Skip to main content
Log in

Antihyperglycemic effect of carvacrol in combination with rosiglitazone in high-fat diet-induced type 2 diabetic C57BL/6J mice

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Thiazolidinediones constitute a family of antidiabetic drugs, and rosiglitasone (RSG) has an extensive usage in treating the complications of type 2 diabetes mellitus. Carvacrol (CVL), a monoterpenic phenol that occurs in many essential oils of the family Labiatae including Origanum, Satureja, Thymbra, Thymus, and Corydothymus species, possess a wide variety of pharmacological properties including antioxidant potential. We hypothesized that carvacrol in combination with RSG would prove beneficial to ameliorate the dysregulated carbohydrate metabolism in high-fat diet (HFD)-induced type 2 diabetic C57BL/6J mice. Mice were divided into six groups and fed HFD, for 10 weeks. CVL (20 mg/kg BW) and RSG (4 mg/kg BW) were administered post-orally, daily for 35 days. HFD mice showed an elevation in plasma glucose, insulin, glycosylated hemoglobin and a decrease in hemoglobin. The activities of carbohydrate metabolic enzymes such as glucose-6-phosphatase and fructose-1,6-bisphosphatase increased whereas glucokinase and glucose-6-phosphate dehydrogenase activities decreased in the liver of HFD mice. The activities of hepatic marker enzymes such as aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and gamma-glutamyl transpeptidase increased in HFD mice. Combination of CVL and RSG prevented the above changes toward normalcy. Histopathological analysis of H&E stained pancreas was also in agreement with the biochemical findings. These major findings provide evidence that combination of CVL with RSG has better antidiabetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Prac 87:4–14

    Article  CAS  Google Scholar 

  2. The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (1997) Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 20:1183–1197

    Article  Google Scholar 

  3. Yki-Järvinen H (1994) Pathogenesis of non-insulin-dependent diabetes mellitus. Lancet 343:91–95

    Article  PubMed  Google Scholar 

  4. McAuley K, Mann J (2006) Nutritional determinants of insulin resistance. J Lipid Res 47:1668–1676

    Article  CAS  PubMed  Google Scholar 

  5. Henriksen EJ, Teachey MK, Lindborg KA, Diehl CJ, Beneze AN (2008) The high-fat-fed lean Zucker rat: a spontaneous isocaloric model of fat-induced insulin resistance associated with muscle GSK-3 overactivity. Am J Physiol Regul Integr Comp Physiol 294:1813–1821

    Article  Google Scholar 

  6. Buettner R, Parhofer KG, Woenckhaus M, Wrede CE, Kunz-Schughart LA, Schölmerich J, Bollheimer LC (2006) Defining high-fat-diet rat models: metabolic and molecular effects of different fat types. J Mol Endocrinol 36:485–501

    Article  CAS  PubMed  Google Scholar 

  7. Kirimer N, Baser KHC, Tumen G (1995) Carvacrol rich plants in Turkey. Chem Nat Comp 31:37–42

    Article  Google Scholar 

  8. Berger JP, Akiyama TE, Meinke PT (2005) PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci 26:244–251

    Article  CAS  Google Scholar 

  9. Kallistratos G, Evangelou A, Agnantis N, Fasske E, Karkabounas S, Donos A (1994) Enhancement of the antineoplastic effect of anticarcinogens on benzo(a)pyrene-treated Wistar rats, in relation to their number and biological activity. Cancer Lett 82:153–165

    Article  CAS  PubMed  Google Scholar 

  10. Evangelou A, Kalpouzos G, Karkabounas S, Liasko R, Nonni A, Stefanou D, Kallistratos G (1997) Dose-related preventive and therapeutic effects of antioxidants-anticarcinogens on experimentally induced malignant tumors in Wistar rats. Cancer Lett 115:105–111

    Article  CAS  PubMed  Google Scholar 

  11. Hotta M, Nakata R, Katsukawa M, Hori K, Takahashi S, Inoue H (2010) Carvacrol, a component of thyme oil, activates PPAR and suppresses COX-2 expression. J Lipid Res 51:132–139

