Skip to main content
Log in

On the Properties of Accretive-Dissipative Matrices

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Let A be a complex n × n matrix, and let A = B + iC, B = B*, C = C* be its Toeplitz decomposition. Then A is said to be (strictly) accretive if B > 0 and (strictly) dissipative if C > 0. We study the properties of matrices that satisfy both these conditions, in other words, of accretive-dissipative matrices. In many respects, these matrices behave as numbers in the first quadrant of the complex plane. Some other properties are natural extensions of the corresponding properties of Hermitian positive-definite matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, 1976; Russian translation: Mir, Moscow, 1972.

  2. I. M. Glazman and Yu. I. Lyubich, Finite-Dimensional Linear Analysis [in Russian], Nauka, Moscow, 1969.

    Google Scholar 

  3. Yu. M. Arlinskii and A. B. Popov, “On sectorial matrices,” Linear Algebra Appl., 370 (2003), 133–146.

    Article  Google Scholar 

  4. N. J. Higham, “Factorizing complex symmetric matrices with positive real and imaginary parts,” Math. Comp., 67 (1998), 1591–1599.

    Article  Google Scholar 

  5. Kh. D. Ikramov and A. B. Kucherov, “Bounding the growth factor in Gaussian elimination for Buckley’s class of complex symmetric matrices,” Numer. Linear Algebra Appl., 7 (2000), 269–274.

    Article  Google Scholar 

  6. A. George, Kh. D. Ikramov, and A. B. Kucherov, “On the growth factor in Gaussian elimination for generalized Higham matrices,” Numer. Linear Algebra Appl., 9 (2002), 107–114.

    Article  Google Scholar 

  7. Kh. D. Ikramov and V. N. Chugunov, “Inequalities of Fisher and Hadamard types for accretive-dissipative matrices,” Dokl. Ross. Akad. Nauk [Russian Acad. Sci. Dokl. Math.], 384 (2002), no. 5, 585–586.

    Google Scholar 

  8. R. Mathias, “Matrices with positive-definite Hermitian part: Inequalities and linear systems,” SIAM J. Matrix Anal. Appl., 13 (1992), 640–654.

    Article  Google Scholar 

  9. D. W. Masser and M. Neumann, “On the square roots of strictly quasiaccretive complex matrices,” Linear Algebra Appl., 28 (1979), 135–140.

    Article  Google Scholar 

  10. C. R. Johnson, K. Okubo, and R. Reams, “Uniqueness of matrix square roots and an application,” Linear Algebra Appl., 323 (2001), 51–60.

    Article  Google Scholar 

  11. R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, Cambridge, 1994.

    Google Scholar 

  12. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, 1985; Russian translation; Mir, Moscow, 1990.

  13. R. Bhatia and X. Zhan, “Compact operators whose real and imaginary parts are positive,” Proc. Amer. Math. Soc., 129 (2001), 2277–2281.

    Article  Google Scholar 

  14. B. A. Mirman, “Numerical range and norm of a linear operator,” Voronezh. Gos. Univ. Trudy Sem. Funct. Anal., 10 (1968), 51–55.

    Google Scholar 

  15. R. Bhatia, Matrix Analysis, Springer-Verlag, Berlin, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Matematicheskie Zametki, vol. 77, no. 6, 2005, pp. 832–843.

Original Russian Text Copyright ©2005 by A. George, Kh. D. Ikramov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

George, A., Ikramov, K.D. On the Properties of Accretive-Dissipative Matrices. Math Notes 77, 767–776 (2005). https://doi.org/10.1007/s11006-005-0077-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11006-005-0077-0

Key words

Navigation