Skip to main content
Log in

Comparative and combined effect of chlorogenic acid and tetrahydrocurcumin on antioxidant disparities in chemical induced experimental diabetes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The present study evaluates the combined effect of tetrahydrocurcumin and chlorogenic acid on oxidative stress in streptozotocin–nicotinamide-induced diabetic rats. Rats were rendered diabetic by a single intraperitoneal injection (i.p) of streptozotocin (45 mg/kg BW), 15 min after an i.p injection of nicotinamide (110 mg/kg BW). The levels of fasting plasma glucose and insulin were estimated. As an index of oxidative stress, the levels of enzymic antioxidants and lipid peroxidation products were analyzed in liver and kidney. Diabetic rats showed an increase in the levels of fasting plasma glucose, lipid peroxidative products such as thiobarbituric acid reactive substances and lipid hydroperoxides and a decrease in plasma insulin, and enzymic antioxidants viz., superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase. Combined administration of tetrahydrocurcumin (80 mg/kg BW) and chlorogenic acid (5 mg/kg BW) to diabetic rats for 45 days, reversed the biochemical changes to near normal. The above findings were supported by histological observations of the liver and kidney. Together the present study clearly reflects that combined dosage of tetrahydrocurcumin and chlorogenic acid augments enzymic antioxidants with a concomitant decrease in lipid peroxidation and protects against streptozotocin–nicotinamide-induced type 2 diabetes in experimental rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. King H, Aubert RE, Herman WH (1998) Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 21:1414–1431

    Article  CAS  PubMed  Google Scholar 

  2. Baynes JW (1991) Role of oxidative stress in the development of complication in diabetes. Diabetes 40:405–412

    Article  CAS  PubMed  Google Scholar 

  3. Maritim AC, Sanders RA, Watkins JB (2003) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17:24–39

    Article  CAS  PubMed  Google Scholar 

  4. Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of rat pancreas. Physiol Res 50:536–546

    Google Scholar 

  5. Vinscent AM, Russell JW, Low P et al (2004) Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev 25:612–628

    Article  CAS  Google Scholar 

  6. Amarnath Satheesh M, Pari L (2006) Antioxidant role of pterostilbene in streptozotocin- and nicotinamide-induced type 2 diabetes mellitus in Wistar rats. J Pharm Pharmacol 58:1483–1490

    Article  CAS  PubMed  Google Scholar 

  7. Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications. A new perspective on an old paradigm. Diabetes 48:1–9

    Article  CAS  PubMed  Google Scholar 

  8. Murugan P, Pari L (2006) Antioxidant effect of tetrahydrocurcumin in streptozotocin-nicotinamide induced diabetic rats. Life Sci 79:1720–1728

    Article  CAS  PubMed  Google Scholar 

  9. Lin YF, Tsai HL, Lee YC et al (2005) Maternal vitamin E supplementation affects the antioxidant capability and oxidative status of hatching chicks. J Nutr 135:2457–2461

    CAS  PubMed  Google Scholar 

  10. Pari L, Murugan P (2005) Effect of tetrahydrocurcumin on blood glucose, plasma insulin and hepatic key enzymes in streptozotocin induced diabetic rats. J Basic Clin Physiol Pharmacol 16:257–274

    CAS  PubMed  Google Scholar 

  11. Kim DO, Jeong SW, Lee CY (2003) Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem 81:321–326

    Article  CAS  Google Scholar 

  12. Jassim SAA, Naji MA (2003) Novel antiviral agents: a medicinal plant perspective. J Appl Microbiol 95:412–427

    Article  CAS  PubMed  Google Scholar 

  13. De Sotillo DR, Hadley M, Wolf-Hall C (1998) Potato peel extract, a nonmutagenic antioxidant with potential antimicrobial activity. J Food Sci 63:907

    Article  Google Scholar 

  14. Bowels Bobby L, Miller AJ (1994) Caffeic acid activity against Clostridium botulinum spores. J Food Sci 59:905

    Article  Google Scholar 

  15. Iwahashi H, Ishii T, Sugata R et al (1990) The effects of caffeic acid and its related catechols on hydroxyl radical formation by 3-hydroxyanthranilic acid, ferric chloride, and hydrogen peroxide. Arch Biochem Biophys 276:242–247

    Article  CAS  PubMed  Google Scholar 

  16. Kono Y, Kashine S, Yoneyama T et al (1998) Iron chelation by chlorogenic acid as a natural antioxidant. Biosci Biotechnol Biochem 62:22–27

    Article  CAS  PubMed  Google Scholar 

  17. Karthikesan K, Pari L, Menon VP (2009) Combined treatment of tetrahydrocurcumin and chlorogenic acid exerts potential antihyperglycemic effect on streptozotocin-nicotinamide-induced diabetic rats. Gen Physiol Biophys 29:23–30

    Article  CAS  Google Scholar 

  18. Masiello P, Broca C, Gross R et al (1998) Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes 47:224–229

    Article  CAS  PubMed  Google Scholar 

  19. Rodriguez de Sotillo DVR, Hadley M (2002) Chlorogenic acid modifies plasma and liver concentrations of: cholesterol, triacylglycerol, and minerals in (fa/fa) Zucker rats. J Nutr Biochem 13:717–726

