Skip to main content
Log in

Crossing Probabilities for Diffusion Processes with Piecewise Continuous Boundaries

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

We propose an approach to compute the boundary crossing probabilities for a class of diffusion processes which can be expressed as piecewise monotone (not necessarily one-to-one) functionals of a standard Brownian motion. This class includes many interesting processes in real applications, e.g., Ornstein–Uhlenbeck, growth processes and geometric Brownian motion with time dependent drift. This method applies to both one-sided and two-sided general nonlinear boundaries, which may be discontinuous. Using this approach explicit formulas for boundary crossing probabilities for certain nonlinear boundaries are obtained, which are useful in evaluation and comparison of various computational algorithms. Moreover, numerical computation can be easily done by Monte Carlo integration and the approximation errors for general boundaries are automatically calculated. Some numerical examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • T. W. Anderson,“A modification of the sequential probability ratio test to reduce the sample size,” Annals of Mathematical Statistics vol. 31 pp. 165–197, 1960.

    Google Scholar 

  • W. Bischoff, E. Hashorva, J. Hüsler, and F. Miller,“Exact asymptotics for boundary crossings of the Brownian brisge with trend with application to the Kolmogorov test,” Annals of the Institute of Statististical Mathematics vol. 55, pp. 849–864, 2003.

    Article  MATH  Google Scholar 

  • F. Black, and M. Scholes,“The pricing of options and corporate liabilities,” Journal of Political Economy vol.81, pp. 637–659, 1973.

    Article  Google Scholar 

  • G. Bluman, “In the transformation of diffusion processes into the Wiener process,” SIAM Journal on Applied Mathematics vol. 39, pp. 238–247, 1980.

    Article  MathSciNet  Google Scholar 

  • K. Borovkov and A. Novikov,“Explicit bounds for approaximation rates of boundary crossing probabilities for the Wiener process,” Journal of Applied Probability vol. 42, pp. 82–92, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  • I. D. Cherkasov,“On the transformation of the diffusion process to a Wiener process,” Theory of Probability and Its Applications vol. 2, pp. 373–377, 1957.

    Article  Google Scholar 

  • J. C. Cox, J. E. Ingersoll, and S. A. Ross, “A theory of the term structure of interest rates,” Econometrica vol. 53, pp. 385–407, 1985.

    Article  MathSciNet  Google Scholar 

  • H. E. Daniels, “The minimum of stationary Markov process superimposed on a U-shaped trend,” Journal of Applied Probability vol.6, pp. 399–408, 1969.

    Article  MATH  MathSciNet  Google Scholar 

  • H. E. Daniels, “Approximating the first crossing-time density for a curved boundary,” Bernoulli vol. 2, pp. 133–143, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  • J. L. Doob, “Heuristic approach to the Kolmogorov–Smirnov theorems,” Annals of Mathematical Statistics vol. 20, pp. 393–403, 1949.

    MathSciNet  Google Scholar 

  • J. Dupuis, and D. Siegmund,“ Boundary crossing probabilities in linkage analysis,” Game theory, optimal stopping, probability and statistics, pp. 141–152, IMS Lecture Notes Monogr. Ser., 35, Inst. Math. Statist., Beachwood, Ohio, 2000.

  • J. Durbin,“Boundary crossing probabilities for the Brownian motion and the poisson processes and techniques for computing the power of the Kolmogorov–Smirnov test,” Journal of Applied Probability vol. 8, pp. 431–453, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Durbin,“The first-passage density of the Brownian motion process to a curved boundary,” Journal of Applied Probability vol. 29, pp. 291–304, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  • N. Ebrahimi,“System reliability bsed on diffusion models for fatigue crack frowth,” Naval Research Logistics vol. 52, pp. 46–57, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  • B. Ferebee,“The tangent approximation to one-sided Brownian exit densities,” Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete vol. 61, pp. 309–326, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  • B. Ferebee, “An asymptotic expansion for one-sided Brownian exit densities,” Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete vol. 63, pp. 1–15, 1983.

    MATH  MathSciNet  Google Scholar 

  • J. Garrido,“Stochastic differential equations for compounded risk reserves.,” Insurance. Mathematics & Economics vol. 8, pp. 165–173, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  • V. Giorno, A. G. Nobile, L. M. Ricciardi, and S. Sato,“ On the evaluation of first-passage-time probability densities via non-singular integral equations,” Advances in Applied Probability vol. 21, pp. 20–36, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  • M. T. Giraudo, and L. Sacerdote,“An improved technique for the simulation of first passage times for diffusion processes,” Communications in Statistics. Simulation and Computation vol. 28, pp. 1135–1163, 1999.

    MATH  MathSciNet  Google Scholar 

  • M. T. Giraudo, L. Sacerdote, and C. Zucca,“A Monte Carlo method for the simulation of first passage times of diffusion processes,” Methodology and Computing in Applied Probability vol. 3, pp. 215–231, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  • I. Karatzas, and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2nd edn., Springer, Berlin Heidelberg New York, 1991.

    MATH  Google Scholar 

  • P. E. Kloeden and E. Platen, The Numerical Solution to Stochastic Differential Equations, Springer, Berlin Heidelberg New York, 1992.

    Google Scholar 

  • S. G. Kou, and H. Wang,“First passage times of a jump diffusion process,” Advances in Applied Probability vol. 35, pp. 504–531, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Kolmogorov,“Über die analytischen methoden in der Wahrscheinlichkeitsrechnung,” Mathematische Annalen vol. 104, pp. 415–458, 1931.

