Skip to main content

Advertisement

Log in

A novel spiroindoline targets cell cycle and migration via modulation of microtubule cytoskeleton

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Natural product-inspired libraries of molecules with diverse architectures have evolved as one of the most useful tools for discovering lead molecules for drug discovery. In comparison to conventional combinatorial libraries, these molecules have been inferred to perform better in phenotypic screening against complicated targets. Diversity-oriented synthesis (DOS) is a forward directional strategy to access such multifaceted library of molecules. From a successful DOS campaign of a natural product-inspired library, recently a small molecule with spiroindoline motif was identified as a potent anti-breast cancer compound. Herein we report the subcellular studies performed for this molecule on breast cancer cells. Our investigation revealed that it repositions microtubule cytoskeleton and displaces AKAP9 located at the microtubule organization centre. DNA ladder assay and cell cycle experiments further established the molecule as an apoptotic agent. This work further substantiated the amalgamation of DOS-phenotypic screening-sub-cellular studies as a consolidated blueprint for the discovery of potential pharmaceutical drug candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AKAP9:

A-kinase-anchoring protein 9

DOS:

Diversity-oriented synthesis

MTOC:

Microtubule-organizing centre

References

  1. Coughlin SS, Ekwueme DU (2009) Breast cancer as a global health concern. Cancer Epidemiol 33(5):315–318. doi:10.1016/j.canep.2009.10.003

    Article  PubMed  Google Scholar 

  2. Guan X (2015) Cancer metastases: challenges and opportunities. Acta Pharm Sin B 5(5):402–418. doi:10.1016/j.apsb.2015.07.005

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mallick N, Kausar MA, Chattopadhyay S, Ahad A, Zaidi S, Husain SA, Siddiqui WA (2012) Mutational analysis of prohibition—a highly conserved gene in Indian female breast cancer cases. Asian Pac J Cancer Prev 13(10):5113–5117

    Article  PubMed  Google Scholar 

  4. Masters GA, Krilov L, Bailey HH, Brose MS, Burstein H, Diller LR, Dizon DS, Fine HA, Kalemkerian GP, Moasser M, Neuss MN, O’Day SJ, Odenike O, Ryan CJ, Schilsky RL, Schwartz GK, Venook AP, Wong SL (2015) Patel clinical cancer advances 2015: annual report on progress against cancer from the American Society of Clinical Oncology. J Clin Oncol 33(7):786–809. doi:10.1200/JCO.2014.59.9746

    Article  PubMed  Google Scholar 

  5. Adams DL, Martin SS, Alpaugh RK, Charpentier M, Tsai S, Bergan RC, Ogden IM, Catalona W, Chumsri S, Tang C-M (2014) Circulating giant macrophages as a potential biomarker of solid tumors. Proc Natl Acad Sci USA 111(9):3514–3519. doi:10.1073/pnas.1320198111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burke MD, Schreiber SL (2004) A planning strategy for diversity-oriented synthesis. Angew Chem Int Ed Engl 43(1):46–58

    Article  PubMed  Google Scholar 

  7. Ibbeson BM, Laraia L, Alza E, O’Connor CJ, Tan YS, Davies HML, McKenzie G, Venkitaraman AR, Spring DR (2014) Diversity-oriented synthesis as a tool for identifying new modulators of mitosis. Nat Commun 5:3155. doi:10.1038/ncomms4155

    Article  PubMed  Google Scholar 

  8. Sanivarapu S, Thulluri C, Iyer PS, Tangirala RS, Gundla R, Addepally U, Murthy YL, Velide L, Sen S (2013) Synthesis of privileged scaffolds by using diversity-oriented synthesis. Chem Asian J 8:1168–1176

    Article  PubMed  Google Scholar 

  9. Sehrawat S, Ernandez T, Cullere X, Takahashi M, Ono Y, Komarova Y, Mayadas TN (2011) AKAP9 regulation of microtubule dynamics promotes Epac1-induced endothelial barrier properties. Blood 117(2):708–718. doi:10.1182/blood-2010-02-268870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pihan GA (2013) Centrosome dysfunction contributes to chromosome instability, chromoanagenesis, and genome reprograming in cancer. Front Oncol 3:277. doi:10.3389/fonc.2013.00277

