Bioinspiration Biomim. 9(4), 046005 (2014)

    Article  Google Scholar 

  • Pagitz, M., Leine, R.I.: Shape optimization of compliant pressure actuated cellular structures. Int. J. Non-Linear Mech. 94, 268–280 (2017)

    Article  Google Scholar 

  • Poppinga, S., Zollfrank, C., Prucker, O., Rühe, J., Menges, A., Cheng, T., Speck, T.: Toward a new generation of smart biomimetic actuators for architecture. Adv. Mater. 30(19), 1703653 (2018)

    Article  Google Scholar 

  • Skotheim, J.M., Mahadevan, L.: Physical limits and design principles for plant and fungal movements. Science (New York, N.Y.) 308(5726), 1308–1310 (2005)

    Article  Google Scholar 

  • Sundaresan, V., Homison, C.: Biological transport processes for microhydraulic actuation. Sens. Actuators, B 123, 685–695 (2007)

    Article  Google Scholar 

  • Sun, J., Gao, H., Scarpa, F.L., Lira, C., Liu, Y.J., Leng, J.S.: Active inflatable auxetic honeycomb structural concept for morphing wingtips. Smart Mater. Struct. 23(12), 125023 (2014)

    Article  Google Scholar 

  • Sane, H., Bhovad, P., Li, S.: Actuation performance of fluidic origami cellular structure: a holistic investigation. Smart Mater. Struct. 27, 115014 (2018)

    Article  Google Scholar 

  • Vos, R.: Mechanics and applications of pressure adaptive honeycomb. PhD Dissertation, Aerospace Engineering Department, University of Kansas (2009)

  • Vos, R., Barrett, R.: Mechanics of pressure-adaptive honeycomb and its application to wing morphing. Smart Mater. Struct. 20(9), 094010 (2011)

    Article  Google Scholar 

  • Vasista, S., Tong, L.: Design and testing of pressurized cellular planar morphing structures. AIAA J 50(6), 1328–1338 (2012)

    Article  Google Scholar 

  • Vasista, S., Tong, L.: Topology-optimized design and testing of a pressure-driven morphing-aerofoil trailing- edge structure. AIAA J. 51(8), 1898–1907 (2013)

    Article  Google Scholar 

  • Vasista, S., Riemenschneider, J., Mendrock, T., Monner, H. P. (2018). Pressure-driven morphing devices for 3D shape changes with multiple degrees-of-freedom. In: Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Proceeding of the ASME, pp. 1–11. (2018)

  • Zhang, H.W., Lv, J.: Two-scale model for mechanical analysis of nastic materials. J. Intell. Mater. Syst. Struct. 22(6), 593–609 (2011)

    Article  Google Scholar 

  • Zhang, H.W., Lv, J.: A multiscale method for the numerical analysis of active response characterization of 3D nastic structures. Smart Mater. Struct. 21, 085009 (2012)

    Article  Google Scholar 

  • Zhang, L., Dong, K.J., Zhang, H.T., Yan, B.: A 3D PVP co-rotational formulation for large-displacement and small-strain analysis of bi-modulus materials. Finite Elem. Anal. Des. 110, 20–31 (2016)

    Article  Google Scholar 

  • Zhang, H.W., Wu, J., Lü, J., Fu, Z.D.: Extended multiscale finite element method for mechanical analysis of heterogeneous materials. Acta. Mech. Sin. 26, 899–920 (2010)

    Article  MathSciNet  Google Scholar 

  • Zheng, Y.G., Zhang, H.B., Lv, J., Zhang, H.W.: An arbitrary multi-node extended multiscale finite element method for thermoelastic problems with polygonal microstructures. Int. J. Mech. Mater. Des. (2019). https://doi.org/10.1007/s10999-019-09458-w

    Article  Google Scholar 

Download references

Acknowledgements

The supports of this investigation by the National Natural Science Foundation of China (11772083, 11672062, 11872133), the Fundamental Research Funds for the Central Universities (DUT17LK26), Dalian High Level Talent Innovation Support Program (2015R046) and Aeronautical Science Foundation of China (2017ZA63003) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Zheng, M., Zhang, L. et al. Geometrically nonlinear analysis of 3D fluid actuated cellular structures using extended multiscale finite element method. Int J Mech Mater Des 16, 503–517 (2020). https://doi.org/10.1007/s10999-020-09491-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-020-09491-0

Keywords

Navigation