Skip to main content
Log in

Evaluation of cell viability, DNA damage, and cell death in normal human dermal fibroblast cells induced by functionalized multiwalled carbon nanotube

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Multiwalled carbon nanotubes (MWCNTs) are an example of a carbon-based nanomaterial that has won enormous popularity in nanotechnology. Due to their unusual one-dimensional hollow nanostructure and unique physicochemical properties, they are highly desirable for use within the commercial, environmental, and medical sectors. Despite their wide application, there is a lack of information concerning their impact on human health and the environment. While nanotechnology looms large with commercial promise and potential benefit, an equally large issue is the evaluation of potential effects on humans and other biological systems. Our research is focused on cellular response to purified functionalized MWCNT in normal human dermal fibroblast cells. Three exposure concentrations (40, 200, and 400 μg/ml) of functionalized MWCNT and control (Tween-80 + 0.9% saline) were used in this study. Following exposure to MWCNT, cytotoxicity, genotoxicity, and apoptosis assays were performed using standard protocols. Our results demonstrated a dose-dependent toxicity with functionalized MWCNT. It was found to be toxic and induced massive loss of cell viability through DNA damage and programmed cell death of all doses compared to control. Our results demonstrate that carbon nanotubes indeed can be very toxic at sufficiently high concentrations from environmental and occupational exposure and that careful monitoring of toxicity studies is essential for risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–59

    Article  CAS  Google Scholar 

  2. Endo M, Strano MS, Ajayan PM (2008) Potential applications of carbon nanotubes. Carbon Nanotubes 111:13–61

    Article  CAS  Google Scholar 

  3. Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V (2004) Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A 67(1):87–107

    Article  CAS  PubMed  Google Scholar 

  4. Ball P (2001) Roll up for the revolution. Nature 414:142–144

    Article  CAS  PubMed  Google Scholar 

  5. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21(10):1166–1170

    Article  CAS  PubMed  Google Scholar 

  6. Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL (2006) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36(3):189–217

    Article  CAS  PubMed  Google Scholar 

  7. Murr LE, Bang JJ, Guerrero PA, Lopez DA (2004) Carbon nanotubes, nanocrystal forms and complex nanoparticle aggregates in common fuel-gas combustion source and ambient air. J Nanopart Res 5:10

    Google Scholar 

  8. Amato I (2001) The soot that could change the world. Fortune Magazine, June 25. http://www.nano-lab.com/fortune.html

  9. Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134

    Article  CAS  PubMed  Google Scholar 

  10. Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF, Antonini J, Evans DE, Ku BK, Ramsey D, Maynard A, Kagan VE, Castranova V, Baron P (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289(5):L698–L708

    Article  CAS  PubMed  Google Scholar 

  11. Warheit DB (2006) What is currently known about the health risks related to carbon nanotube exposures? Carbon 44:1064–1069

    Article  CAS  Google Scholar 

  12. Cui D, Tian F, Ozkan CS, Wang M, Gao H (2005) Effect of single-wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155:73–85

    Article  CAS  PubMed  Google Scholar 

  13. Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multiwall nanotube, and fullerene. Environ Sci Technol 39:1378–1383

    Article  CAS  PubMed  Google Scholar 

  14. Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jelelowo O, Rice-Ficht AC, Ramesh GT (2005) Single-walled carbon nanotube induces oxidative stress and activities nuclear transcription factor-kappa b in human keratinocytes. Nano Lett 5:1676–1684

    Article  CAS  PubMed  Google Scholar 

  15. Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, Maynard A, Baron P (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 66(20):1909–1926

    Article  CAS  PubMed  Google Scholar 

  16. Tian F, Cui D, Sehwarz H, Estrada GG, Kobayashi H (2006) Cytotoxicity of single-wall carbon nanotube on human fibroblasts. Toxicol In Vitro 20:1202–1212

    Article  CAS  PubMed  Google Scholar 

  17. Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM, Moore VC, Doyle CD, West JL, Billups WE, Ausman KD, Colvin VL (2006) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161(2):135–142

    Article  CAS  PubMed  Google Scholar 

  18. Pulskamp K, Diabate S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168(1):58–74

    Article  CAS  PubMed  Google Scholar 

  19. Brown DM, Kinloch IA, Bangert U, Windle AH, Walter DM, Walker GS, Scotchford CA, Donaldson K, Stone V (2007) An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis. Carbon 45:1743–1756

    Article  CAS  Google Scholar 

  20. Muller J, Decordier I, Hoet PH, Lombaert N, Thomassen L, Huaux F, Lison D, Kirsch-Volders M (2008) Clastogenic and aneugenic effects of multiwalled carbon nanotube in epithelial cells. Carcinogenesis 29:427–433

    Article  CAS  PubMed  Google Scholar 

  21. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 6:2–8

    Google Scholar 

  22. Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92(1):5–22

    Article  CAS  PubMed  Google Scholar 

  23. Dresselhans MS, Dresselhaus G, Avouris P (eds) (2001) Carbon nanotubes: synthesis, structure, properties and applications. Springer, Berlin

    Google Scholar 

  24. Liu J, Rinzler AG, Dai HJ, Hafner JH, Bradley RK, Boul PJ, Lu A, Iversion T, Shelimov K, Huffman CB et al (1998) Fullerene pipes. Science 280:1253–1256

    Article  CAS  PubMed  Google Scholar 

  25. Bottini M, Tautz L, Huynh H, Monosov E, Bottini N, Bellucci S, Mustelin T (2005) Covalent decoration of multi-walled carbon nanotubes with silica nanoparticles. Chem Commun 758–760

  26. Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T (2006) Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 160:121–126

    Article  CAS  PubMed  Google Scholar 

  27. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319

    Article  CAS  Google Scholar 

  28. Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155:377–384

    Article  CAS  PubMed  Google Scholar 

  29. Ye SF, Wu YH, Hou ZQ, Zhang QQ (2009) ROS and NF-kappaB are involved in upregulation of IL-8 in A549 cells exposed to multi-walled carbon nanotubes. Biochem Biophys Res Commun 379(2):643–648

    Article  CAS  PubMed  Google Scholar 

  30. Evan GI et al (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411:342–348

    Article  CAS  PubMed  Google Scholar 

  31. Albrecht C et al (2004) Signal transduction pathways relevant for neoplastic effects of fibrous and non-fibrous particles. Mutat Res 553:23–35

    CAS  PubMed  Google Scholar 

  32. Zhu L, Chang DW, Dai L, Hong Y (2007) DNA damage induced by multiwalled carbon nanotubes in mouse embryogenic stem cells. Nano Lett 12:3592–3597

    Article  Google Scholar 

  33. Li S et al (2005) DNA-directed self-assembling of carbon nanotubes. J Am Chem Soc 127:14–15

    Article  CAS  PubMed  Google Scholar 

  34. Warheit DB, Borm PJ, Hennes C, Lademann J (2007) Testing strategies to establish the safety of nanomaterials: conclusions of an ECETOC workshop. Inhal Toxicol 19(8):631–643

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by a grant from National Institute of Health (Grant No. 2G12RR13459) through RCMI-Center for Environmental Health and in part by Title III-Strengthening HBCU at Jackson State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Patlolla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patlolla, A., Patlolla, B. & Tchounwou, P. Evaluation of cell viability, DNA damage, and cell death in normal human dermal fibroblast cells induced by functionalized multiwalled carbon nanotube. Mol Cell Biochem 338, 225–232 (2010). https://doi.org/10.1007/s11010-009-0356-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0356-2

Keywords

Navigation