Skip to main content
Log in

Protective effect of lupeol and lupeol linoleate in hypercholesterolemia associated renal damage

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The association between hypercholesterolemia and kidney damage has been well known for last few decades. The oxidative stress and inflammatory responses are involved in renal injury, which is upregulated in hypercholesterolemic condition. The present study is aimed to evaluate the possible effect of lupeol and its ester derivative, lupeol linoleate in renal damage associated with hypercholesterolemic rats. Hypercholesterolemia was induced in male Wistar rats by feeding them with a high cholesterol diet (HCD) comprising normal rat chow supplemented with 4% cholesterol and 1% cholic acid for 30 days. Lupeol and lupeol linoleate were supplemented (50 mg/kg body wt/day) to HCD fed rats during the last 15 days. Increased levels of renal total cholesterol, triglycerides and phospholipids, along with altered serum biochemical parameters of tissue injury indices and elevated activities of renal marker enzymes (lactate dehydrogenase and alkaline phosphatase) were noted in HCD fed rats. Elevated lipid peroxidation levels coupled with decreased antioxidant status (enzymatic and non enzymatic antioxidants) were observed in hypercholesterolemic rats, which indicate the onset of oxidative changes in the renal tissue. Renal lysosomal acid hydrolase activities (ACP, β-Glu, β-Gal, NAG and Cat-D) and acute phase proteins like C-Reactive protein and fibrinogen were significantly increased in HCD fed rats, which further indicates the heightening of inflammation. In addition, histopathological findings also confirmed the renal damage in hypercholesterolemic condition. Lupeol and lupeol linoleate effectively reverted the above abnormalities and was comparable with that of the control. These observations highlight the protective effect of lupeol and its ester derivative in ameliorating the renal injury associated with hypercholesterolemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ishiyama A, Atarashi K, Minami M, Takagi M, Kimura K, Goto A et al (1999) Role of free radicals in the pathogenesis of lipid-induced glomerulosclerosis in rats. Kidney Int 55:1348–1358. doi:10.1046/j.1523-1755.1999.00364.x

    Article  PubMed  CAS  Google Scholar 

  2. Chowienczyk PJ, Watts GF, Cockcroft JR, Ritter JM (1992) Impaired endothelium-dependent vasodilation of forearm resistance vessels in hypercholesterolaemia. Lancet 340:1430–1432. doi:10.1016/0140-6736(92)92621-L

    Article  PubMed  CAS  Google Scholar 

  3. Casino PR, Kilcoyne CM, Quyyumi AA, Hoeg JM, Panza JA (1993) The role of nitric oxide in endothelium-dependent vasodilation of hypercholesterolemic patients. Circulation 88:2541–2547

    PubMed  CAS  Google Scholar 

  4. Romero R, Higueruelo S, Vaquero M, Biosca C, Martínez-Ocaña JC, Pastor C (1998) Effects of polyunsaturated fatty acids on rat glomerulosclerosis induced by hypercholesterolaemic diet. Res Exp Med (Berl) 198:1–10. doi:10.1007/s004330050084

    Article  CAS  Google Scholar 

  5. Oda H, Keane WF (1999) Recent advances in statins and the kidney. Kidney Int Suppl 71:S2–S5. doi:10.1046/j.1523-1755.1999.07101.x

    Article  PubMed  CAS  Google Scholar 

  6. Deepa PR, Varalakshmi P (2006) Favourable modulation of the inflammatory changes in hypercholesterolemic atherogenesis by a low-molecular-weight heparin derivative. Int J Cardiol 106:338–347. doi:10.1016/j.ijcard.2005.02.012

    Article  PubMed  CAS  Google Scholar 

  7. Scheuer H, Gwinner W, Hohbach J, Grone EF, Brandes RP, Malle E et al (2000) Oxidant stress in hyperlipidemia-induced renal damage. Am J Physiol Renal Physiol 278:F63–F74

    PubMed  CAS  Google Scholar 

  8. Schmitz G, Langmann T (2006) Pharmacogenomics of cholesterol-lowering therapy. Vascul Pharmacol 44:75–89. doi:10.1016/j.vph.2005.07.012

    Article  PubMed  CAS  Google Scholar 

  9. Baskar R, Meenalakshmi Malini M, Varalakshmi P, Balakrishna K, Bhima Rao R (1996) Effect of lupeol isolated from Crataeva nurvala stem bark against free radical-induced toxicity in experimental urolithiasis. Fitoterapia 67:121–126

    CAS  Google Scholar 

  10. Geetha T, Varalakshmi P (1998) Anti-inflammatory activity of lupeol and lupeol linoleate in Adjuvant-induced arthritis. Fitoterapia 69:13–19

