Skip to main content
Log in

Activity and expression of ecto-nucleotide pyrophosphate/phosphodiesterases in a hepatic stellate cell line

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Nucleotides and nucleosides represent an important and ubiquitous class of molecules that interact with specific receptors, regulate a variety of activities within the liver, and play a role in the pathogenesis of hepatic fibrosis. Ecto-nucleotide pyrophosphatase/phosphodiesterases (E-NPPs) are ecto-enzymes that are located on the cell surface. NPP1, NPP2, and NPP3 (abbreviated as NPP1–3 hereafter) have been implicated in the hydrolysis of nucleotides; together with other ecto-nucleotidases, they control the events induced by extracellular nucleotides. We have identified and compared the expression of E-NPP family members in two different phenotypes of the mouse hepatic stellate cell line (GRX). In quiescent-like hepatic stellate cells (HSCs), E-NPP activity was significantly higher, NPP2 mRNA expression decreased and NPP3 mRNA increased. The differential NPP activity and expression in two phenotypes of GRX cells suggests that they are involved in the regulation of extracellular nucleotide metabolism in HSCs. However, the role of E-NPPs in the liver remains to be clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arnaud A, Fontana L, Saez-Lara MJ, Gil A, Lopez-Pedrosa JM (2004) Exogenous nucleosides modulate the expression of rat liver extracellular matrix genes in single cultures of primary hepatocytes and a liver stellate cell line and in their co-culture. Clin Nutr 23:43–51. doi:10.1016/S0261-5614(03)00087-6

    Article  PubMed  CAS  Google Scholar 

  2. Dranoff JA, Ogawa M, Kruglov EA, Gaca MD, Sevigny J, Robson SC, Wells RG (2004) Expression of P2Y nucleotide receptors and ectonucleotidases in quiescent and activated rat hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 287:G417–G424. doi:10.1152/ajpgi.00294.2003

    Article  PubMed  CAS  Google Scholar 

  3. Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 362:299–309. doi:10.1007/s002100000309

    Article  PubMed  CAS  Google Scholar 

  4. Stefan C, Jansen S, Bollen M (2005) NPP-type ectophosphodiesterases: unity in diversity. Trends Biochem Sci 30:542–550. doi:10.1016/j.tibs.2005.08.005

    Article  PubMed  CAS  Google Scholar 

  5. Bollen M, Gijsbers R, Ceulemans H, Stalmans W, Stefan C (2000) Nucleotide pyrophosphatases/phosphodiesterases on the move. Crit Rev Biochem Mol Biol 35:393–432. doi:10.1080/10409230091169249

    Article  PubMed  CAS  Google Scholar 

  6. Goding JW, Grobben B, Slegers H (2003) Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochim Biophys Acta 1638:1–19

    PubMed  CAS  Google Scholar 

  7. Issa R, Williams E, Trim N, Kendall T, Arthur MJ, Reichen J, Benyon RC, Iredale JP (2001) Apoptosis of hepatic stellate cells: involvement in resolution of biliary fibrosis and regulation by soluble growth factors. Gut 48:548–557. doi:10.1136/gut.48.4.548

    Article  PubMed  CAS  Google Scholar 

  8. Prosser CC, Yen RD, Wu J (2006) Molecular therapy for hepatic injury and fibrosis: where are we? World J Gastroenterol 12:509–515

    PubMed  CAS  Google Scholar 

  9. Bedossa P, Paradis V (2003) Approaches for treatment of liver fibrosis in chronic hepatitis C. Clin Liver Dis 7:195–210. doi:10.1016/S1089-3261(02)00076-4

    Article  PubMed  Google Scholar 

  10. Hernandez-Munoz R, Diaz-Munoz M, Suarez-Cuenca JA, Trejo-Solis C, Lopez V, Sanchez-Sevilla L, Yanez L, De Sanchez VC (2001) Adenosine reverses a preestablished CCl4-induced micronodular cirrhosis through enhancing collagenolytic activity and stimulating hepatocyte cell proliferation in rats. Hepatology 34:677–687. doi:10.1053/jhep.2001.27949

