Skip to main content
Log in

Calibration for Weak Variance-Alpha-Gamma Processes

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

The weak variance-alpha-gamma process is a multivariate Lévy process constructed by weakly subordinating Brownian motion, possibly with correlated components with an alpha-gamma subordinator. It generalises the variance-alpha-gamma process of Semeraro constructed by traditional subordination. We compare three calibration methods for the weak variance-alpha-gamma process, method of moments, maximum likelihood estimation (MLE) and digital moment estimation (DME). We derive a condition for Fourier invertibility needed to apply MLE and show in our simulations that MLE produces a better fit when this condition holds, while DME produces a better fit when it is violated. We also find that the weak variance-alpha-gamma process exhibits a wider range of dependence and produces a significantly better fit than the variance-alpha-gamma process on a S&P500-FTSE100 data set, and that DME produces the best fit in this situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Applebaum D (2009) Lévy Processes & Stochastic Calculus. Cambridge Studies in Advanced Mathematics, vol 116, 2nd edn. Cambridge University Press, Cambridge. MR2512800

  • Ballotta L, Bonfiglioni E (2016) Multivariate asset models using Lévy processes and applications. Eur J Finance 22:1320–1350

    Article  Google Scholar 

  • Barndorff-Nielsen OE, Pedersen J, Sato K (2001) Multivariate subordination, self-decomposability and stability. Adv Appl Probab 33:160–187. MR1825321

    Article  MathSciNet  Google Scholar 

  • Barndorff-Nielsen OE, Shiryaev A (2010) Change of Time and Change of Measure. World Scientific Publishing Co. Pte. Ltd., Hackensack. MR2779876

    Book  Google Scholar 

  • Bertoin J (1996) Lévy Processes. Cambridge University Press, Cambridge. MR1406564

    MATH  Google Scholar 

  • Bingham NH, Kiesel R (2002) Semi-parametric modelling in finance: Theoretical foundations. Quant Finan 2:241–250

    Article  MathSciNet  Google Scholar 

  • Bingham NH (2006) Lévy processes and self-decomposability in finance. Probab Math Stat 26:131–142

    MATH  Google Scholar 

  • Buchmann B, Kaehler B, Maller R, Szimayer A (2017a) Multivariate subordination using generalised gamma convolutions with applications to variance gamma processes & option pricing. Stoch Proc Appl 127:2208–2242

    Article  MathSciNet  Google Scholar 

  • Buchmann B, Lu K, Madan D (2017b) Weak subordination of multivariate Lévy processes and variance generalised gamma convolutions. To appear in Bernoulli. Available at https://www.e-publications.org/ims/submission/BEJ/user/submissionFile/31967?confirm=225c9cd1

  • Buchmann B, Lu K, Madan D (2018) Self-decomposability of variance generalised gamma convolutions Preprint. Australian National University and University of Maryland. Available at arXiv:1712.03640

  • Cariboni J, Schoutens W (2009) Lévy Processes in Credit Risk. Wiley, New York

    MATH  Google Scholar 

  • Carr P, Geman H, Madan DB, Yor M (2007) Self-decomposability and option pricing. Math Financ 17:31–57

    Article  MathSciNet  Google Scholar 

  • Cleveland WS, Grosse E, Shyu WM (1991) Local Regression Models. Chapter 8, Statistical Models in S, editors Chambers, J.M. & Hastie T.J. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Cont R, Tankov P (2004) Financial Modelling with Jump Processes. Chapman & Hall, London. MR2042661

    MATH  Google Scholar 

  • Finlay E, Seneta E (2008) Stationary-increment Variance-Gamma and t models: Simulation and parameter estimation. Int Stat Rev 76:167–186. MR2492088

    Article  Google Scholar 

  • Fung T, Seneta E (2010) Modelling and estimation for bivariate financial returns. Int Stat Rev 78:117–133

    Article  Google Scholar 

  • Guillaume F (2013) The \(\alpha \)VG model for multivariate asset pricing: calibration and extension. Rev Deriv Res 16:25–52

    Article  Google Scholar 

  • Kawai R (2009) A multivariate Lévy process model with linear correlation. Quant Finan 9:597–606

    Article  Google Scholar 

  • Küchler U, Tappe S (2008) On the shapes of bilateral Gamma densities. Stat Probab Lett 78:2478–2484

    Article  MathSciNet  Google Scholar 

  • Luciano E, Semeraro P (2010) Multivariate time changes for Lévy asset models: Characterization and calibration. J Comput Appl Math 233:1937–1953. MR2564029

    Article  MathSciNet  Google Scholar 

  • Luciano E, Marena M, Semeraro P (2016) Dependence calibration and portfolio fit with factor-based subordinators. Quant Finan 16:1037–1052

