Skip to main content
Log in

The organochalcogen 3-methyl-1-phenyl-2-(phenylseleno)oct-2-en-1-one induces oxidative stress in heart, liver, and kidney of rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the in vitro effects of the organochalcogen 3-methyl-1-phenyl-2-(phenylseleno)oct-2-en-1-one on some parameters of oxidative stress in liver, kidney, and heart of 10-day-old rats. The homogenates of liver, kidney, and heart were incubated for 1 h in the absence (control) or in the presence of 1, 10, or 30 μM of the organoselenium and thiobarbituric acid reactive substances, carbonyl, and the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were measured. First, we tested the influence of the compound on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and verified that the organochalcogen did not have any antioxidant properties. We observed an increase of lipid peroxidation in all concentrations tested in heart and kidney, while in liver only in the concentrations of 10 and 30 μM. Moreover, we also verified an enhance of protein oxidation in the concentrations of 10 and 30 μM in kidney. On the other hand, the compound caused a reduction on the activity of CAT in heart (10 and 30 μM), liver (30 μM), and kidney (30 μM). The activity of SOD was increased in heart (10 and 30 μM), while in liver (30 μM) and in kidney (10 and 30 μM) the activity was reduced. Our findings indicate that this organoselenium compound induces oxidative stress in liver, heart, and kidney of immature rats, collaborating to the fact that these tissues are potential targets for the organochalcogen action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chasteen TG, Bentley R (2003) Biomethylation of selenium and tellurium: microorganisms and plants. Chem Rev 103:1–25

    Article  PubMed  CAS  Google Scholar 

  2. Birringer M, Pilawa S, Flohe L (2002) Trends in selenium biochemistry. Nat Prod Rep 19:693–718

    Article  PubMed  CAS  Google Scholar 

  3. Whanger PD (2002) Selenocompounds in plants and animals and their biological significance. J Am Coll Nutr 21:223–232

    PubMed  CAS  Google Scholar 

  4. Valdiglesias V, Pásaro E, Méndez J, Laffon B (2010) In vitro evaluation of selenium genotoxic, cytotoxic, and protective effects: a review. Arch Toxicol 84:337–351

    Article  PubMed  CAS  Google Scholar 

  5. Nogueira CW, Zeni G, Rocha JBT (2004) Organoselenium and organotellurium compounds: pharmacology and toxicology. Chem Rev 104:6255–6286

    Article  PubMed  CAS  Google Scholar 

  6. Rosa RM, Oliveira RB, Saffi J, Braga AL, Roesler R, Dal-Pizzol F, Moreira JCF, Brendel M, Henriques JAP (2005) Pro-oxidant action of diphenyl diselenide in the yeast Saccharomyces cerevisiae exposed to ROS-generating conditions. Life Sci 77:2398–2411

    Article  Google Scholar 

  7. Wendel A, Fausel M, Safayi H, Otter R (1984) A novel biologically active seleno-organic compound-II. Activity of PZ 51 in relation to glutathione peroxidase. Biochem Pharmacol 33:3241–3245

    Article  PubMed  CAS  Google Scholar 

  8. Müller A, Gabriel H, Sies H (1985) A novel biologically active selenoorganic compound-IV. Protective glutathione dependent effect of PZ51 (Ebselen) against ADP-Fe induced lipid peroxidation in isolated hepatocytes. Biochem Pharmacol 34:1185–1189

    Article  PubMed  Google Scholar 

  9. Rossato JI, Ketzer LA, Centurião FB, Silva SJN, Ludtke DS, Zeni G, Braga AL, Rubin MA, Rocha BT (2002) Antioxidant properties of new chalcogenides against lipid peroxidation in rat brain. Neurochem Res 3:297–303