    Article  PubMed  CAS  Google Scholar 

  11. Dranoff JA, Kruglov EA, Robson SC, Braun N, Zimmermann H, Sevigny J (2002) The ecto-nucleoside triphosphate diphosphohydrolase NTPDase2/CD39L1 is expressed in a novel functional compartment within the liver. Hepatology 36:1135–1144. doi:10.1053/jhep.2002.36823

    Article  PubMed  CAS  Google Scholar 

  12. Borowiec A, Lechward K, Tkacz-Stachowska K, Skladanowski AC (2006) Adenosine as a metabolic regulator of tissue function: production of adenosine by cytoplasmic 5′-nucleotidases. Acta Biochim Pol 53:269–278

    PubMed  CAS  Google Scholar 

  13. Peng Z, Fernandez P, Wilder T, Yee H, Chiriboga L, Chan ES, Cronstein BN (2008) Ecto-5′-nucleotidase (CD73) -mediated extracellular adenosine production plays a critical role in hepatic fibrosis. FASEB J 22(7):2263–2272

    Article  PubMed  CAS  Google Scholar 

  14. Hashmi AZ, Hakim W, Kruglov EA, Watanabe A, Watkins W, Dranoff JA, Mehal WZ (2007) Adenosine inhibits cytosolic calcium signals and chemotaxis in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 292:G395–G401. doi:10.1152/ajpgi.00208.2006

    Article  PubMed  CAS  Google Scholar 

  15. Margis R, Borojevic R (1989) Retinoid-mediated induction of the fat-storing phenotype in a liver connective tissue cell line (GRX). Biochim Biophys Acta 1011:1–5. doi:10.1016/0167-4889(89)90069-4

    Article  PubMed  CAS  Google Scholar 

  16. Vollmayer P, Koch M, Braun N, Heine P, Servos J, Israr E, Kegel B, Zimmermann H (2001) Multiple ecto-nucleotidases in PC12 cells: identification and cellular distribution after heterologous expression. J Neurochem 78:1019–1028. doi:10.1046/j.1471-4159.2001.00480.x

    Article  PubMed  CAS  Google Scholar 

  17. Gelain DP, de Souza LF, Bernard EA (2003) Extracellular purines from cells of seminiferous tubules. Mol Cell Biochem 245:1–9. doi:10.1023/A:1022857608849

    Article  PubMed  CAS  Google Scholar 

  18. Whitaker JF (1969) A general colorimetric procedure for the estimation of enzymes which are linked to the NADH-NAD+ system. Clin Chim Acta 24:23–37. doi:10.1016/0009-8981(69)90137-5

    Article  PubMed  CAS  Google Scholar 

  19. Wink MR, Braganhol E, Tamajusuku AS, Casali EA, Karl J, Barreto-Chaves ML, Sarkis JJ, Battastini AM (2003) Extracellular adenine nucleotides metabolism in astrocyte cultures from different brain regions. Neurochem Int 43:621–628. doi:10.1016/S0197-0186(03)00094-9

    Article  PubMed  CAS  Google Scholar 

  20. Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157:375–380. doi:10.1016/0003-2697(86)90640-8

    Article  PubMed  CAS  Google Scholar 

  21. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods Methods 25:402–408

    CAS  Google Scholar 

  23. Guimaraes EL, Franceschi MF, Andrade CM, Guaragna RM, Borojevic R, Margis R, Bernard EA, Guma FC (2007) Hepatic stellate cell line modulates lipogenic transcription factors. Liver Int 27:1255–1264

    PubMed  CAS  Google Scholar 

  24. Margis R, Pinheiro-Margis M, da Silva LC, Borojevic R (1992) Effects of retinol on proliferation, cell adherence and extracellular matrix synthesis in a liver myofibroblast or lipocyte cell line (GRX). Int J Exp Pathol 73:125–135