    Article  MathSciNet  Google Scholar 

  • Madan DB, Seneta E (1990) The variance gamma (v.g.). model for share market returns. J Bus 63:511–524

    Article  Google Scholar 

  • Madan DB, Carr PP, Chang EC (1998) The variance gamma process and option pricing. Rev Financ 2:79–105

    Article  Google Scholar 

  • Madan DB (2011) Joint risk-neutral laws and hedging. IIE Trans 43:840–850

    Article  Google Scholar 

  • Madan DB (2015) Estimating parametric models of probability distributions. Methodol Comput Appl Probab 17:823–831. MR3377863

    Article  MathSciNet  Google Scholar 

  • Madan DB (2018) Instantaneous portfolio theory. Quant Finan. Available at https://doi.org/10.1080/14697688.2017.1420210

    Article  MathSciNet  Google Scholar 

  • Michaelsen M (2018) Information flow dependence in financial markets. Preprint. Universität Hamburg. Available at https://ssrn.com/abstract=3051180

  • Michaelsen M, Szimayer A (2018) Marginal consistent dependence modeling using weak subordination for Brownian motions. Quant Finan. Available at https://doi.org/10.1080/14697688.2018.1439182

    Article  MathSciNet  Google Scholar 

  • Peacock JA (1983) Two-dimensional goodness-of-fit testing in astronomy. Mon Not R Astr Soc 202:615–627

    Article  Google Scholar 

  • Rosenblatt M (1952) Remarks on a multivariate transformation. Ann Math Statist 23:470–472. MR0049525

    Article  MathSciNet  Google Scholar 

  • Sato K (1999) Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge. MR3185174

    MATH  Google Scholar 

  • Semeraro P (2008) A multivariate variance gamma model for financial applications. J Theor Appl Financ 11:1–18. MR2398464

    Article  MathSciNet  Google Scholar 

  • Wang J (2009) The Multivariate Variance Gamma Process and Its Applications in Multi-asset Option Pricing. PhD Thesis, University of Maryland

  • Xiao Y (2017) A fast algorithm for two-dimensional Kolmogorov-Smirnov two sample tests. Comput Stat Data Anal 105:53–58

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

B. Buchmann’s research was supported by ARC grant DP160104737. K. Lu’s research was supported by an Australian Government Research Training Program Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin W. Lu.

Additional information

This research was partially supported by ARC grant DP160104737.

Appendix

Appendix

Lévy Process

The reader is referred to the monographs Applebaum (2009), Bertoin (1996) and Sato (1999) for necessary material on Lévy processes, to Ballotta and Bonfiglioni (2016), Cariboni and Schoutens (2009), Cont and Tankov (2004) for financial applications, while our notation follows Buchmann et al. (2017a) and Buchmann et al. (2017b). For \(A\subseteq \mathbb {R}^{n}\), let \(A_{*}:=A\backslash \{\textbf {0}\}\) and let \(\mathbf {1}_{A}(\omega )\) denote the indicator function. Let \(\mathbb {D}:=\{\mathbf {x}\in \mathbb {R}^{n}:\|\mathbf {x}\|\le 1\}\) be the Euclidean unit ball centred at the origin. The law of an n-dimensional Lévy process \(X=(X_{1},\dots ,X_{n})=(X(t))_{t\ge 0}\) is determined by its characteristic function \({\Phi }_{X}:={\Phi }_{X(1)}\), with

$${\Phi}_{X(t)}(\boldsymbol{\theta}) := \mathbb{E}\exp(\mathrm{i}\langle\boldsymbol{\theta},{X(t)}\rangle) = \exp(t{\Psi}_{X}(\boldsymbol{\theta})) , \qquad t\!\ge\!0,$$

and Lévy exponent \({\Psi }_{X}:={\Psi }\), where

$$ {\Psi}(\boldsymbol{\theta}) := \mathrm{i} \langle {\boldsymbol{\mu}},\boldsymbol{\theta}\rangle - \frac{1}{2} \|\boldsymbol{\theta}\|^{2}_{\Sigma} +{\int}_{\mathbb{R}^{n}_{*}}\left( e^{\mathrm{i}\langle\boldsymbol{\theta}, \mathbf{x}\rangle} - 1 - \mathrm{i}\langle\boldsymbol{\theta}, \mathbf{x}\rangle \mathbf{1}_{\mathbb{D}}(\mathbf{x})\right) \mathcal{X}(\mathrm{d} \mathbf{x}) , $$

\(\boldsymbol {\theta }\in \mathbb {R}^{n}\), \(\boldsymbol {\mu }\in \mathbb {R}^{n}\), \({\Sigma }\in \mathbb {R}^{n\times n}\) is a covariance matrix, and \(\mathcal {X}\) is a nonnegative Borel measure on \(\mathbb {R}^{n}_{*}\) such that \({\int }_{\mathbb {R}^{n}_{*}}(\|\mathbf {x}\|^{2}\wedge 1) \mathcal {X}(\mathrm {d} \mathbf {x})<\infty \). We write \(X\sim L^{n}(\boldsymbol {\mu },{\Sigma },\mathcal {X})\) provided X is an n-dimensional Lévy process with canonical triplet \((\boldsymbol {\mu },{\Sigma },\mathcal {X})\).

