Skip to main content
Log in

The PI3K/Akt/mTOR pathway regulates the replicative senescence of human VSMCs

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Replicative senescence of vascular smooth muscle cells (VSMCs) contributes to aging as well as age-related cardiovascular diseases. Rapamycin can delay the onset of aging-related diseases via inhibition of the mammalian target of rapamycin (mTOR), but its role in vascular aging remains elusive. This study investigated the involvement of mTOR signaling in replicative senescence of VSMCs. Replicative senescence was induced by the extended passages of human VSMCs. Aging-related cell morphology was observed. The aging-related proteins and enzyme activity, and oxidative stress were measured. Significant increase in SA-β-gal activity and protein expression, p53 and p16 protein expression, proliferation index (PI), malondialdehyde (MDA) concentration, superoxide dismutase (SOD) and glutathione peroxidase (GPX) activity, and significant decrease in telomerase activity was observed in aging VSMCs compared to young cells. Significant activation of PI3K/Akt/mTOR signaling was observed in aging cells but not young cells. Pretreatment of VSMCs with PI3K inhibitor blocked while PI3K activator increased the changes of the above replicative senescence-related parameters in VSMCs. Rapamycin and silencing of mTOR expression inhibited replicative senescence in VSMCs through decreasing the level of p-mTOR Ser2448, p-mTOR Thr2446, and S6K1 phosphorylation. This study for the first time demonstrated that the PI3K/Akt/mTOR/S6K1 signal pathway plays an important role in regulating replicative senescence of human VSMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fontana L, Partridge L, Longo VD (2010) Extending healthy life span from yeast to humans. Science 328:321–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, Fernandez E, Flurkey K, Javors MA, Nelson JF, Orihuela CJ, Pletcher S, Sharp ZD, Sinclair D, Starnes JW, Wilkinson JE, Nadon NL, Strong R (2011) Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci 66:191–201

    Article  PubMed  Google Scholar 

  4. Goldberg EL, Romero-Aleshire MJ, Ventevogel MS, Chew WM, Uhrlaub JL, Smithey MJ, Limesand KH, Sempowski GD, Brooks HL, Nikolich-Žugich J (2015) Lifespan-extending caloric restriction or mTOR inhibition impair adaptive immunity of old mice by distinct mechanisms. Aging Cell 14:130–138

    Article  CAS  PubMed  Google Scholar 

  5. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35

    Article  CAS  PubMed  Google Scholar 

  6. Lim MA, Townsend RR (2009) Arterial compliance in the elderly: its effect on blood pressure measurement and cardiovascular outcomes. Clin Geriatr Med 25:191–205

    Article  PubMed  Google Scholar 

  7. Ungvari Z, Kaley G, de Cabo R, Sonntag WE, Csiszar A (2010) Mechanisms of vascular aging: new perspectives. J Gerontol A Biol Sci Med Sci 65:1028–1041

    Article  PubMed  Google Scholar 

  8. von Zglinicki T, Petrie J, Kirkwood TB (2003) Telomere-driven replicative senescence is a stress response. Nat Biotechnol 21:229–230

    Article  Google Scholar 

  9. Passos JF, Von Zglinicki T (2006) Oxygen free radicals in cell senescence: are they signal transducers? Free Radic Res 40:1277–1283

    Article  CAS  PubMed  Google Scholar 

  10. Unterluggauer H, Hutter E, Voglauer R, Grillari J, Vöth M, Bereiter-Hahn J, Jansen-Dürr P, Jendrach M (2007) Identification of cultivation-independent markers of human endothelial cell senescence in vitro. Biogerontology 8:383–397

    Article  Google Scholar 

  11. Shanahan CM (2013) Mechanisms of vascular calcification in CKD-evidence for premature ageing? Nat Rev Nephrol 9:661–670

    Article  CAS  PubMed  Google Scholar 

  12. Lauring J, Park BH, Wolff AC (2013) The phosphoinositide-3-kinase-AktmTOR pathway as a therapeutic target in breast cancer. J Natl Compr Canc Netw 11:670–678

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    Article  CAS  PubMed  Google Scholar 

  14. Wang X, Proud CG (2011) mTORC1 signaling: what we still don’t know. J Mol Cell Biol 3:206–220

    Article  CAS  PubMed  Google Scholar 

  15. Zhan JK, Wang YJ, Wang Y, Tang ZY, Tan P, Huang W, Liu YS (2015) The protective effect of GLP-1 analogue in arterial calcification through attenuating osteoblastic differentiation of human VSMCs. Int J Cardiol 189:188–193

    Article  PubMed  Google Scholar 

  16. Zhan JK, Wang YJ, Wang Y, Wang S, Tan P, Huang W, Liu YS (2014) The mammalian target of rapamycin signalling pathway is involved in osteoblastic differentiation of vascular smooth muscle cells. Can J Cardiol 30:568–575

    Article  PubMed  Google Scholar 

  17. Zhan JK, Wang YJ, Wang Y, Tang ZY, Tan P, Huang W, Liu YS (2014) Adiponectin attenuates the osteoblastic differentiation of vascular smooth muscle cells through the AMPK/mTOR pathway. Exp Cell Res 323:352–358