    Article  PubMed Central  PubMed  Google Scholar 

  12. Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471

    Article  CAS  PubMed  Google Scholar 

  13. Wang PR, Guo Q, Ippolito M, Wu M, Milot D, Ventre J, Doebber T, Wright SD, Chao YS (2001) High-fat fed hamster, a unique animal model for treatment of diabetic dyslipidemia with peroxisome proliferator activated receptor alpha selective agonists. Eur J Pharmacol 427:285–293

    Article  CAS  PubMed  Google Scholar 

  14. Mudaliar S, Henry RR (2001) New oral therapies for type 2 diabetes mellitus: The glitazones or insulin sensitizers. Annu Rev Med 52:239–257

    Article  CAS  PubMed  Google Scholar 

  15. Trinder P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6:24

    Article  CAS  Google Scholar 

  16. Drabkin DL, Austin JM (1932) Spectrophotometric constants for common haemoglobin derivatives in human, dog and rabbit blood. J Biol Chem 98:719–733

    CAS  Google Scholar 

  17. Nayak SS, Pattabiraman TN (1981) A new colorimetric method for the estimation of glycosylated hemoglobin. Clin Chim Acta 109:267–274

    Article  CAS  PubMed  Google Scholar 

  18. Burgi W, Briner M, Franken N, Kessler AC (1988) One-step sandwich enzyme immunoassay for insulin using monoclonal antibodies. Clin Biochem 21:311–314

    Article  CAS  PubMed  Google Scholar 

  19. Brandstrup N, Kirk JE, Bruni C (1957) The hexokinase and phosphoglucoisomerase activities of aortic and pulmonary artery tissue in individuals of various ages. J Gerontol 12:166–171

    Article  CAS  PubMed  Google Scholar 

  20. Koide H, Oda T (1959) Pathological occurrence of glucose-6-phosphatase in serum in liver diseases. Clin Chim Acta 4:554–561

    Article  CAS  PubMed  Google Scholar 

  21. Gancedo JM, Gancedo C (1971) Fructose-1,6-diphosphatase, phosphofructokinase and glucose-6-phosphate dehydrogenase from fermenting and non fermenting yeasts. Arch Microbiol 76:132–138

    CAS  Google Scholar 

  22. Bergmeyer HU, Bergmeyer IN (1984) Glucose 6-phosphate dehydrogenase. Methods of Enzymatic Analysis. Verlag Chemie, Weinheim, pp 222–223

    Google Scholar 

  23. Morales MA, Jabbay AJ, Tenenzi HP (1975) Mutation affecting accumulation of glycogen. Neurospora News let 20:24–25

    Google Scholar 

  24. Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28:56–63

    CAS  PubMed  Google Scholar 

  25. Kind PR, King EJ (1954) Estimation of plasma phosphatase by determination of hydrolysed phenol with amino-antipyrine. J Clin Pathol 7:322–326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Rosalki SB, Rau D (1972) Serum gamma-glutamyl transpeptidase activity in alcoholism. Clin Chim Acta 39:41–47

    Article  CAS  PubMed  Google Scholar 

  27. Ouwens DM, Boer C, Fodor M, de Galan P, Heine RJ, Maassen JA, Diamant M (2005) Cardiac dysfunction induced by high-fat diet is associated with altered myocardial insulin signalling in rats. Diabetologia 48:1229–1237

    Article  CAS  PubMed  Google Scholar 

  28. Zhang F, Ye C, Li G, Ding W, Zhou W, Zhu H, Chen G, Luo T, GuangMLiu Y, Zhang D, Zheng S, Yang J, Gu Y, Xie X, Luo M (2003) The rat model of type 2 diabetic mellitus and its glycometabolism characters. Exp Anim 52:401–407

    Article  CAS  PubMed  Google Scholar 

  29. Polonsky KS, Given BD, Hirsch L, Shapiro ET, Tillil H, Beebe C, Galloway JA, Frank BH, Karrison T, Van Cauter E (1988) Quantitative study of insulin secretion and clearance in normal and obese subjects. J Clin Inves 81:435–441

    Article  CAS  Google Scholar 

  30. Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW, Karin M, Shoelson SE (2001) Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikk(beta). Science 293:1673–1677