    Article  MATH  MathSciNet  Google Scholar 

  • W. Krämer, W. Ploberger, and R. Alt, “Testing for structural change in dynamic models,” Econometrica vol. 56, pp. 1355–1369, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  • D. Lamberton, and B. Lapeyre, Introduction to Stochastic Calculus Applied to Finance, Chapman & Hall, London, UK, 1996.

    Google Scholar 

  • H. R. Lerche, Boundary Crossing of Brownian Motion, In Lecture Notes in Statistics vol. 40. Springer, Berlin Heidelberg New York, 1986.

    Google Scholar 

  • X. S. Lin,“Double barrier hitting time distributions with applications to exotic options,” Insurance. Mathematics & Economics vol. 23, pp. 45–58, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Martin-Löf,“The final size of a nearly critical epidemic, and the first passage time of a Wiener process to a parabolic barrier,” Journal of Applied Probability vol. 35, pp. 671–682, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  • R. C. Merton,“Theory of rational option pricing,” Bell Journal of Economics and Management Science vol. 4, pp. 141–183, 1973.

    Article  MathSciNet  Google Scholar 

  • A. J. Michael,“Viscoelasticity, postseismic slip, fault interactions, and the recurrence of large earthquakes,” Bulletin of the Seismological Society of America vol. 95, pp. 1594–1603, 2005.

    Article  MathSciNet  Google Scholar 

  • A. Novikov, V. Frishling, and N. Kordzakhia,“Approximations of boundary crossing probabilities for a Brownian motion,” Journal of Applied Probability vol. 99, pp. 1019–1030, 1999.

    MathSciNet  Google Scholar 

  • A. Novikov, V. Frishling, and N. Kordzakhia, “Time-dependent barrier options and boundary crossing probabilities,” Georgian Mathematical Journal vol. 10, pp. 325–334, 2003.

    MATH  MathSciNet  Google Scholar 

  • K. Pötzelberger, and L. Wang,“Boundary crossing probability for Brownian Motion,” Journal of Applied Probability vol. 38, pp. 152-164, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  • L. M. Ricciardi,“On the transformation of diffusion processes into the Wiener process,” Journal of Mathematical Analysis and Applications vol. 54, pp. 185-199, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  • L. M. Ricciardi, A. Di Crescenzo, V. Giorno, and A.G. Nobile,“An outline of theoretical and algorithmic approaches to first passage time problems with applications to biological modeling.,”Mathematica Japonica vol. 50, pp. 247–322, 1999.

    MATH  MathSciNet  Google Scholar 

  • L. M. Ricciardi, L. Sacerdote, and S. Sato,“On an integral equation for first-passage-time probability densities,” Journal of Applied Probility vol. 21, pp. 302-314, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  • G. O. Roberts, and C. F. Shortland,“Pricing barrier options with time-dependent coefficients,” Mathematical Finance vol. 7, pp. 83–93, 1997.

    Article  MATH  Google Scholar 

  • L. Sacerdote, and F. Tomassetti, “On evaluations and asymptotic approximations of first-passage-time probabilities,” Advanced of Applied Probability vol. 28, pp. 270–284, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  • P. K. Sen, Sequential Nonparametrics: Invariance Principles and Statistical Inference, Wiley, New York, 1981.

    MATH  Google Scholar 

  • D. Siegmund,“Boundary crossing probabilities and statistical applications,” Annals of Statistics vol. 14, pp. 361–404, 1986.

    MATH  MathSciNet  Google Scholar 

  • A. N. Startsev,“Asymptotic analysis of the general stochastic epidemic with variable infectious periods,” Journal of Applied Probility vol. 38, pp. 18–35, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  • V. Strassen,“Almost sure behaviour of sums of independent random variables and martingales,” In L. M. Le Cam and J. Neyman (eds.),Proc. 5th Berkley Symp. Math. Statist. Prob., Vol. 11, Contributions to Probability Theory, pp. 315–343, Part 1, University of California Press, Berkley, California, 1967.

    Google Scholar 

  • H. C. Tuckwell, and F. Y. M. Wan,“First passage time to detection in stochastic population dynamical models for HIV-1,” Applied Mathematics Letters vol. 13, pp. 79–83, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  • O. A. Vasicek,“An equilibrium characterization of the term structure,” Journal of Financial Economics vol. 5, pp. 177–188, 1977.

    Article  Google Scholar 

  • L. Wang, and K. Pötzelberger,“Boundary crossing probability for Brownian Motion and general boundaries,” Journal of Applied Probability vol. 34, pp. 54–65, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  • T. Yamada, and S. Watanabe,“On the uniqueness of the solutions of stochastic differential equations,” Journal of Mathematics of Kyoto University vol. 11, pp. 155–167, 1971.

    MATH  MathSciNet  Google Scholar 

  • A. Zeileis,“Alternative boundaries for CUSUM tests,” Statistical Papers vol. 45, pp. 123–131, 2004.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Pötzelberger, K. Crossing Probabilities for Diffusion Processes with Piecewise Continuous Boundaries. Methodol Comput Appl Probab 9, 21–40 (2007). https://doi.org/10.1007/s11009-006-9002-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-006-9002-6

Keywords

AMS 2000 Subject Classification

Navigation