    Article  CAS  PubMed  Google Scholar 

  18. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Draper H, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  CAS  PubMed  Google Scholar 

  20. Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Ind J Biochem Biophy 21:130–132

    CAS  Google Scholar 

  21. Liang QH, Jiang Y, Zhu X, Cui RR, Liu GY, Liu Y, Wu SS, Liao XB, Xie H, Zhou HD, Wu XP, Yuan LQ, Liao EY (2012) Ghrelin attenuates the osteoblastic differentiation of vascular smooth muscle cells through the ERK pathway. PLoS One 7:e33126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Houde VP, Brule S, Festuccia WT, Blanchard PG, Bellmann K, Deshaies Y, Marette A (2010) Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes 59:1338–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ming XF, Montani JP, Yang Z (2012) Perspectives of targeting mTORC1-S6K1 in cardiovascular aging. Front Physiol 25:5

    Google Scholar 

  24. Marchand A, Atassi F, Gaaya A, Leprince P, Le Feuvre C, Soubrier F, Lompré AM, Nadaud S (2011) The Wnt/beta-catenin pathway is activated during advanced arterial aging in humans. Aging Cell 10:220–232

    Article  CAS  PubMed  Google Scholar 

  25. Liu S, Liu S, Wang X, Zhou J, Cao Y, Wang F, Duan E (2011) The PI3K-Akt pathway inhibits senescence and promotes self-renewal of human skin-derived precursors in vitro. Aging Cell 10:661–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kloet DE, Burgering BM (2011) The PKB/FOXO switch in aging and cancer. Biochim Biophys Acta 1813:1926–1937

    Article  CAS  PubMed  Google Scholar 

  27. Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S, Pelicci PG, Kouzarides T (2002) Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 21:2383–2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kunieda T, Minamino T, Nishi J, Tateno K, Oyama T, Katsuno T, Miyauchi H, Orimo M, Okada S, Takamura M, Nagai T, Kaneko S, Komuro I (2006) Angiotensin Òinduces premature senescence of vascular smooth muscle cells and accelerates the development of atherosclerosis via a p21-dependent pathway. Circulation 114:953–960

    Article  CAS  PubMed  Google Scholar 

  29. Unterluggauer H, Hutter E, Voglauer R, Grillari J, Vöth M, Bereiter-Hahn J, Jansen-Dürr P, Jendrach M (2007) Identification of cultivation-independent markers of human endothelial cell senescence in vitro. Biogerontology 8:383–397

    Article  CAS  PubMed  Google Scholar 

  30. Polager S, Ginsberg D (2009) p53 and E2f: partners in life and death. Nat Rev Cancer 9:738–748

    Article  CAS  PubMed  Google Scholar 

  31. Cheng SW, Fryer LG, Carling D, Shepherd PR (2004) Thr2446 is anovel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status. J Biol Chem 279:15719–15722

    Article  CAS  PubMed  Google Scholar 

  32. Peterson RT, Beal PA, Comb MJ, Schreiber SL (2000) FKBP12—rapamycin-associated protein(FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem 275:7416–7423

    Article  CAS  PubMed  Google Scholar 

  33. Zorić L, Colak E, Canadanović V, Kosanović-Jaković N, Kisić B (2010) Oxidation stress role in age-related cataractogenesis. Med Pregl 63:522–526

    Article  PubMed  Google Scholar 

  34. Shuvaev VV, Han J, Yu KJ, Huang S, Hawkins BJ, Madesh M, Nakada M, Muzykantov VR (2011) PECAM-targeted delivery of SOD inhibits endothelial inflammatory response. FASEB J 25:348–357

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gilley D, Herbert BS, Huda N, Tanaka H, Reed T (2008) Factors impacting human telomere homeostasis and age-related disease. Mech Ageing Dev 129:27–34

    Article  CAS  PubMed  Google Scholar 

  36. Niclauss N, Bosco D, Morel P, Giovannoni L, Berney T, Parnaud G (2011) Rapamycin impairs proliferation of transplanted islet beta cells. Transplantation 91:714–722

    Article  CAS  PubMed  Google Scholar 

  37. Tanemura M, Ohmura Y, Deguchi T, Machida T, Tsukamoto R, Wada H, Kobayashi S, Marubashi S, Eguchi H, Ito T, Nagano H, Mori M, Doki Y (2012) Rapamycin causes upregulation of autophagy and impairs islets function both in vitro and in vivo. Am J Transplant 12:102–114

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Basic Research Program of China (No. 2014CB910500), the National Natural Science Foundation of China (No.81501212, No.81370931), and the Hunan Province Special Health Research Projects (A2015-04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-Kun Zhan or You-Shuo Liu.

Ethics declarations

Conflicts of interest

All authors declared that they have no conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, P., Wang, YJ., Li, S. et al. The PI3K/Akt/mTOR pathway regulates the replicative senescence of human VSMCs. Mol Cell Biochem 422, 1–10 (2016). https://doi.org/10.1007/s11010-016-2796-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2796-9

Keywords

Navigation