    Article  PubMed  PubMed Central  Google Scholar 

  11. Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Protocol. doi:10.1038/nprot.2006.339

    Google Scholar 

  12. Fadok VA, Bratton DL, Guthrie L, Henson PM (2001) Differential effects of apoptotic versus lysed cells on macrophage production of cytokines: role of proteases. J Immunol 166(11):6847–6854

    Article  CAS  PubMed  Google Scholar 

  13. Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420

    CAS  PubMed  Google Scholar 

  14. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302:1704–1709

    Article  CAS  PubMed  Google Scholar 

  15. Kurosaka S et al. (2010) Arginylation-dependent neural crest cell migration is essential for mouse development. PLoS Genet 6(3):e1000878. doi:10.1371/journal.pgen.1000878

    Article  PubMed  PubMed Central  Google Scholar 

  16. Paulucci-Holthauzen AA, Vergara LA, Bellot LJ, Canton D, Scott JD, O’Connor KL (2009) Spatial distribution of protein kinase A activity during cell migration is mediated by A-kinase anchoring protein AKAP Lbc. J Biol Chem 284(9):5956–5967. doi:10.1074/jbc.M805606200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tröger J (2012) A-kinase anchoring proteins as potential drug targets. Br J Pharmacol 166(2):420–433. doi:10.1111/j.1476-5381.2011.01796.x

    Article  PubMed  PubMed Central  Google Scholar 

  18. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nagata S (2000) Apoptotic DNA fragmentation. Exp Cell Res 256:12–18

    Article  CAS  PubMed  Google Scholar 

  20. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437. doi:10.1038/nm.3394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Han X, Xu B, Beevers CS, Odaka Y, Chen L, Liu L, Luo Y, Zhou H, Chen W, Shen T, Huang S (2012) Curcumin inhibits protein phosphatases 2 A and 5, leading to activation of mitogen-activated protein kinases and death in tumor cells. Carcinogenesis 33(4):868–875. doi:10.1093/carcin/bgs029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu B, Lee KK, Zhang L, Gerton JL (2013) Stimulation of mTORC1 with l-leucine rescues defects associated with roberts syndrome. PLoS Genet 9(10):e1003857. doi:10.1371/journal.pgen.1003857

    Article  PubMed  PubMed Central  Google Scholar 

  23. Odaka Y, Xu B, Luo Y, Shen T, Shang C, Wu Y, Zhou H, Huang S (2014) Dihydroartemisinin inhibits the mammalian target of rapamycin-mediated signaling pathways in tumor cells. Carcinogenesis 35(1):192–200. doi:10.1093/carcin/bgt277

    Article  CAS  PubMed  Google Scholar 

  24. Xu B, Gogol M, Gaudenz K, Gerton JL (2016) Improved transcription and translation with l-leucine stimulation of mTORC1 in roberts syndrome. BMC Genomics 17:25. doi:10.1186/s12864-015-2354-y

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Shailja Singh and Subhabrata Sen thank the Department of Biotechnology, Govt. of India, for the pilot grant BT/Med/Pilot Project Cancer/2014. Seema Sehrawat is the recipient of Bio-CARe Award from the Ministry of Science and Technology, Department of Biotechnology, Govt. of India, and acknowledges the funding support. NK and SH are supported by fellowship from Shiv Nadar University. Shailja Singh acknowledges the funding provided by IYBA, Dept. of Biotechnology, Govt. of India. We also sincerely thank financial support received from LRE JNU and ICMR CAR 2016 -17.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seema Sehrawat or Shailja Singh.

Additional information

Naveen Kumar and Santanu Hati have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Hati, S., Munshi, P. et al. A novel spiroindoline targets cell cycle and migration via modulation of microtubule cytoskeleton. Mol Cell Biochem 429, 11–21 (2017). https://doi.org/10.1007/s11010-016-2932-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2932-6

Keywords

Navigation