    Article  CAS  PubMed  Google Scholar 

  20. Trinder P (1969) Plasma glucose was measured by standard methods. Ann Clin Biochem 6:24–27

    CAS  Google Scholar 

  21. Fraga CG, Leibouitz BE, Toppel AL (1988) Lipid peroxidation measured as TBARS in tissue slices: characterization and comparison with homogenates and microsomes. Free Radic Biol Med 4:155–161

    Article  CAS  PubMed  Google Scholar 

  22. Jiang ZY, Hunt JV, Wolff SP (1992) Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal Biochem 202:384–389

    Article  CAS  PubMed  Google Scholar 

  23. Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Ind J Biochem Biophys 21:130–132

    CAS  Google Scholar 

  24. Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394

    Article  CAS  PubMed  Google Scholar 

  25. Rotruck JT, Pope AL, Ganther HE et al (1973) Selenium: biochemical roles as a component of glutathione peroxidase. Science 179:588–590

    Article  CAS  PubMed  Google Scholar 

  26. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  27. Lowry OH, Rosenbrough NJ, Farr AI et al (1951) Protein measurement with folin-phenol reagent. J Biol Chem 193:265

    CAS  PubMed  Google Scholar 

  28. Duncan BD (1957) Multiple range tests for correlated and heteroscedastic means. Biometrics 13:359–364

    Article  Google Scholar 

  29. Ohkuwa T, Sato Y, Naoi M (1995) Hydroxyl radical formation in diabetic rat induced by streptozotocin. Life Sci 56:1789–1798

    Article  CAS  PubMed  Google Scholar 

  30. Tiedge M, Lortz S, Drinkgern J et al (1997) Relation between antioxidant enzyme gene expression and antioxidative defense system status of insulin producing cells. Diabetes 46:1733–1742

    Article  CAS  PubMed  Google Scholar 

  31. Mohamed AK, Bierhaus A, Schiekofer S et al (1999) The role of oxidative stress and NF-<kappa>B activation in late diabetic complications. Biofactors 10:157–167

    Article  CAS  PubMed  Google Scholar 

  32. Picton SF, Flatt PR, Mcclenghan NH (2001) Differential acute and long term actions of succinic acid monomethyl ester exposure on insulin secreting BRAIN-BD 11 cells. Int J Exp Diabetes Res 2:19–27

    Article  CAS  PubMed  Google Scholar 

  33. Korkina LG, Afanas’ev IB (1997) Antioxidant and chelating properties of flavonoids. Adv Pharmacol 38:151–163

    Article  CAS  PubMed  Google Scholar 

  34. Venkateswaran S, Pari L, Saravanan G (2002) Effect of Phaseolus vulgaris on circulatory antioxidants and lipids in streptozotocin induced diabetic rats. J Med Food 5:97–103

    Article  PubMed  Google Scholar 

  35. Sugiyama Y, Kawakishi S, Osawa T (1996) Involvement of the fl-diketone moiety in the antioxidative mechanism of tetrahydocurcumin. Biochem Pharmacol 52:519–525

    Article  CAS  PubMed  Google Scholar 

  36. Arulselvan P, Subramanian SP (2007) Beneficial effects of Murraya koenigii leaves on antioxidant defense system and ultra structural changes of pancreatic β-cells in experimental diabetes in rats. Chem Biol Interact 165:155–164

    Article  CAS  PubMed  Google Scholar 

  37. Arivazhagam P, Thilagavathy T, Pannerselvam C (2000) Antioxidant lipoate and tissue antioxidants in aged rats. J Nutr Biochem 11:122–127

    Article  Google Scholar 

  38. Santini SA, Marra G, Giardina B et al (1997) Defective antioxidant defenses and enhanced susceptibility to lipid peroxidation in uncomplicated IDDM. Diabetes 46:1853–1858

    Article  CAS  PubMed  Google Scholar 

  39. Kamalakkannan N, Prince PSM (2006) Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic Wistar rats. Basic Clin Pharmacol Toxicol 98:97–103

    Article  CAS  PubMed  Google Scholar 

  40. Salahudeen AK (1995) Role of lipid peroxidation in H2O2-induced renal epithelial (LLC-PK1) cell injury. Am J Physiol 268:F30–F38

    CAS  PubMed  Google Scholar 

  41. Hayes JD, Pulford DJ (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol 30:445–600

    Article  CAS  Google Scholar 

  42. Okada K, Wangpoengtrakul C, Tanaka T et al (2001) Curcumin and especially tetrahydrocurcumin ameliorate oxidative stress-induced renal injury in mice. J Nutr 131:2090–2095

    CAS  PubMed  Google Scholar 

  43. Anusuya S, Menon VP (2003) Protection of pancreatic β-cell by the potential antioxidant bis-o-hydroxycinnamoyl methane, analogue of natural curcuminoid in experimental diabetes. J Pharmacol Pharm 6:327–333

    Google Scholar 

  44. Zang LY, Cosma G, Gardner H et al (2003) Effect of chlorogenic acid on hydroxyl radical. Mol Cell Biochem 247:205–210

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work is supported by the University Grants Commission, New Delhi Project No. F. No. 32-605/2006 (SR). The authors, Dr. L. Pari wish to thank the University Grants Commission for providing research fellowship to Mr. K. Karthikesan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leelavinothan Pari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pari, L., Karthikesan, K. & Menon, V.P. Comparative and combined effect of chlorogenic acid and tetrahydrocurcumin on antioxidant disparities in chemical induced experimental diabetes. Mol Cell Biochem 341, 109–117 (2010). https://doi.org/10.1007/s11010-010-0442-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0442-5

Keywords

Navigation