Skip to main content
Log in

Coherent States for Hopf Algebras

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Families of Perelomov coherent states are defined axiomatically in the context of unitary representations of Hopf algebras. A global geometric picture involving locally trivial noncommutative fibre bundles is involved in the construction. If, in addition, the Hopf algebra has a left Haar integral, then a formula for noncommutative resolution of identity in terms of the family of coherent states holds. Examples come from quantum groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Enc. Math. Appl, vol. 71 Camb. Univ. Press xvi+664 pp. (Chap. 10: Introduction to q-series) (1999)

  2. Askey R. (1980). Ramanujan’s extensions of the gamma and beta functions. Am. Math. Mon. 87(5): 346–359

    Article  MATH  Google Scholar 

  3. Bargmann V. (1961). On a Hilbert space of analytic functions and an associated integral transform I. Commun. Pure Appl. Math. 14: 187–214

    Article  MATH  Google Scholar 

  4. Berezin F.A. (1974). Quantization. Math. USSR-Izv. 38(5): 1109–1165

    Article  Google Scholar 

  5. Brzeziński T., Majid S. (1993). Quantum group gauge theory on quantum spaces. Commun. Math. Phys. 157(3): 591–638

    Article  ADS  Google Scholar 

  6. Connes A. (1994). Non-commutative Geometry. Academic, New York

    Google Scholar 

  7. Delbourgo, R., Zhang, R.B.: Minimal uncertainty states for quantum groups. J. Phys. A 30, L313–L316; arXiv:q-alg/9611021 (1997)

  8. Drinfel’d, V.G.: Quantum Groups. Proc. ICM-86, pp. 798–820 (1986)

  9. Furlan P., Stanev YA.S., Todorov I.T. (1991). Coherent state operators and n-point invariants for U q (sl(2)). Lett. Math. Physc. 22: 307–319

    Article  MATH  Google Scholar 

  10. Hadjiivanov L.K., Paunov R.R., Todorov I.T. (1992). U q –covariant oscillators and vertex operators. J. Math. Phys. 33(4): 1379–1394

    Article  ADS  Google Scholar 

  11. Jantzen J.C. (1987). Representations of Algebraic Groups. Academic,

    MATH  Google Scholar 

  12. Jurčo B. (1991). On coherent states for the simplest quantum groups. Lett. Math. Phys. 21: 51–58

    Article  Google Scholar 

  13. Jurčo B., Štovíček P. (1993). Quantum dressing orbits on quantum groups. Commun. Math. Phys. 152: 97–126

    Article  ADS  Google Scholar 

  14. Jurčo, B., Štovíček, P.: Coherent states for quantum compact groups. Commun. Math. Phys. 182, 221–251; arXiv:hep-th/9403114 (1996)

    Google Scholar 

  15. Klimyk A.U., Schmüdgen K. (1997). Quantum Groups and their Representations. Springer, Heidelberg

    MATH  Google Scholar 

  16. Mack G., Schomerus V. (1992). Quasihopf quantum symmetry in quantum theory. Nucl. Phys. B 370: 185–230

    Article  ADS  Google Scholar 

  17. Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, London (1995,2000)

  18. Manin YU.I. (1988). Quantum Groups and Non-commutative Geometry. CRM, Montreal

    MATH  Google Scholar 

  19. Montgomery, S.: Hopf algebras and their actions on rings. CBMS Regional Conference Series in Mathematics, vol. 82, AMS (1993)

  20. Perelomov, A.M.: Coherent states for arbitrary Lie groups. Comm. Math. Phys. 26, 222–236; archived as arXiv:math-ph/0203002 (1972)

    Google Scholar 

  21. Perelomov, A.M.: Generalized Coherent States and their Applications. Texts and Monographs in Physics. Springer, Berlin xii+320 p. (1986)

  22. Rawnsley J.H. (1977). Coherent states and Kähler manifolds. Quart. J. Math. Oxford 28(2): 403–415

    Article  MATH  Google Scholar 

  23. Rosenberg, A.L.: Non-commutative affine semischemes and schemes. Seminar on supermanifolds 26th edn. Dept. Math., U. Stockholm (1988)

  24. Rosenberg A.L. (1998). Noncommutative schemes. Comp. Math. 112: 93–125

    Article  MATH  Google Scholar 

  25. Sazdjian H., Stanev Y.S., Todorov I.T. (1995). SU(3)-coherent state operators and invariant correlation functions and their quantum group counterparts. J. Math. Phys. 36: 2030–2052

    Article  MATH  ADS  Google Scholar 

  26. Schneider, H. J.: Lectures on Hopf algebras. Trabajos de Matemática, vol. 31. Universidad Nacional de Córdoba 58 p. (1995)

  27. Schneider H.-J. (1990). Principal homogeneous spaces for arbitrary Hopf algebras. Israel J. Math. 72(1–2): 167–195

    Google Scholar 

  28. Škoda, Z.: Coset spaces for quantum groups. Ph. D. Thesis, Univ. of Wisconsin-Madison, (available on request) (2002)

  29. Škoda, Z.: Localizations for construction of quantum coset spaces. In: Hajac, P.M., Pusz, W. (eds.) Noncommutative geometry and quantum groups. vol.61, pp. 265–298, Banach Center Publications, Warszawa arXiv:math.QA/0301090 (2003)

  30. Škoda, Z.: Globalizing Hopf–Galois extensions. preliminary version

  31. Škoda, Z.: Noncommutative localization in noncommutative geometry. In: London Math. Soc. Lec. Note Series, vol. 330, pp. 220–313, arXiv:math.QA/0403276

  32. Škoda, Z.: Included-row exchange principle for quantum minors. math.QA/0510512

  33. Škoda, Z.: Localized coinvariants I, II. (preprints)

  34. Škoda, Z.: Every quantum minor generates an Ore set. math.QA/0604610

  35. Soibelman Y. (1993). Orbit method for the algebras of functions on quantum groups and coherent states I. Int. Math. Res. Not. 6: 151–163

    Article  Google Scholar 

  36. Spera M. (1993). On a generalized uncertainty principle, coherent states and the moment map. J. Geom. Phys. 12: 165–182

    Article  MATH  Google Scholar 

  37. Varilly, J.C.: Hopf algebras in noncommutative geometry. Lecture notes for the CIMPA Summer School in Villa de Leyva, arXiv:hep-th/0109077

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Škoda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Škoda, Z. Coherent States for Hopf Algebras. Lett Math Phys 81, 1–17 (2007). https://doi.org/10.1007/s11005-007-0166-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-007-0166-y

Mathematics Subject Classification (2000)

Keywords

Navigation