    PubMed  CAS  Google Scholar 

  25. Guimaraes EL, Franceschi MF, Grivicich I, Dal-Pizzol F, Moreira JC, Guaragna RM, Borojevic R, Margis R, Guma FC (2006) Relationship between oxidative stress levels and activation state on a hepatic stellate cell line. Liver Int 26:477–485. doi:10.1111/j.1478-3231.2006.01245.x

    Article  PubMed  CAS  Google Scholar 

  26. Guma FCR, Mello TG, Mermelstein CS, Fortuna VA, Wofchuk ST, Gottfried C, Guaragna RM, Costa ML, Borojevic R (2001) Intermediate filaments modulation in an in vitro model of the hepatic stellate cell activation or conversion into the lipocyte phenotype. Biochem Cell Biol 79:409–417. doi:10.1139/bcb-79-4-409

    Article  PubMed  CAS  Google Scholar 

  27. Vicente CP, Guaragna RM, Borojevic R (1997) Lipid metabolism during in vitro induction of the lipocyte phenotype in hepatic stellate cells. Mol Cell Biochem 168:31–39. doi:10.1023/A:1006845808305

    Article  PubMed  CAS  Google Scholar 

  28. Vicente CP, Fortuna VA, Margis R, Trugo L, Borojevic R (1998) Retinol uptake and metabolism, and cellular retinol binding protein expression in an in vitro model of hepatic stellate cells. Mol Cell Biochem 187:11–21. doi:10.1023/A:1006886308490

    Article  PubMed  CAS  Google Scholar 

  29. Mermelstein CS, Guma FC, Mello TG, Fortuna VA, Guaragna RM, Costa ML, Borojevic R (2001) Induction of the lipocyte phenotype in murine hepatic stellate cells: reorganisation of the actin cytoskeleton. Cell Tissue Res 306:75–83. doi:10.1007/s004410100428

    Article  PubMed  CAS  Google Scholar 

  30. Andrade CM, Trindade VM, Cardoso CC, Ziulkoski AL, Trugo LC, Guaragna RM, Borojevic R, Guma FC (2003) Changes of sphingolipid species in the phenotype conversion from myofibroblasts to lipocytes in hepatic stellate cells. J Cell Biochem 88:533–544. doi:10.1002/jcb.10373

    Article  PubMed  CAS  Google Scholar 

  31. Grobben B, Anciaux K, Roymans D, Stefan C, Bollen M, Esmans EL, Slegers H (1999) An ecto-nucleotide pyrophosphatase is one of the main enzymes involved in the extracellular metabolism of ATP in rat C6 glioma. J Neurochem 72:826–834. doi:10.1046/j.1471-4159.1999.0720826.x

    Article  PubMed  CAS  Google Scholar 

  32. Wink MR, Braganhol E, Tamajusuku AS, Lenz G, Zerbini LF, Libermann TA, Sevigny J, Battastini AM, Robson SC (2006) Nucleoside triphosphate diphosphohydrolase-2 (NTPDase2/CD39L1) is the dominant ectonucleotidase expressed by rat astrocytes. Neuroscience 138:421–432. doi:10.1016/j.neuroscience.2005.11.039

    Article  PubMed  CAS  Google Scholar 

  33. Andrade CM, Roesch GC, Wink MR, Guimaraes EL, Souza LF, Jardim FR, Guaragna RM, Bernard EA, Margis R, Borojevic R, Battastini AM, Guma FC (2008) Activity and expression of ecto-5′-nucleotidase/CD73 are increased during phenotype conversion of a hepatic stellate cell line. Life Sci 82:21–29. doi:10.1016/j.lfs.2007.10.003

