Skip to main content

Advertisement

Log in

Local Stereology of Tensors of Convex Bodies

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

In this paper, we present local stereological estimators of Minkowski tensors defined on convex bodies in ℝd. Special cases cover a number of well-known local stereological estimators of volume and surface area in ℝ3, but the general set-up also provides new local stereological estimators of various types of centres of gravity and tensors of rank two. Rank two tensors can be represented as ellipsoids and contain information about shape and orientation. The performance of some of the estimators of centres of gravity and volume tensors of rank two is investigated by simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auneau-Cognacq J, Ziegel J, Jensen EBV (2013) Rotational integral geometry of tensor valuations. Adv Appl Math 50:429–444

    Article  MATH  MathSciNet  Google Scholar 

  • Beisbart C, Dahlke R, Mecke KR, Wagner H (2002) Vector- and tensor-valued descriptors for spatial patterns. In: Morphology of condensed matter, vol 600. Lecture notes in physics. Springer, Berlin, pp 249–271

  • Beisbart C, Barbosa MS, Wagner H, da F Costa L (2006) Extended morphometric analysis of neuronal cells with Minkowski valuations. Eur Phys J B 52:531–546

    Article  Google Scholar 

  • Beneš V, Jiruše M, Slámová M (1997) Unfolding the trivariate size-shape-orientation distribution of spheroidal particles with application. Acta Mater 45(3):1105–1113

    Article  Google Scholar 

  • Cruz-Orive LM (1976) Particle size-shape distributions: the general spheroid problem. i. Mathematical model. J Microsc 107:235–253

    Article  Google Scholar 

  • Cruz-Orive LM (1978) Particle size-shape distributions: the general spheroid problem. II. Stochastic model and practical guide. J Microsc 112:153–167

    Article  Google Scholar 

  • Cruz-Orive LM (2005) A new stereological principle for test lines in three-dimensional space. J Microsc 219:18–28

    Article  MathSciNet  Google Scholar 

  • Cruz-Orive LM (2008) Comparative precision of the pivotal estimators of particle size. Image Anal Stereol 27:17–22

    Article  MATH  Google Scholar 

  • Cruz-Orive LM (2011) Flowers and wedges for the stereology of particles. J Microsc 243:86–102

    Article  Google Scholar 

  • Cruz-Orive LM (2012) Uniqueness properties of the invariator, leading to simple computations. Image Anal Stereol 31:89–98

    Article  MathSciNet  Google Scholar 

  • Cruz-Orive LM, Hoppeler H, Mathieu O, Weibel ER (1985) Stereological analysis of anisotropic structures using directional statistics. J Roy Statist Soc Ser C 34:14–32

    MATH  MathSciNet  Google Scholar 

  • Denis EB, Barat C, Jeulin D, Ducottet C (2008) 3D complex shape characterizations by statistical analysis: Application to aluminium alloys. Mater Charact 59:338–343

    Article  Google Scholar 

  • Dvořák J, Jensen EBV (2012) On semi-automatic estimation of surface area. CSGB Research Report 12-06, Centre for Stochastic Geometry and Advanced Bioimaging, Department of Mathematics, Aarhus University, Denmark. Submitted

  • Gokhale M (1996) Estimation of bivariate size and orientation distribution of microcracks. Acta Mater 44(2):475–485

    Article  Google Scholar 

  • Gundersen HJ (1988) The nucleator. J Microsc 151:3–21

    Article  Google Scholar 

  • Hansen LV, Nyengaard JR, Andersen JB, Jensen EBV (2011) The semi-automatic nucleator. J Microsc 242:206–215

    Article  Google Scholar 

  • Hug D, Schneider R, Schuster R (2008) Integral geometry of tensor valuations. Adv Appl Math 41:482–509

    Article  MATH  MathSciNet  Google Scholar 

  • Jensen EB, Gundersen HJG (1987) Stereological estimation of surface area of arbitrary particles. Acta Stereol 6:25–30

    Google Scholar 

  • Jensen EBV (1998) Local stereology. World Scientific, London

    MATH  Google Scholar 

  • Jensen EBV, Gundersen HJ (1993) The rotator. J Microsc 170:35–44

    Article  Google Scholar 

  • Leopardi P (2006) A partition of the unit sphere into regions of equal area and small diameter. Electron Trans Numer Anal 25:309–327 (electronic)

    MATH  MathSciNet  Google Scholar 

  • Pawlas Z, Nyengaard JR, Jensen EBV (2009) Particle sizes from sectional data. Biometrics 65:216–224

    Article  MATH  MathSciNet  Google Scholar 

  • Schröder-Turk GE, Kapfer SC, Breidenbach B, Beisbart C, Mecke K (2011a) Tensorial Minkowski functionals and anisotropy measures for planar patterns. J Microsc 238:57–74

    Article  Google Scholar 

  • Schröder-Turk GE, Mickel W, Kapfer SC, Klatt MA, Schaller FM, Hoffmann MJF, Kleppmann N, Armstrong P, Inayat A, Hug D, Reichelsdorfer M, Peukert W, Schwieger W, Mecke K (2011b) Minkowski tensor shape analysis of cellular, granular and porous structures. Adv Mater 23:2535–2553

    Article  Google Scholar 

  • Thórisdóttir O, Kiderlen M (2013) The invariator principle in convex geometry (in preparation)

  • Zähle M (1987) Curvatures and currents for unions of sets with positive reach. Geom Dedicata 23:155–171

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna F. Ziegel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, E.B.V., Ziegel, J.F. Local Stereology of Tensors of Convex Bodies. Methodol Comput Appl Probab 16, 263–282 (2014). https://doi.org/10.1007/s11009-013-9337-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-013-9337-8

Keywords

AMS 2000 Subject Classification

Navigation