Skip to main content
Log in

Reduction of multisymplectic manifolds

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We extend the Marsden–Weinstein–Meyer symplectic reduction theorem to the setting of multisymplectic manifolds. In this context, we investigate the dependence of the reduced space on the reduction parameters. With respect to a distinguished class of multisymplectic moment maps, an exact stationary phase approximation and nonabelian localization theorem are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert, C.: Le théorème de réduction de Marsden-Weinstein en géométrie cosymplectique et de contact. J. Geom. Phys. 6(4), 627–649 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Alekseev, A., Malkin, A., Meinrenken, E.: Lie group valued moment maps. J. Differ. Geom. 48(3), 445–495 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atiyah, M.F.: Convexity and commuting Hamiltonians. Bull. Lond. Math. Soc. 14(1), 1–15 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Audin, M.: Torus Actions on Symplectic Manifolds, Volume 93 of Progress in Mathematics, Revised Birkhäuser Verlag, Basel (2004)

    Book  MATH  Google Scholar 

  5. Barron, T., Serajelahi, B.: Berezin-Toeplitz quantization, hyperkähler manifolds, and multisymplectic manifolds. Glasg. Math. J. 59(1), 167–187 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barron, T., Shafiee, M.: Multisymplectic structures induced by symplectic structures. J. Geom. Phys. 136, 1–13 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 298. Springer, Berlin (1992)

    MATH  Google Scholar 

  8. Bursztyn, H., Cavalcanti, G.R., Gualtieri, M.: Reduction of Courant algebroids and generalized complex structures. Adv. Math. 211(2), 726–765 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bursztyn, H., Martinez Alba, N., Rubio, R.: On higher Dirac structures. Int. Math. Res. Not. IMRN 2019(5), 1503–1542 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Callies, M., Frégier, Y., Rogers, C.L., Zambon, M.: Homotopy moment maps. Adv. Math. 303, 954–1043 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cantrijn, F., Ibort, A., de León, M.: On the geometry of multisymplectic manifolds. J. Austral. Math. Soc. Ser. A 66(3), 303–330 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cantrijn, F., Ibort, L.A., de León, M.: Hamiltonian structures on multisymplectic manifolds. Rend. Sem. Mat. Univ. Politec. Torino 54(3), 225–236 (1996). (Geometrical structures for physical theories, I (Vietri, 1996))

    MathSciNet  MATH  Google Scholar 

  13. Castrillón López, M., Ratiu, T.S., Shkoller, S.: Reduction in principal fiber bundles: covariant Euler–Poincaré equations. Proc. Am. Math. Soc. 128(7), 2155–2164 (2000)

    Article  MATH  Google Scholar 

  14. Chernoff, P.R., Marsden, J.E.: Properties of Infinite Dimensional. Lecture Notes in Mathematics Hamiltonian Systems, vol. 425. Springer, Berlin (1974)

    Book  MATH  Google Scholar 

  15. de León, M., Lainz Valcázar, M.: Contact Hamiltonian systems. J. Math. Phys. 60(10), 102902 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. de León, M., Martín de Diego, D., Santamaría-Merino, A.: Tulczyjew triples and Lagrangian submanifolds in classical field theories. In: Sarlet, W., Cantrijn, F. (eds.) Applied Differential Geometry and Mechanics, pp. 21–47. Academic Press, New York (2003)

    Google Scholar 

  17. DeBellis, J., Sämann, C., Szabo, R.J.: Quantized Nambu–Poisson manifolds and \(n\)-Lie algebras. J. Math. Phys. 51(12), 122303–34 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. DeBellis, J., Sämann, C., Szabo, R.J.: Quantized Nambu–Poisson manifolds in a 3-Lie algebra reduced model. J. High Energy Phys. 2011(4), 075 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Delzant, T.: Hamiltoniens périodiques et images convexes de l’application moment. Bull. Soc. Math. France 116(3), 315–339 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Duistermaat, J.J., Heckman, G.J.: On the variation in the cohomology of the symplectic form of the reduced phase space. Invent. Math. 69(2), 259–268 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Dwivedi, S., Herman, J., Jeffrey, L.C., van den Hurk, T.: Hamiltonian Group Actions and Equivariant Cohomology. SpringerBriefs in Mathematics. Springer, Cham (2019)

    Book  MATH  Google Scholar 

  22. Echeverría-Enríquez, A., Muñoz Lecanda, M.C., Román-Roy, N.: Remarks on multisymplectic reduction. Rep. Math. Phys. 81(3), 415–424 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Forger, M., Paufler, C., Römer, H.: The Poisson bracket for Poisson forms in multisymplectic field theory. Rev. Math. Phys. 15(7), 705–743 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gotay, M., Isenberg, J., Marsden, J., Montomery, R.: Momentum maps and classical relativistic fields. I. Covariant theory (1999). MSRI Preprints

  25. Guillemin, V., Lerman, E., Sternberg, S.: Symplectic Fibrations and Multiplicity Diagrams. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  26. Guillemin, V., Sternberg, S.: Convexity properties of the moment mapping. Invent. Math. 67(3), 491–513 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Guillemin, V., Sternberg, S.: Geometric quantization and multiplicities of group representations. Invent. Math. 67(3), 515–538 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Guillemin, V., Sternberg, S.: Symplectic Techniques in Physics. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  29. Hélein, F.: Multisymplectic formalism and the covariant phase space. In: Variational Problems in Differential Geometry, Volume 394 of London Mathematical Society Lecture Note Series, pp. 94–126. Cambridge University Press, Cambridge (2012)

  30. Herman, J.: Existence and uniqueness of weak homotopy moment maps. J. Geom. Phys. 131, 52–65 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Herman, J.: Noether’s theorem in multisymplectic geometry. Differ. Geom. Appl. 56, 260–294 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Herman, J.: Weak moment maps in multisymplectic geometry. Ph.D. thesis, University of Waterloo (2018)