    CAS  Google Scholar 

  11. Sudharsan PT, Mythili Y, Sudhahar V, Varalakshmi P (2005) Role of lupeol and its ester on cyclophosphamide-induced hyperlipidaemic cardiomyopathy in rats. J Pharm Pharmacol 57:1437–1444. doi:10.1211/jpp.57.11.0009

    Article  PubMed  CAS  Google Scholar 

  12. Nikiema JB, Vanhaelen-Fastre R, Vanhaelen M, Fontaine J, De Graef C, Heenen M (2001) Effects of antiinflammatory triterpenes isolated from Leptadenia hastata latex on keratinocyte proliferation. Phytother Res 15:131–134. doi:10.1002/ptr.700

    Article  PubMed  CAS  Google Scholar 

  13. Sudhahar V, Kumar SA, Varalakshmi P (2006) Role of lupeol and lupeol linoleate on lipemic-oxidative stress in experimental hypercholesterolemia. Life Sci 78:1329–1335. doi:10.1016/j.lfs.2005.07.011

    Article  PubMed  CAS  Google Scholar 

  14. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  15. Parekh AC, Jung DH (1970) Cholesterol determination with ferric acetate-uranium acetate and sulfuric acid-ferrous sulphate reagents. Anal Chem 42:1423–1427. doi:10.1021/ac60294a044

    Article  CAS  Google Scholar 

  16. Rice EW (1970) Triglycerides (“neutral fats”) in serum. In: MacDonald PR (ed) Standard methods of clinical chemistry, vol 6. Academic press, New York, pp 215–222

    Google Scholar 

  17. Hron WT, Menahan LA (1981) A sensitive method for the determination of free fatty acids in plasma. J Lipid Res 22:377–381

    PubMed  CAS  Google Scholar 

  18. Rouser G, Fkeischer S, Yamamoto A (1970) Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5:494–496. doi:10.1007/BF02531316

    Article  PubMed  CAS  Google Scholar 

  19. Reinhold JG (1953) Total protein albumin and globulin. In: Seligson D (ed) Standard methods of clinical chemistry, vol 1. Academic press, New York, p 88

    Google Scholar 

  20. Natelson S, Scott ML, Beffa C (1951) A rapid method for the estimation of urea in biologic fluids. Am J Clin Pathol 21:275–281

    PubMed  CAS  Google Scholar 

  21. Caraway WT (1963) Uric acid. In: Seligson D (ed) Standard methods of clinical chemistry, vol 1. Academic press, New York, pp 239–247

    Google Scholar 

  22. Owen JA, Iggo B, Scandrett FJ, Stewart CP (1954) The determination of creatinine in plasma or serum, and in urine; a critical examination. Biochem J 58:426–437

    PubMed  CAS  Google Scholar 

  23. King J (1965) The dehydrogenases or oxidoreductases—lactate dehydrogenase. In: Van D (ed) Practical clinical enzymology. Nostrand Company Ltd, London, pp 83–93

    Google Scholar 

  24. King J (1965) The hydrolases- acid and alkaline phosphatises. In: Van D (ed) Practical clinical enzymology. Nostrand Company Ltd, London, pp 191–208

    Google Scholar 

  25. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  26. Högberg J, Larson RE, Kristoferson A, Orrenius S (1974) NADPH-dependent reductase solubilized from microsomes by peroxidation and its activity. Biochem Biophys Res Commun 56:836–842. doi:10.1016/0006-291X(74)90681-0

    Article  PubMed  Google Scholar 

  27. Devasagayam TP (1986) Lipid peroxidation in rat uterus. Biochim Biophys Acta 876:507–514

    PubMed  CAS  Google Scholar 

  28. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474. doi:10.1111/j.1432-1033.1974.tb03714.x

    Article  PubMed  CAS  Google Scholar 

  29. Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394. doi:10.1016/0003-2697(72)90132-7

    Article  PubMed  CAS  Google Scholar 

  30. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590. doi:10.1126/science.179.4073.588

    Article  PubMed  CAS  Google Scholar 

  31. Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78

    PubMed  CAS  Google Scholar 

  32. Omaye ST, Turnbull JD, Sauberlich HE (1979) Selected methods for the determination of ascorbic acid in animal cells, tissues, and fluids. Methods Enzymol 62:3–11. doi:10.1016/0076-6879(79)62181-X

    Article  PubMed  CAS  Google Scholar 

  33. Desai ID (1984) Vitamin E analysis methods for animal tissues. Methods Enzymol 105:138–147. doi:10.1016/S0076-6879(84)05019-9

