Skip to main content
Log in

Investigation of the Space Distribution of the Velocity of Surface Acoustic Waves in Plastically Deformed Steel by the Laser Method

  • Published:
Materials Science Aims and scope

We study the influence of plastic deformation of St.3 steel on the velocity of Rayleigh surface acoustic waves measured by the method of laser recording. It is shown that plastic strains lead to the formation of anisotropy of the acoustic properties mainly determined, according to the data of evaluation of residual mechanical stresses, by the texture of steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V. V. Murav’ev, L. B. Zuev, and K. L. Komarov, Sound Velocity and the Structure of Steel and Alloys [in Russian], Nauka, Novosibirsk (1996)

    Google Scholar 

  2. Yu. V. Zhiltukhina, D. V. Perov, A. B. Rashkevich, and V. S. Permikin, “Detection of microdefects in metals on the basis of investigation of the acoustic fields,” Defektoskopiya, No. 10, 26–40 (2007).

    Google Scholar 

  3. V. A. Bychenok, “Laser-ultrasonic diagnostics of residual stresses in thin-walled elements of the products of rocket and space technologies,” Izv. Vyssh. Ucheb. Zaved., Priborostroenie, 54, No. 7, 45–50 (2011)

    Google Scholar 

  4. A. Kumar, B. K. Choudhary, K. Laha, et al., “Characterization of microstructure in 9 % chromium ferritic steels using ultrasonic measurement,” Trans. Indian Inst. Met., 56, No. 5, 483–497 (2003).

    Google Scholar 

  5. V. M. Bobrenko, M. S. Vangeli, and A. N. Kutsenko, Acoustic Strain Measurement (Theory and Practice) [in Russian], Shtiintsa, Kishinev (1991).

    Google Scholar 

  6. I. M. Poletika, N. M. Egorova, O. A. Kulikova, and L. B. Zuev, “On the ultrasonic testing of inhomogeneity of the mechanical properties of hot-rolled steel,” Zh. Tekh. Fiz., 71, Issue 3, 37–40 (2001).

    Google Scholar 

  7. V. I. Danilov, D. V. Orlova, L. B. Zuev, and G. V. Shlyakhova, “Character of localization of plastic stains and fracture in highchromium steel of the martensitic class,” Izv. Vyssh. Ucheb. Zaved., Fizika, 54, No. 5, 78–84 (2009)

    Google Scholar 

  8. S. Akhshik and M. Ahmadi, “Ultrasonic nondestructive evaluation of stress around the tip of a crack,” in: Proc. of the Asia-Pacific Conf. on NDT (November 5–10, 2006), Auckland, (2006), pp. 1–8.

  9. N. E. Nikitina, Acoustoelasticity. Experience of Practical Application [in Russian], TALAM, Nizhny Novgorod (2005)

    Google Scholar 

  10. A. N. Guz’, F. G. Makhort, and O. I. Gushcha, Introduction to Acoustoelasticity [in Russian], Naukova Dumka, Kiev (1977)

    Google Scholar 

  11. S. D. Sharples, M. Clark, W. Li, and M. G. Somekh, “Rapid imaging of microstructure using spatially resolved acoustic spectroscopy,” in: Proc. of the First Internat. Symp. on Laser Ultrasonics: Science, Technology and Applications (July 16–18, 2008 Montreal), Montreal, http://www.ndt.net/ article/laser-ut2008/papers/Sharples%20 LU2008.pdf.

  12. A. G. Lunev and A. V. Bochkareva, “On the influence of structural transformations in deformed materials on the velocity and attenuation of Rayleigh waves,” Izv. Tomsk. Politekh. Univ., 312, No. 2, 188–191 (2008).

    Google Scholar 

  13. G. R. Gerhart, “Rayleigh wave velocity for a stress-induced slightly anisotropic solid,” J. Acoust. Soc. Amer., 6, No. 5, 1085–1088 (1976).

    Article  Google Scholar 

  14. J. W. Wagner, “Optical detection of ultrasound,” in: R. N. Thurston, and A. D. Pierce (editors), Ultrasonic Measurement Methods, Vol. XIX: Physical Acoustics, Academic Press, San Diego (1990), pp. 201–265.

    Google Scholar 

  15. A. A. Karabutov, L. I. Kobeleva, N. B. Podymova, and T. A. Chernysheva, “Laser optical-acoustic method of local measurements of elastic moduli of particle-hardened composite materials,” Tekhn. Akust., 19, 1–15 (2009), http://www.ejta.org.

  16. A. Ruiz and P. B. Nagy, “Laser-ultrasonic surface wave dispersion measurements on surface-treated metals,” Ultrasonics, 42, 665–669 (2004).

    Article  Google Scholar 

  17. A. I. Morozov, V. V. Proklov, and B. A. Stankovskii, Piezoelectric Transducers for Radioelectronic Devices [in Russian], Radio Svyaz’, Moscow (1981).

    Google Scholar 

  18. C. A. J. Putman, B. G. De Grooth, N. F. Van Hulst, and J. Greve, “A detailed analysis of the optical beam deflection technique for use in atomic force microscopy,” J. Appl. Phys., 72 (I), 6–12 (1992)

    Article  Google Scholar 

  19. M. Arattano and L. Marchi, “Measurements of debris flow velocity through cross-correlation of instrumentation data,” Nat. Hazards Earth Syst. Sci., 5, 137–142 (2005).

    Article  Google Scholar 

  20. G. R. Gerhart, “Rayleigh wave velocity for a stress-induced slightly anisotropic solid,” J. Acoust. Soc. Amer., 6, No. 5, 1085–1088 (1976).

    Article  Google Scholar 

  21. A. V. Gonchar and V. V. Mishakin, “Evaluation of plastic deformation in structurally inhomogeneous materials with the help of ultrasonic and metallographic investigations,” Trudy Alekseev Nizhegorod. Gos. Tekh. Univ., Metallurg. Materialoved., No. 3(96), 221–227 (2012).

  22. K. V. Kurashkin and V. V. Mishakin, “Some ways of realization of nonzero acoustic strain measurements,” Vest. Nauch.-Tekhn. Razvit., No. 1, 11–16 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to О. M. Mokryi.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 49, No. 4, pp. 56–61, July–August, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koshovyi, V.V., Mokryi, О.M., Hredil’, М.І. et al. Investigation of the Space Distribution of the Velocity of Surface Acoustic Waves in Plastically Deformed Steel by the Laser Method. Mater Sci 49, 478–484 (2014). https://doi.org/10.1007/s11003-014-9639-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-014-9639-1

Keywords

Navigation