    Article  Google Scholar 

  10. Rossato JI, Zeni G, Mello CF, Rubin MA, Rocha JBT (2002) Ebselen blocks the quinolinic acid-induced production of thiobarbituric acid reactive species but does not prevent the behavioral alterations produced by intrastriatal quinolinic acid administration in the rat. Neurosci Lett 3:137–141

    Article  Google Scholar 

  11. Marino JP, McClure MS, Holub DP, Comasseto JV, Tucci FC (2002) Stereocontrolled synthesis of macrolactin. J Am Chem Soc 8:1664–1668

    Article  Google Scholar 

  12. Zeni G, Ludtke D, Panatieri RB, Braga AL (2006) Vinylic tellurides: from preparation to their applicability in organic synthesis. Chem Rev 106:1032–1076

    Article  PubMed  CAS  Google Scholar 

  13. Meotti FC, Borges VC, Zeni G, Rocha JBT, Nogueira CW (2003) Potential renal and hepatic toxicity of diphenyl diselenide, diphenyl ditelluride and Ebselen for rats and mice. Toxicol Lett 143:9–16

    Article  PubMed  CAS  Google Scholar 

  14. Maciel EN, Bolzan RC, Braga AL, Rocha JBT (2000) Diphenyl diselenide and diphenyl ditelluride differentially affect delta-aminolevulinate dehydratase from liver, kidney, and brain of mice. J Biochem Mol Toxicol 14:310–319

    Article  PubMed  CAS  Google Scholar 

  15. Comasseto JV, Ling LW, Petragnani N, Stefani HA (1997) Vinylic selenides and tellurides—preparation, reactivity and synthetic application. Synthesis 4:373–403

    Article  Google Scholar 

  16. Lenardão EJ, Silva MS, Mendes SR, Azambuja F, Jacob RG, Santos PCS, Perin G (2007) Synthesis of β-phenylchalcogeno-α,β-unsaturated esters, ketones and nitriles using microwave and solvent-free conditions. J Braz Chem Soc 18:943–950

    Article  Google Scholar 

  17. Halliwell B, Gutteridge JMC (2007) Measurement of reactive species. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford, pp 268–340

    Google Scholar 

  18. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  PubMed  CAS  Google Scholar 

  19. Diplock AT (1994) Antioxidants and free radical scavengers. In: Rice-Evans CA, Burdon RH (eds) Free radical damage and its control. Elsevier, Amsterdam, pp 113–130

    Chapter  Google Scholar 

  20. Ren X, Xue Y, Zhang K, Liu J, Luo G, Zheng J, Mu Y, Shen J (2001) A novel dicyclodextrinyl ditelluride compound with antioxidant activity. FEBS Lett 507:377–380

    Article  PubMed  CAS  Google Scholar 

  21. Silveira CC, Braga AL, Guerra RB (2002) Stereoselective synthesis of alpha-phenylchalcogeno-alpha, beta-unsaturated esters. Tetrahedron Lett 43:3395–3397

    Article  CAS  Google Scholar 

  22. Yamaguchi T, Takamura H, Matoba T, Terao J (1998) HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl. Biosci Biotechnol Biochem 62:1201–1204

    Article  PubMed  CAS  Google Scholar 

  23. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  PubMed  CAS  Google Scholar 

  24. Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363

    Article  PubMed  CAS  Google Scholar 

  25. Maklund SL (1985) Oxygen toxicity and protective systems. J Toxicol Clin Toxicol 23:289–298

    Article  Google Scholar 

  26. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  27. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–267

    PubMed  CAS  Google Scholar 

  28. Vinson JA (1998) Flavonoids in foods as in vitro and in vivo antioxidants. Adv Exp Med Biol 439:151–164

    Article  PubMed  CAS  Google Scholar 

  29. Stangherlin EC, Luchese C, Ardais AP, Nogueira CW (2009) Passive smoke exposure induced oxidative damage in brains of rat pups: protective role of diphenyl diselenide. Inhal Toxicol 21:868–874

