Skip to main content
Log in

Universality of the topological string at large radius and NS-brane resurgence

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that there is a natural universal limit of the topological string free energies at the large radius point. The new free energies keep a nonholomorphic dependence on the complex structure moduli space and their functional form is the same for all Calabi–Yau geometries, compact and noncompact alike. The asymptotic nature of the free energy expansion changes in this limit due to a milder factorial growth of its coefficients, and this implies a transseries extension with instanton effects in \(\exp (- 1/g_s^2)\), of NS-brane type, rather than \(\exp (-1/g_s)\), of D-brane type. We show a relation between the instanton action of NS-brane type and the volume of the Calabi–Yau manifold which points to a possible interpretation in terms of NS5-branes. A similar rescaling limit has been considered recently leading to an Airy equation for the partition function which is here used to explain the resurgent properties of the rescaled transseries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We include a superindex \({}^{(0)}\) to specify that a quantity is related to perturbation theory.

  2. The constant map contribution to the free energies is present for every geometry and it implies a constant instanton action, \(4\pi ^2{i}\). We subtract the constant map contribution to get rid of this action without losing generality.

  3. We can still rescale u and \(H^{(0),u}_g\) by geometry-independent numbers. Here, we make a particular choice such that the leading coefficients of \(H^{(0),u}_g\) are the rational numbers \(a^{(0)}_g\) relevant to [7]. Also, the integration constants arising from (36) must be zero to agree with \(H^{(0),u}(u=0) = 0\). Recall that we subtracted the constant map contribution and \(u=0\) represents the holomorphic limit in the large radius frame.

  4. In the language of the nonholomorphic generators introduced in [6], \(T_2\) takes the role of \(S^{zz}\). A similar definition for u applies in that case with \(T_2 =: T_{2,{\text {hol}}} + \tilde{b}{\kappa }^{-1}u\). Note that no rescaling by \(z^2\) is involved.

  5. If \(f(\xi ) = \sum f_n \, \xi ^n\), then \([\xi ^n](f(\xi )) := f_n\).

  6. In (50), the transseries parameter \(\sigma \) is one of the two integration constants of the equation. The other has been implicitly fixed to reproduce the familiar perturbative series.

  7. Note how the Stokes constant, \(S_1\), and the one-instanton coefficient \(H^{(1),u}_0\) appear multiplying each other, so that a change of normalization in \(H^{(1),u}_0\) will change \(S_1\) accordingly.

  8. The equation for \(\tilde{H}^{(0),u}\) in that case is

    $$\begin{aligned} \theta _{\tau _s}^2 \tilde{H}^{(0),u} + \left( \theta _{\tau _s} \tilde{H}^{(0),u}\right) ^2 + \left( 1- \frac{\zeta - 1/3}{\tau _s} \right) \theta _{\tau _s} \tilde{H}^{(0),u} + \frac{5}{36} = \frac{1}{\lambda _s^4} \frac{(\zeta -1)^2(4\zeta -1)}{36}, \end{aligned}$$
    (70)

    where the combination \(\zeta = 1 - 2 \tau _s/u\) is kept fixed.

  9. The actual definition for the alien derivative takes into account the choice of analytic continuation of the Borel transform around the singularities. In this case, there is only one singularity and the definition collapses to the one we are using.

  10. Note that the Borel transform leaves out \(c_0\) which reappears as the proper residue times \(-{i}\).

  11. The instanton action \(\tilde{A} = 4/3\) becomes \(A = 2/3\) once we take the factor of 2 in (70) between x and \(\tau _s\). Removing the constraint that \(\zeta \) is fixed to go from \(\tilde{H}\) to H takes some extra work. Alternatively, one can take a resurgence approach to (49); see also the comments below.

  12. Then again, Stokes phenomenon has the generic property of turning on the value of the transseries parameter \(\sigma _\text {NS}\) so there may be values of z and \(S^{zz}\) for which these sectors are visible through resummation.

  13. For example, in local \(\mathbb {P}^2\) the propagator in essentially proportional to \(\hat{E}_2(\tau ,\overline{\tau }) = E_2(\tau ) - \frac{6{i}}{\pi (\tau -\overline{\tau })}\) and \(\tau = \partial _T^2 F_0\) is proportional to T to leading order.

  14. Both W and its classical truncation are only approximate solutions the equation for the instanton action.

References

  1. Aganagic, M., Bouchard, V., Klemm, A.: Topological strings and (almost) modular forms. Comm. Math. Phys. 277(3), 771–819 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Alexandrov, S.Yu., Kazakov, V.A., Kutasov, D.: Nonperturbative effects in matrix models and D-branes. JHEP 09, 057 (2003)

  3. Alim, M.: Lectures on mirror symmetry and topological string theory. arXiv:1207.0496 [hep-th]

  4. Alim, M., Lange, J.D.: Polynomial structure of the (open) topological string partition function. JHEP 0710, 045 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  5. Alim, M., Scheidegger, E.: Topological strings on elliptic fibrations. Commun. Num. Theor. Phys. 08, 729–800 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alim, M., Scheidegger, E., Yau, S.-T., Zhou, J.: Special polynomial rings, quasi modular forms and duality of topological strings. Adv. Theor. Math. Phys. 18, 401–467 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alim, M., Yau, S.-T., Zhou, J.: Airy equation for the topological string partition function in scaling limit. Lett. Math. Phys. 106(6), 719–729 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Becker, K., Becker, M., Strominger, A.: Five-branes, membranes and nonperturbative string theory. Nucl. Phys. B 456, 130–152 (1995)