    Article  PubMed  CAS  Google Scholar 

  34. Maruhn D (1976) Rapid colorimetric assay of beta-galactosidase and N-acetyl-beta-glucosaminidase in human urine. Clin Chim Acta 73:453–461. doi:10.1016/0009-8981(76)90147-9

    Article  PubMed  CAS  Google Scholar 

  35. Kawai Y, Anno K (1971) Mucopolysaccharide-degrading enzymes from the liver of the squid, Ommastrephes sloani pacificus. I. Hyaluronidase. Biochim Biophys Acta 242:428–436

    PubMed  CAS  Google Scholar 

  36. Etherington DJ (1972) The nature of the collagenolytic cathepsin of rat liver and its distribution in other rat tissues. Biochem J 127:685–692

    PubMed  CAS  Google Scholar 

  37. Lempert HC (1969) Determination of plasma protein. In: Varley H (ed) Practical clinical biochemistry, 4th edn. CBS Publishers, New Delhi, p 233

    Google Scholar 

  38. Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143. doi:10.1161/hc0902.104353

    Article  PubMed  CAS  Google Scholar 

  39. Hattori M, Nikolic-Paterson DJ, Miyazaki K, Isbel NM, Lan HY, Atkins RC, Kawaguchi H, Ito K (1999) Mechanisms of glomerular macrophage infiltration in lipid-induced renal injury. Kidney Int Suppl 71:S47–S50

    Article  PubMed  CAS  Google Scholar 

  40. Sudhahar V, Kumar SA, Varalakshmi P, Sundarapandiyan R (2007) Mitigating role of lupeol and lupeol linoleate on hepatic lipemic-oxidative injury and lipoprotein peroxidation in experimental hypercholesterolemia. Mol Cell Biochem 295:189–198

    Article  PubMed  CAS  Google Scholar 

  41. Napoli C, Lerman LO (2001) Involvement of oxidation-sensitive mechanisms in the cardiovascular effects of hypercholesterolemia. Mayo Clin Proc 76:619–631

    Article  PubMed  CAS  Google Scholar 

  42. Bentley MD, Rodriguez-Porcel M, Lerman A, Sarafov MH, Romero JC, Pelaez LI, Grande JP, Ritman EL, Lerman LO (2002) Enhanced renal cortical vascularization in experimental hypercholesterolemia. Kidney Int 61:1056–1063

    Article  PubMed  Google Scholar 

  43. Chade AR, Rodriguez-Porcel M, Grande JP, Krier JD, Lerman A, Romero JC, Napoli C, Lerman LO (2002) Distinct renal injury in early atherosclerosis and renovascular disease. Circulation 106:1165–1171

    Article  PubMed  Google Scholar 

  44. Salil G, Rajamohan T (2001) Hypolipidemic and antiperoxidative effect of coconut protein in hypercholesterolemic rats. Indian J Exp Biol 39:1028–1034

    PubMed  CAS  Google Scholar 

  45. Fungwe TV, Cagen LM, Cook GA, Wilcox HG, Heimberg M (1993) Dietary cholesterol stimulates hepatic biosynthesis of triglyceride and reduces oxidation of fatty acids in the rat. J Lipid Res 34:933–941

    PubMed  CAS  Google Scholar 

  46. Ward HJ (1998) Uric acid as an independent risk factor in the treatment of hypertension. Lancet 352:670–671

    Article  PubMed  CAS  Google Scholar 

  47. Beard JT 2nd (1983) Serum uric acid and coronary heart disease. Am Heart J 106:397–400

    Article  PubMed  Google Scholar 

  48. Alderman M, Aiyer KJ (2004) Uric acid: role in cardiovascular disease and effects of losartan. Curr Med Res Opin 20:369–379

    Article  PubMed  CAS  Google Scholar 

  49. Deepa PR, Varalakshmi P (2004) Protective effects of certoparin sodium, a low molecular weight heparin derivative, in experimental atherosclerosis. Clin Chim Acta 339:105–115

    Article  PubMed  CAS  Google Scholar 

  50. Naik SR, Sheth UK (1978) Studies on two new derivatives of N-aralkyl-o-ethoxybenzamides: part II—biochemical studies on their anti-inflammatory activity. Indian J Exp Biol 16:1175–1179

    PubMed  CAS  Google Scholar 

  51. Fernandez MA, de las Heras B, Garcia MD, Saenz MT, Villar A (2001) New insights into the mechanism of action of the anti-inflammatory triterpene lupeol. J Pharm Pharmacol 53:1533–1539

