Skip to main content

Advertisement

Log in

Integrative natural medicine inspired graphene nanovehicle-benzoxazine derivatives as potent therapy for cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Natural products from medicinal plants have always attracted a lot of attention due to their diverse and interesting therapeutic properties. We have employed the principles of green chemistry involving isomerization, coupling and condensation reaction to synthesize a class of compounds derived from eugenol, a naturally occurring bioactive phytophenol. The compounds were characterized structurally by 1H-, 13C-NMR, FT-IR spectroscopy and mass spectrometry analysis. The purity of compounds was detected by HPLC. The synthesized compounds exhibited anti-cancer activity. A 10–12-fold enhancement in efficiency of drug molecules (~ 1 µM) was observed when delivered with graphene oxide (GO) as a nanovehicle. Our data suggest cell death via apoptosis in a dose-dependent manner due to increase in calcium levels in specific cancer cell lines. Interestingly, the benzoxazine derivatives of eugenol with GO nanoparticle exhibited enhanced therapeutic potential in cancer cells. In addition to anti-cancer effect, we also observed significant role of these derivatives on parasite suggesting its multi-pharmacological capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Balachandran P, Govindarajan R (2005) Cancer—an ayurvedic perspective. Pharmacol Res 51(1):19–30

    Article  Google Scholar 

  2. Khare CP (2008) Indian medicinal plants: an illustrated dictionary. Springer, New York, pp 443–447

    Google Scholar 

  3. Jayaweera DMA (1981) Medicinal plants, (indigenous and exotic) used in Ceylon. Part III. The National Science Foundation of Sri Lanka, Colombo, pp 101–103

    Google Scholar 

  4. Nadkarni KM (2005) The Indian plants and drugs. Shrishti Book Distributors, New Delhi, p 263

    Google Scholar 

  5. Khare CP (2007) Indian medicinal plants, an illustrated dictionary. Springer India (P) Ltd, New Delhi, pp 442–444

    Google Scholar 

  6. Fujisawa S, Atsumi T, Kadoma Y, Sakagami H (2002) Antioxidant and prooxidant action of eugenol-related compounds and their toxicity. Toxicology 177(1):39–54. https://doi.org/10.1016/S0300-483X(02)00194-4

    Article  CAS  PubMed  Google Scholar 

  7. Okada N, Hirata A, Murakami Y, Shoji M, Sakagami H, Fujisawa S (2005) Induction of cytotoxicity and apoptosis and inhibition of cyclooxygenase-2 gene expression by eugenol-related compounds. Anticancer Res 25(5):3263–3269

    CAS  PubMed  Google Scholar 

  8. http://www.who.int/news-room/fact-sheets/detail/cancer

  9. Pal D, Banerjee S, Mukherjee S, Roy A, Panda CK, Das S (2010) Eugenol restricts DMBA croton oil induced skin carcinogenesis in mice: downregulation of c-Myc and H-ras, and activation of p53 dependent apoptotic pathway. J Dermatol Sci 59(1):31–39. https://doi.org/10.1016/j.jdermsci.2010.04.013

    Article  CAS  PubMed  Google Scholar 

  10. Daniel AN, Sartoretto SM, Schmidt G, Assef SMC, Amado CAB (2009) Anti-inflammatory and antinociceptive activities of eugenol essential oil in experimental animal models. Rev Bras Farmacogen 19(1b):212–217

    Article  CAS  Google Scholar 

  11. Ekor M (2014) The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 4:177. https://doi.org/10.3389/fphar.2013.00177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830(6):3670–3695. https://doi.org/10.1016/j.bbagen.2013.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qurishi Y, Hamid A, Zargar MA, Singh SK, Saxena AK (2010) Potential role of natural molecules in health and disease: Importance of boswellic acid. J Med Plants Res 4:2778–2785

    CAS  Google Scholar 

  14. Krock BL, Skuli N, Simon MC (2011) Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2(12):1117–1133. https://doi.org/10.1177/1947601911423654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. http://www.cdc.gov/cancer/breast/statistics/

  16. Nadkarni KM (2005) Indian plants and drugs with their medical properties and uses. New Shrishti Book Distributors, New Delhi, p 234