  33. Jeffrey, L.C., Kirwan, F.C.: Localization for nonabelian group actions. Topology 34(2), 291–327 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kirwan, F.C.: Cohomology of Quotients in Symplectic and Algebraic Geometry. Mathematical Notes, vol. 31. Princeton University Press, Princeton (1984)

    MATH  Google Scholar 

  35. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Interscience Tracts in Pure and Applied Mathematics, No. 15, vol. II. Wiley, New York (1969)

    Google Scholar 

  36. Liu, K.: Remarks on nonabelian localization. Int. Math. Res. Not. 13, 683–691 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu, K.: Heat kernels, symplectic geometry, moduli spaces and finite groups. In: Surveys in Differential Geometry: Differential Geometry Inspired by String Theory, Volume 5 of Surveys in Differential Geometry, pp. 527–542. International Press, Boston (1999)

  38. Loday, J.-L., Pirashvili, T.: Universal enveloping algebras of Leibniz algebras and (co)homology. Math. Ann. 296(1), 139–158 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  39. Madsen, T.B., Swann, A.: Multi-moment maps. Adv. Math. 229(4), 2287–2309 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Madsen, T.B., Swann, A.: Closed forms and multi-moment maps. Geom. Dedicata 165, 25–52 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mammadova, L., Ryvkin, L.: On the extension problem for weak moment maps (2020). arXiv:2001.00264

  42. Marrero, J.C., Román-Roy, N., Salgado, M., Vilariño, S.: Reduction of polysymplectic manifolds. J. Phys. A 48(5), 055206–43 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 5(1), 121–130 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Marsden, J.E.: Hamiltonian one parameter groups: a mathematical exposition of infinite dimensional Hamiltonian systems with applications in classical and quantum mechanics. Arch. Ration. Mech. Anal. 28, 362–396 (1967)/68

  45. Marsden, J.E.: Lectures on Mechanics. London Mathematical Society Lecture Note Series, vol. 174. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  46. Marsden, J.E., Montgomery, R., Morrison, P.J., Thompson, W.B.: Covariant Poisson brackets for classical fields. Ann. Phys. 169(1), 29–47 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  47. Marsden, J.E., Patrick, G.W., Shkoller, S.: Multisymplectic geometry, variational integrators, and nonlinear PDEs. Commun. Math. Phys. 199(2), 351–395 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Marsden, J.E., Weinstein, A.: Comments on the history, theory, and applications of symplectic reduction. In: Quantization of Singular Symplectic Quotients, Volume 198 of Progress in Mathematics, pp. 1–19. Birkhäuser, Basel (2001)

  49. Martinet, J.: Sur les singularités des formes différentielles. Ann. Inst. Fourier (Grenoble) 20(fasc., fasc. 1), 95–178 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  50. Meyer, K.R.: Symmetries and integrals in mechanics. In: Dynamical Systems (Proceedings of a Symposium, University of Bahia, Salvador, 1971), pp. 259–272 (1973)

  51. Miti, A.M., Spera, M.: A hydrodynamical homotopy co-momentum map and a multisymplectic interpretation of higher order linking numbers (2019). arXiv:1805.01696

  52. Ortega, J.-P., Ratiu, T.S.: Momentum Maps and Hamiltonian Reduction. Progress in Mathematics, vol. 222. Birkhäuser Boston Inc, Boston (2004)

    Book  MATH  Google Scholar 

  53. Rogers, C.L.: \(L_\infty \)-algebras from multisymplectic geometry. Lett. Math. Phys. 100(1), 29–50 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Rogers, C.L.: 2-plectic geometry, Courant algebroids, and categorified prequantization. J. Symplectic Geom. 11(1), 53–91 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. Román-Roy, N.: Multisymplectic Lagrangian and Hamiltonian formalisms of classical field theories. SIGMA Symmetry Integr. Geom. Methods Appl. 5, 25 (2009). (Paper 100)

    MathSciNet  MATH  Google Scholar 

  56. Ryvkin, L., Wurzbacher, T.: An invitation to multisymplectic geometry. J. Geom. Phys. 142, 9–36 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Saloff-Coste, L.: The heat kernel and its estimates. In: Probabilistic Approach to Geometry, Volume 57 of Advanced Studies in Pure Mathematics, pp. 405–436. Mathematical Society of Japan, Tokyo (2010)

  58. Serajelahi, B.: Quantization of two types of multisymplectic manifolds. Ph.D. thesis, The University of Western Ontario (2015)

  59. Smale, S.: Topology and mechanics. I. Invent. Math. 10, 305–331 (1970)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Śniatycki, J.: Multisymplectic reduction for proper actions. Can. J. Math. 56(3), 638–654 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  61. Weinberg, S.: The Quantum Theory of Fields, vol. 1. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  62. Willett, C.: Contact reduction. Trans. Am. Math. Soc. 354(10), 4245–4260 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  63. Witten, E.: On quantum gauge theories in two dimensions. Commun. Math. Phys. 141(1), 153–209 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Manuel de León for helpful comments on an early draft of this paper, and Takuya Sakasai for suggesting the topic of generalized Duistermaat–Heckman theorems. The author would also like to acknowledge the support of the East China Normal University, the China Postdoctoral Science Foundation, and the Euler International Mathematical Institute in Saint Petersburg. This work is supported by the Ministry of Science and Higher Education of the Russian Federation, agreement No075–15–2019–1619.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Casey Blacker.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blacker, C. Reduction of multisymplectic manifolds. Lett Math Phys 111, 64 (2021). https://doi.org/10.1007/s11005-021-01408-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-021-01408-y

Keywords

Mathematics Subject Classification

Navigation