Skip to main content
Log in

On Piterbarg Max-Discretisation Theorem for Standardised Maximum of Stationary Gaussian Processes

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

With motivation from Hüsler (Extremes 7:179–190, 2004) and Piterbarg (Extremes 7:161–177, 2004) in this paper we derive the joint limiting distribution of standardised maximum of a continuous, stationary Gaussian process and the standardised maximum of this process sampled at discrete time points. We prove that these two random sequences are asymptotically complete dependent if the grid of the discrete time points is sufficiently dense, and asymptotically independent if the grid is sufficiently sparse. We show that our results are relevant for computational problems related to discrete time approximation of the continuous time maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowicz K, Seleznjev O (2011a) Multivariate piecewise linear interpolation of a random field. arXiv:1102.1871

  • Abramowicz K, Seleznjev O (2011b) Spline approximation of a random process with singularity. J Stat Plan Inf 141:1333–1342

    Article  MATH  MathSciNet  Google Scholar 

  • Abramowicz K, Seleznjev O (2011c) Stratified Monte Carlo quadrature for continuous random fields. arXiv:1104.4920

  • Adler RJ, Blanchet J, Liu J (2012) Efficient Monte Carlo for high excursions of Gaussian random fields. Ann Appl Probab 22:1167–1214

    Article  MATH  MathSciNet  Google Scholar 

  • Albin JMP, Choi A (2010) A new proof of an old result by Pickands, Electron. Commun Probab 15:339–345

    MATH  MathSciNet  Google Scholar 

  • Azaïs J-M, Genz A (2012) Computation of the distribution of the maximum of stationary Gaussian processes. Math Comput Appl Probab. doi:10.1007/s11009-012-9293-8

    Google Scholar 

  • Azaïs J-M, Wschbor M (2009) Level sets and extrema of random processes and fields. Wiley, Hoboken, NJ

    Book  MATH  Google Scholar 

  • Berman SM (1962) Limiting distribution of the studentized largest observation. Skand Akt 45:154–161

    Google Scholar 

  • Berman SM (1974) Sojourns and extremes of Gaussian processes. Ann Probab 2:999–1026

    Article  MATH  Google Scholar 

  • Dȩbicki K (2002) Ruin probability for Gaussian integrated processes. Stoch Process Appl 98:151–174

    Article  MathSciNet  Google Scholar 

  • Dȩbicki K, Kisowski P (2009) A note on upper estimates for Pickands constants. Stat Probab Lett 78:2046–2051

    Article  MathSciNet  Google Scholar 

  • Dȩbicki K, Tabiś K (2011) Extremes of time-average stationary Gaussian processes. Stoch Process Appl 121:2049–2063

    Article  Google Scholar 

  • Falk M, Hüsler J, Reiss R-D (2010) Laws of small numbers: extremes and rare events. In: DMV seminar, vol 23, 2nd edn. Birkhäuser, Basel

    Google Scholar 

  • Grubbs FE (1964) Sample criteria for testing outlying observations. Ann Math Stat 35:512–516

    Google Scholar 

  • Hashorva E, Hüsler J (2000) Extremes of Gaussian processes with maximal variance near the boundary points. Math Comput Appl Probab 2:255–269

    Article  MATH  Google Scholar 

  • Hashorva E, Lifshits MA, Seleznjev O (2012) Approximation of a random process with variable smoothness. arXiv:1206.1251v1

  • Ho HC, McCormick WP (1999) Asymptotic distribution of sum and maximum for Gaussian processes. J Appl Probab 36:1031–1044

    Article  MATH  MathSciNet  Google Scholar 

  • Hüsler J (1990) Extreme values and high boundary crossings for locally stationary Gaussian processes. Ann Probab 18:1141–1158

    Article  MATH  MathSciNet  Google Scholar 

  • Hüsler J (2004) Dependence between extreme values of discrete and continuous time locally stationary Gaussian processes. Extremes 7:179–190

    Article  MATH  MathSciNet  Google Scholar 

  • Hüsler J, Piterbarg V (2004) Limit theorem for maximum of the storage process with fractional Brownian motion as input. Stoch Process Appl 114:231–250

    Article  MATH  Google Scholar 

  • Hüsler J, Piterbarg VI, Seleznjev O (2003) On convergence of the uniform norms for Gaussian processes and linear approximation problems. Ann Appl Probab 13:1615–1653

    Article  MATH  MathSciNet  Google Scholar 

  • James B, James K, Qi Y (2007) Limit distribution of the sum and maximum from multivariate Gaussian sequences. J Multi Analysis 98:517–532

    Article  MATH  MathSciNet  Google Scholar 

  • Kabluchko Z (2011) Extremes of independent Gaussian processes. Extremes 14:285–310

    Article  MathSciNet  Google Scholar 

  • Leadbetter MR, Lindgren G, Rootzén H (1983) Extremes and related properties of random sequences and processes. Series in statistics. Springer, New York

    Book  Google Scholar 

  • Lifshits MA (1995) Gaussian random functions. Kluwer, Dordrecht

    Book  Google Scholar 

  • McCormick WP (1980) Weak convergence for the maxima of stationary Gaussian processes using random normalization. Ann Probab 8:498–510

    Article  MATH  MathSciNet  Google Scholar 

  • McCormick WP, Qi Y (2000) Asymptotic distribution for the sum and maxima of Gaussian processes. J Appl Probab 37:958–971

    Article  MATH  MathSciNet  Google Scholar 

  • Mittal Y, Ylvisaker D (1975) Limit distribution for the maximum of stationary Gaussian processes. Stoch Process Appl 3:1–18

    Article  MATH  MathSciNet  Google Scholar 

  • Oesting M, Kabluchko Z, Schlather M (2012) Simulation of Brown-Resnick processes. Extremes 15:89–107

    Article  MathSciNet  Google Scholar 

  • Pickands J III (1969) Asymptotic properties of the maximum in a stationary Gaussian process. Trans Amer Math Soc 145:75–86

    MATH  MathSciNet  Google Scholar 

  • Piterbarg VI (1972) On the paper by J. Pickands “upcrosssing probabilities for stationary Gaussian processes”. Vestnik Moscow, Univ Ser I Mat Mekh 27:25–30. English translation in Moscow, Univ Math Bull 27

  • Piterbarg VI (1996) Asymptotic methods in the theory of Gaussian processes and fields. AMS, Providence

    MATH  Google Scholar 

  • Piterbarg VI (2004) Discrete and continuous time extremes of Gaussian processes. Extremes 7:161–177

    Article  MATH  MathSciNet  Google Scholar 

  • Seleznjev O (2006) Asymptotic behavior of mean uniform norms for sequences of Gaussian processes and fields. Extremes 8:161–169

    Article  MathSciNet  Google Scholar 

  • Tan Z, Wang Y (2012) Extreme values of discrete and continuous time strongly dependent Gaussian processes. Comm Stat Theor Meth (in press)

  • Turkman KF (2012) Discrete and continuous time series extremes of stationary processes. In: Rao TS, Rao SS, Rao CR (eds) Handbook of statistics, vol 30. Time series methods and aplications. Elsevier, pp 565–580

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enkelejd Hashorva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, Z., Hashorva, E. On Piterbarg Max-Discretisation Theorem for Standardised Maximum of Stationary Gaussian Processes. Methodol Comput Appl Probab 16, 169–185 (2014). https://doi.org/10.1007/s11009-012-9305-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-012-9305-8

Keywords

AMS 2000 Subject Classifications

Navigation