    Article  PubMed  CAS  Google Scholar 

  52. Halliwell B (1996) Mechanisms involved in the generation of free radicals. Pathol Biol (Paris) 44:6–13

    CAS  Google Scholar 

  53. Ohara Y, Peterson TE, Harrison DG (1993) Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 91:2546–2551

    Article  PubMed  CAS  Google Scholar 

  54. Grone EF, Walli AK, Grone HJ, Miller B, Seidel D (1994) The role of lipids in nephrosclerosis and glomerulosclerosis. Atherosclerosis 107:1–13

    Article  PubMed  CAS  Google Scholar 

  55. Yamashita K, Lu H, Lu J, Chen G, Yokoyama T, Sagara Y, Manabe M, Kodama H (2002) Effect of three triterpenoids, lupeol, betulin, and betulinic acid on the stimulus-induced superoxide generation and tyrosyl phosphorylation of proteins in human neutrophils. Clin Chim Acta 325:91–96

    Article  PubMed  CAS  Google Scholar 

  56. de Duve C (1974) The participation of lysosomes in the transformation of smooth muscle cells to foamy cells in the aorta of cholesterol-fed rabbits. Acta Cardiol 20:9–25

    PubMed  Google Scholar 

  57. De Duve C, Wattiaux R (1966) Functions of lysosomes. Annu Rev Physiol 28:435–492

    Article  PubMed  Google Scholar 

  58. Miller BF, Kothari HV (1969) Increased activity of lysosomal enzymes in human atherosclerotic aortas. Exp Mol Pathol 10:288–294

    Article  PubMed  CAS  Google Scholar 

  59. Zemplenyi T, Tidwell DF, Fronek K (1984) Aortic enzymes and lactate in high altitude-raised and cholesterol-fed rabbits. Atherosclerosis 52:233–242

    Article  PubMed  CAS  Google Scholar 

  60. Agha AM, Gad MZ (1995) Lipid peroxidation and lysosomal integrity in different inflammatory models in rats: the effects of indomethacin and naftazone. Pharmacol Res 32:279–285

    Article  PubMed  CAS  Google Scholar 

  61. Geetha T, Varalakshmi P (1999) Effect of lupeol and lupeol linoleate on lysosomal enzymes and collagen in adjuvant-induced arthritis in rats. Mol Cell Biochem 201:83–87

    Article  PubMed  CAS  Google Scholar 

  62. Ross R (1986) The pathogenesis of atherosclerosis—an update. N Engl J Med 314:488–500

    PubMed  CAS  Google Scholar 

  63. Saadeddin SM, Habbab MA, Ferns GA (2002) Markers of inflammation and coronary artery disease. Med Sci Monit 8:RA5–RA12

    PubMed  CAS  Google Scholar 

  64. Lindahl B, Toss H, Siegbahn A, Venge P, Wallentin L (2000) Markers of myocardial damage and inflammation in relation to long-term mortality in unstable coronary artery disease. FRISC study group. Fragmin during instability in coronary artery disease. N Engl J Med 343:1139–1147

    Article  PubMed  CAS  Google Scholar 

  65. Pasceri V, Willerson JT, Yeh ET (2000) Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 102:2165–2168

    PubMed  CAS  Google Scholar 

  66. Pasceri V, Cheng JS, Willerson JT, Yeh ET (2001) Modulation of C-reactive protein-mediated monocyte chemoattractant protein-1 induction in human endothelial cells by anti-atherosclerosis drugs. Circulation 103:2531–2534

    PubMed  CAS  Google Scholar 

  67. Ernst E (1990) Plasma fibrinogen—an independent cardiovascular risk factor. J Intern Med 227:365–372

    PubMed  CAS  Google Scholar 

  68. Smith EB, Keen GA, Grant A, Stirk C (1990) Fate of fibrinogen in human arterial intima. Arteriosclerosis 10:263–275

    PubMed  CAS  Google Scholar 

  69. Campos SB, Ori M, Dorea EL, Seguro AC (1999) Protective effect of l-arginine on hypercholesterolemia-enhanced renal ischemic injury. Atherosclerosis 143:327–334

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledges Indian Council of Medical Research (ICMR), New Delhi, India for financial assistance in the form of senior research fellow. We thank Dr. Rajaguru Sundarapandiyan (M.D.) for his valuable help in interpreting the histological specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Varalakshmi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sudhahar, V., Ashok Kumar, S., Varalakshmi, P. et al. Protective effect of lupeol and lupeol linoleate in hypercholesterolemia associated renal damage. Mol Cell Biochem 317, 11–20 (2008). https://doi.org/10.1007/s11010-008-9786-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9786-5

Keywords

Navigation