    Article  ADS  MATH  Google Scholar 

  9. Bender, C.M., Wu, T.T.: Anharmonic oscillator II a study of pertubation theory in large order. Phys. Rev. D 7, 1620–1636 (1973)

    Article  ADS  Google Scholar 

  10. Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Holomorphic anomalies in topological field theories. Nucl. Phys. B 405, 279–304 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311–428 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Callan, C.G., Harvey, J.A., Strominger, A.: World sheet approach to heterotic instantons and solitons. Nucl. Phys. B359, 611–634 (1991)

  13. Callan, C.G., Harvey, J.A., Strominger, A.: Worldbrane actions for string solitons. Nucl. Phys. B367, 60–82 (1991)

  14. Candelas, P., De La Ossa, X.C., Green, P.S., Parkes, L.: A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory. Nucl. Phys. B 359, 21–74 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Couso-Santamaría, R., Edelstein, J.D., Schiappa, R., Vonk, M.: Resurgent transseries and the holomorphic anomaly: nonperturbative closed strings in local \({\mathbb{C}\mathbb{P}^2}\). Commun. Math. Phys. 338(1), 285–346 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Couso-Santamaría, R., Edelstein, J.D., Schiappa, R., Vonk, M.: Resurgent transseries and the holomorphic anomaly. Ann. H. Poincaré 17(2), 331–399 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Couso-Santamaría, R., Mariño, M., Schiappa, R.: Work in progress

  18. Drukker, N., Mariño, M., Putrov, P.: Nonperturbative aspects of ABJM theory. JHEP 1111, 141 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Écalle, J.: Les fonctions resurgentes, Prépub. Math. Université 81-05 (1981), 81-06 (1981), 85-05 (1985)

  20. Écalle, J.: Cinq applications des fonctions résurgentes. Publ. Math. d’Orsay, 84–62 (1984)

  21. Grassi, A., Hatsuda, Y., Mariño, M.: Topological strings from quantum mechanics. Ann. H. Poincaré, 1–59 (2015)

  22. Gross, D.J., Periwal, V.: String perturbation theory diverges. Phys. Rev. Lett. 60, 2105 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  23. Haghighat, B., Klemm, A., Rauch, M.: Integrability of the holomorphic anomaly equations. JHEP 0810, 097 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Mariño, M.: Open string amplitudes and large order behavior in topological string theory. JHEP 03, 060 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  25. Mariño, M.: Lectures on non-perturbative effects in large \(N\) gauge theories, matrix models and strings. Fortsch. Phys. 62, 455–540 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Mariño, M.: Spectral theory and mirror symmetry. arXiv:1506.07757 [math-ph]

  27. Mariño, M., Schiappa, R., Weiss, M.: Nonperturbative effects and the large-order behavior of matrix models and topological strings. Commun. Num. Theor. Phys. 2, 349–419 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Martinec, E.J.: The Annular report on noncritical string theory. arXiv:hep-th/0305148 [hep-th]

  29. Pasquetti, S., Schiappa, R.: Borel and Stokes nonperturbative phenomena in topological string theory and c \(=\) 1 matrix models. Ann. H. Poincaré 11, 351–431 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pioline, B., Vandoren, S.: Large D-instanton effects in string theory. JHEP 07, 008 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  31. Polchinski, J.: Combinatorics of boundaries in string theory. Phys. Rev. D 50, 6041–6045 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  32. Sauzin, D.: Introduction to 1-summability and the resurgence theory. arXiv:1405.0356 [hep-th]

  33. Shenker, S.: The strength of nonperturbative effects in string theory. In: Alvarez, O., Marinari, E., Windey, P. (eds.) Random surfaces and quantum gravity, vol. 262 of NATO ASI Series, pp. 191–200. Springer USA (1991)

  34. Simon, B.: Coupling constant analyticity for the anharmonic oscillator (with an appendix by a. dicke). Ann. Phys. 58, 76–136 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  35. Strominger, A.: Heterotic solitons. Nucl. Phys. B 343, 167–184 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  36. Strominger, A.: Special geometry. Commun. Math. Phys. 133, 163–180 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Yamaguchi, S., Yau, S.-T.: Topological string partition functions as polynomials. JHEP 0407, 047 (2004)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank David Sauzin, Emanuel Scheidegger, Ricardo Schiappa, and Marcel Vonk for helpful discussions and comments. I also appreciate useful comments and observations by Marcos Mariño, Boris Pioline, Ricardo Schiappa, and Marcel Vonk on a draft of this paper. This research is supported by the FCT-Portugal Grant EXCL/MAT-GEO/0222/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Couso-Santamaría.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Couso-Santamaría, R. Universality of the topological string at large radius and NS-brane resurgence. Lett Math Phys 107, 343–366 (2017). https://doi.org/10.1007/s11005-016-0906-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-016-0906-y

Keywords

Mathematics Subject Classification

Navigation