    Article  PubMed  CAS  Google Scholar 

  30. Carvalho CA, Gemelli T, Guerra RB, Oliboni L, Salvador M, Dani C, Araújo AS, Mascarenhas M, Funchal C (2009) Effect of in vitro exposure of human serum to 3-butyl-1-phenyl-2-(phenyltelluro)oct-en-1-one on oxidative stress. Mol Cell Biochem 332:127–134

    Article  PubMed  CAS  Google Scholar 

  31. Ineu RP, Pereira M, Aschner M, Nogueira C, Zeni G, Rocha J (2008) Diphenyl diselenide reverses gastric lesions in rats: involvement of oxidative stress. Food Chem Toxicol 46:3023–3029

    Article  PubMed  CAS  Google Scholar 

  32. Tappel AL (1973) Lipid peroxidation damage to cell components. Fed Proc 32:1870–1874

    PubMed  CAS  Google Scholar 

  33. Hershko C (1989) Mechanism of iron toxicity and its possible role in red cell membrane damage. Semin Hematol 26:277–285

    PubMed  CAS  Google Scholar 

  34. Marks AD, Smith C, Lieberman M (2007) Bioquímica médica de Marks. Artmed, Porto Alegre

    Google Scholar 

  35. Penz J, Gemelli T, Carvalho CAS, Guerra RB, Olibone L, Salvador M, Dani D, Araújo AS, Funchal C (2009) Effect of 3-butyl-1-phenyl-2-(phenyltelluro)oct-en-1-one on oxidative stress in cerebral cortex of rats. Food Chem Toxicol 47:745–751

    Article  PubMed  CAS  Google Scholar 

  36. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    Article  PubMed  CAS  Google Scholar 

  37. Freitas AS, Funck VR, Rotta MS, Bohrer D, Mörschbächer V, Puntel RL, Nogueira CW, Farina M, Aschner M, Rocha JBT (2009) Diphenyl diselenide, a simple organoselenium compound, decreases methylmercury-induced cerebral, hepatic and renal oxidative stress and mercury deposition in adult mice. Brain Res Bull 79:77–84

    Article  PubMed  Google Scholar 

  38. Talas ZS, Ozdemir I, Yilmaz I, Gok Y (2009) Antioxidative effects of novel synthetic organoselenium compound in rat lung and kidney. Ecotoxicol Environ Saf 72:916–921

    Article  PubMed  CAS  Google Scholar 

  39. Talas ZS, Yilmaz I, Ozdemir I, Ates B, Gok Y, Cetinkaya B (2009) Role of synthesized organoselenium compounds on protection of rat erythrocytes from DMBA-induced oxidative stress. Biol Trace Elem Res 128:167–175

    Article  Google Scholar 

  40. Baek BS, Kwon HJ, Lee KH, Yoo MA, Kim KW, Ikeno Y, Yu BP, Chung HY (1999) Regional difference of ROS generation, lipid peroxidation, and antioxidant enzyme activity in rat brain and their dietary modulation. Arch Pharm Res 22:361–366

    Article  PubMed  CAS  Google Scholar 

  41. Rongzhu L, Suhua W, Guangwei X, Chunlan R, Fangan H, Suxian C, Zhengxian Z, Qiuwei Z, Aschner M (2009) Effects of acrylonitrile on antioxidant status of different brain regions in rats. Neurochem Int 55:552–557

    Article  PubMed  Google Scholar 

  42. Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91:31S–38S

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Centro Universitário Metodista IPA and Universidade de Caxias do Sul.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia Funchal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gemelli, T., Carvalho, C.A.S., de Andrade, R.B. et al. The organochalcogen 3-methyl-1-phenyl-2-(phenylseleno)oct-2-en-1-one induces oxidative stress in heart, liver, and kidney of rats. Mol Cell Biochem 355, 167–172 (2011). https://doi.org/10.1007/s11010-011-0850-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0850-1

Keywords

Navigation