    Article  PubMed  CAS  Google Scholar 

  34. Kukulski F, Levesque SA, Lavoie EG, Lecka J, Bigonnesse F, Knowles AF, Robson SC, Kirley TL, Sevigny J (2005) Comparative hydrolysis of P2 receptor agonists by NTPDases 1, 2, 3 and 8. Purinergic Signal 1:193–204. doi:10.1007/s11302-005-6217-x

    Article  PubMed  CAS  Google Scholar 

  35. Robson SC, Sevigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2:409–430. doi:10.1007/s11302-006-9003-5

    Article  PubMed  CAS  Google Scholar 

  36. Hessle L, Johnson KA, Anderson HC, Narisawa S, Sali A, Goding JW, Terkeltaub R, Millan JL (2002) Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci USA 99:9445–9449. doi:10.1073/pnas.142063399

    Article  PubMed  CAS  Google Scholar 

  37. Gijsbers R, Ceulemans H, Bollen M (2003) Functional characterization of the non-catalytic ectodomains of the nucleotide pyrophosphatase/phosphodiesterase NPP1. Biochem J 371:321–330. doi:10.1042/BJ20021943

    Article  PubMed  CAS  Google Scholar 

  38. Watanabe N, Ikeda H, Nakamura K, Ohkawa R, Kume Y, Aoki J, Hama K, Okudaira S, Tanaka M, Tomiya T, Yanase M, Tejima K, Nishikawa T, Arai M, Arai H, Omata M, Fujiwara K, Yatomi Y (2007) Both plasma lysophosphatidic acid and serum autotaxin levels are increased in chronic hepatitis C. J Clin Gastroenterol 41:616–623. doi:10.1097/01.mcg.0000225642.90898.0e

    Article  PubMed  CAS  Google Scholar 

  39. Watanabe N, Ikeda H, Nakamura K, Ohkawa R, Kume Y, Tomiya T, Tejima K, Nishikawa T, Arai M, Yanase M, Aoki J, Arai H, Omata M, Fujiwara K, Yatomi Y (2007) Plasma lysophosphatidic acid level and serum autotaxin activity are increased in liver injury in rats in relation to its severity. Life Sci 81:1009–1015. doi:10.1016/j.lfs.2007.08.013

    Article  PubMed  CAS  Google Scholar 

  40. Stracke ML, Krutzsch HC, Unsworth EJ, Arestad A, Cioce V, Schiffmann E, Liotta LA (1992) Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. J Biol Chem 267:2524–2529

    PubMed  CAS  Google Scholar 

  41. Koike S, Keino-Masu K, Ohto T, Masu M (2006) The N-terminal hydrophobic sequence of autotaxin (ENPP2) functions as a signal peptide. Genes Cells 11:133–142. doi:10.1111/j.1365-2443.2006.00924.x

    Article  PubMed  CAS  Google Scholar 

  42. Yano Y, Hayashi Y, Sano K, Nagano H, Nakaji M, Seo Y, Ninomiya T, Yoon S, Yokozaki H, Kasuga M (2004) Expression and localization of ecto-nucleotide pyrophosphatase/phosphodiesterase I-1 (E-NPP1/PC-1) and -3 (E-NPP3/CD203c/PD-Ibeta/B10/gp130(RB13–6)) in inflammatory and neoplastic bile duct diseases. Cancer Lett 207:139–147. doi:10.1016/j.canlet.2003.11.002

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

C.M.B. Andrade is a recipient of a PhD degree fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). A.M.O. Battastini, F·C.R. Guma, R. Borojevic and R. Margis are recipients of research fellowships from CNPq. This work was supported by CNPq, FAPERJ, FAPERGS, and PROPESQ-UFRGS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fátima C. R. Guma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrade, C.M.B., Wink, M.R., Margis, R. et al. Activity and expression of ecto-nucleotide pyrophosphate/phosphodiesterases in a hepatic stellate cell line. Mol Cell Biochem 325, 179–185 (2009). https://doi.org/10.1007/s11010-009-0032-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0032-6

Keywords

Navigation