A subordinator \(T\!\sim \!S^{n}(\mathcal {T}) = L^{n}(\boldsymbol {\mu },0,\mathcal {T})\) is drift-less if its drift \(\boldsymbol {\mu } - {\int }_{\mathbb {D}_{*}} \mathbf {t} \mathcal {T}(\mathrm {d} \mathbf {t})=\textbf {0}\). All subordinators considered in this paper are drift-less.

An n-dimensional random variable X is self-decomposable if for any \(0\!<\!b\!<\!1\), there exists a random variable \(Z_{b}\), independent of X, such that \(X\stackrel {D}{=} bX+Z_{b}\). A Lévy process X is self-decomposable if \(X(1)\) is.

Strongly Subordinated Brownian Motion

Let \(B=(B_{1},\dots ,B_{n})\sim BM^{n}(\boldsymbol {\mu },{\Sigma })\) be a Brownian motion and \(T = (T_{1},\dots ,T_{n})\!\sim \!S^{n}(\mathcal {T})\) be a drift-less subordinator. A process \(B\circ T\) is the traditional or strong subordination ofXand T if \((B\circ T)(t):=(B_{1}(T_{1}(t)),\dots ,B_{n}(T_{n}(t)))\), \(t\ge 0\).

Weakly Subordinated Brownian Motion

Let \(\mathbf {t} = (t_{1},{\dots } t_{n})\!\in \![0,\infty )^{n}\), \(\boldsymbol {\mu } = (\mu _{1},{\dots } \mu _{n})\!\in \!\mathbb {R}^{n}\) and \({\Sigma } = ({\Sigma }_{kl})\!\in \!\mathbb {R}^{n\times n}\) be a covariance matrix. Introduce the outer products \(\mathbf {t}\diamond \boldsymbol {\mu }\in \mathbb {R}^{n}\) and \(\mathbf {t}\diamond {\Sigma }\!\in \!\mathbb {R}^{n\times n}\) by

$$ \mathbf{t}\diamond\boldsymbol{\mu}:=(t_{1}\mu_{1},\dots,t_{n}\mu_{n})\quad\text{and}\quad(\mathbf{t}\diamond {\Sigma})_{kl}:={\Sigma}_{kl}(t_{k}\wedge t_{l}),\quad 1\le k,l\le\!n. $$
(A.1)

Let \(B\!\sim \!BM^{n}(\boldsymbol {\mu },{\Sigma })\) be an n-dimensional Brownian motion and \(T\!\sim \!S^{n}(\mathcal {T})\) be an n-dimensional drift-less subordinator. A Lévy process \(B\odot T\) is called the weak subordination ofBand T (see Buchmann et al. 2017b, their Proposition 3.1) if it has Lévy exponent

$$ {\Psi}_{B\odot T}(\boldsymbol{\theta})={\int}_{[0,\infty)^{n}_{*}}\left( \exp\left( \mathrm{i}\langle\boldsymbol{\theta},{\mathbf{t}\diamond\boldsymbol{\mu}}\rangle-\frac{1}{2}\|\boldsymbol{\theta}\|^{2}_{\mathbf{t}\diamond{\Sigma}}\right)-1\right) \mathcal{T}(\mathrm{d}\mathbf{t}) , $$
(A.2)

\(\boldsymbol {\theta }\in \mathbb {R}^{n}\). Note that a more general definition of weak subordination and a proof of existence is given in Buchmann et al. (2017b).

For independent B and T, \(B\circ T\stackrel {D}{=} B\odot T\) if T has indistinguishable components or B has independent components, otherwise \(B\circ T\) may not a Lévy process, but \(B\odot T\) always is (see Buchmann et al. 2017b, their Proposition 3.3 and 3.9).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchmann, B., Lu, K.W. & Madan, D.B. Calibration for Weak Variance-Alpha-Gamma Processes. Methodol Comput Appl Probab 21, 1151–1164 (2019). https://doi.org/10.1007/s11009-018-9655-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-018-9655-y

Keywords

Mathematics Subject Classification 2010

Navigation