    Article  CAS  PubMed  Google Scholar 

  31. Kopelman PG (2000) Obesity as a medical problem. Nature 404:635–643

    CAS  PubMed  Google Scholar 

  32. Kissebah AH, Peiris AN (1989) Biology of regional body fat distribution: relationship to non-insulin- dependent diabetes mellitus. Diabetes Metab Rev 5:83–109

    Article  CAS  PubMed  Google Scholar 

  33. Folli F, Saad MJ, Backer JM, Kahn CR (1992) Insulin stimulation of phosphatidylinositol 3-kinase activity and association with insulin receptor substrate 1 in liver and muscle of the intact rat. J Biol Chem 267:22171–22177

    CAS  Google Scholar 

  34. Lewis GF, Carpentier A, Adeli K, Giacca A (2002) Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 23:201–229

    Article  CAS  PubMed  Google Scholar 

  35. Gabriely I, Barzilai N (2003) Surgical removal of visceral adipose tissue: effects on insulin action. Curr. Diab. Rep. 3:201–206

    Article  PubMed  Google Scholar 

  36. Cho S, Choi Y, Park S, Park T (2012) Carvacrol prevents diet-induced obesity by modulating gene expressions involved in adipogenesis and inflammation in mice fed with high-fat diet. J Nutr Biochem. 23:192–201

    Google Scholar 

  37. Alberti KG, Press CM (1982) The biochemistry and the complications of diabetes. In: Keen H, Jarrett J (eds) Complications of Diabetes. Edward Arnold, London, pp 231–270

    Google Scholar 

  38. Hikino H, Kobayashi M, Suzuki Y, Konno C (1989) Mechanisms of hypoglycemic activity of aconitan A, a glycan from Aconitum carmichaeli roots. J Ethnopharmacol 25:295–304

    Article  CAS  PubMed  Google Scholar 

  39. Kurosaki E, Nakano R, Momose K, Shimaya A, Suzuki T, Shibasaki M (2003) Hypoglycemic agent YM440 suppresses hepatic glucose output via gluconeogenesis by reducing glucose-6-phosphatase activity in obese Zucker rats. Eur J Pharmacol 468:151–158

    Article  CAS  PubMed  Google Scholar 

  40. Khan Proietto J, Song S, Andrikopoulos S, Filippis Anne W, Thorburn David (2001) Mechanism of fat-induced hepatic gluconeogenesis: effect of metformin. Am J Physiol Endocrinol Metab 28:E275–E282

    Google Scholar 

  41. Baquer NZ, Gupta D, Rajo J (1998) Regulations of metabolic pathways in liver and kidney during experimental diabetes. Effect of antidiabetic compounds. Indian J Clin Biochem 13:63–80

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Loria P, Lonardo A, Carulli L, Verrone AM, Ricchi M, Lombardini S, Rudilosso A, Ballestri S, Carulli N (2005) Review article: the metabolic syndrome and non-alcoholic fatty liver disease. Aliment Pharmacol Ther 22:31–36

    Article  PubMed  Google Scholar 

  43. Whitehead MW, Hawkes ND, Hainsworth I, Kingham JG (1999) A prospective study the causes of notably raised aspartate transaminase of liver origin. Gut 45:129–133

    Article  PubMed Central  CAS  Google Scholar 

  44. Perry IJ, Wannamethee SG, Shaper AG (1998) Prospective study of serum gamma glutamyltransferase and risk of NIDDM. Diabetes Care 21:732–737

    Article  CAS  PubMed  Google Scholar 

  45. Aristatile B, Al-Numair KS, Veeramani C, Pugalendi KV (2009) Effect of CVL on hepatic marker enzymes and antioxidant status in D-galactosamine-induced hepatotoxicity in rats. Fundam Clin Pharmacol 23:757–765

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Financial support, as Junior Research Fellowship, from University Grants Commission, New Delhi, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kodukkur Viswanathan Pugalendi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ezhumalai, M., Radhiga, T. & Pugalendi, K.V. Antihyperglycemic effect of carvacrol in combination with rosiglitazone in high-fat diet-induced type 2 diabetic C57BL/6J mice. Mol Cell Biochem 385, 23–31 (2014). https://doi.org/10.1007/s11010-013-1810-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1810-8

Keywords

Navigation