    Google Scholar 

  17. Fujisawa S, Atsumi T, Kadoma Y, Sakagami H (2002) Antioxidant and prooxidant action of eugenol-related compounds and their cytotoxicity. Toxicology 177(1):39–54

    Article  CAS  Google Scholar 

  18. Okada N, Hirata A, Murakami Y, Shoji M, Sakagami H, Fujisawa S (2005) Induction of cytotoxicity and apoptosis and inhibition of cyclooxigenase-2 gene expression by eugenol-related compounds. Anticancer Res 25(5):3263–3269

    CAS  PubMed  Google Scholar 

  19. Hemaiswarya S, Doble M (2009) Synergistic interaction of eugenol with antibiotics against gram negative bacteria. Phytomedicine 16(11):997–1005. https://doi.org/10.1016/j.phymed.2009.04.006

    Article  CAS  PubMed  Google Scholar 

  20. Ghosh R, Nadiminty N, Fitzpatrick JE, Alworth WL, Slaga TJ, Kumar AP (2005) Eugenol causes melanoma growth suppression through inhibition of E2F1 transcriptional activity. J Biol Chem 280(7):5812–5819

    Article  CAS  Google Scholar 

  21. Hussain A, Brahmbhatt K, Priyani A, Ahmed M, Rizvi TA, Sharma C (2011) Eugenol enhances the chemotherapeutic potential of gemcitabine and induces anticarcinogenic and anti-inflammatory activity in human cervical cancer cells. Cancer Biother Radiopharm 26(5):519–527. https://doi.org/10.1089/cbr.2010.0925

    Article  CAS  PubMed  Google Scholar 

  22. Taira J, Ikemoto T, Yoneya T, Hagi A, Murakami A, Makino K (1992) Essential oil phenyl propanoids. Useful as .OH scavenger? Free Radic Res Commun 16(3):197–204

    Article  CAS  Google Scholar 

  23. Thirukumaran P, Shakila PA, Sarojadevi M (2014) Synthesis and copolymerization of Fully biobased benzoxazines from renewable resources. ACS Sustain Chem Eng 2:2790–2801. https://doi.org/10.1021/sc500548c

    Article  CAS  Google Scholar 

  24. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  25. Varghese E, Büsselberg D (2014) Auranofin, an anti-rheumatic gold compound, modulates apoptosis by elevating the intracellular calcium concentration ([ca2+]) in mcf-7 breast cancer cells. Cancers 6(4):2243–2258. https://doi.org/10.3390/cancers6042243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sharma V, Agarwal S, Madurkar SM, Datta G, Dangi P, Dandugudumula R, Sen S, Singh S (2014) Diversity oriented synthesis and activity evaluation of substituted bicyclic lactams as anti-malarial against Plasmodium falciparum. Malar J 13:467. https://doi.org/10.1186/1475-2875-13-467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Perelman A, Wachtel C, Cohen M, Haupt S, Shapiro H, Tzur A (2012) JC-1: alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry. Cell Death Dis 3:e430. https://doi.org/10.1038/cddis.2012.171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, Forman D, Bray F (2013) Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 49(6):1374–1403. https://doi.org/10.1016/j.ejca.2012.12.027

    Article  CAS  PubMed  Google Scholar 

  29. Markowitz K, Moynihan M, Liu M, Kim S (1992) Biologic properties of eugenol and zinc oxide-eugenol. A clinically oriented review. Oral Surg Oral Med Oral Pathol 73:729–737

    Article  Google Scholar 

  30. Sukumaran K, Unnikrishnan MC, Kuttan R (1994) Inhibition of tumor promotion in mice by eugenol. Indian J Physiol Pharmacol 38(4):306–308

    CAS  PubMed  Google Scholar 

  31. Chokechaijaroenporn O, Bunyapraphatsara N, Kongchuensin S (1994) Mosquito repellent activities of ocimum volatile oils. Phytomedicine 1(2):135–139. https://doi.org/10.1016/S0944-7113(11)80031-0

    Article  CAS  PubMed  Google Scholar 

  32. Pisano M, Pagnan G, Loi M, Mura ME, Tilocca MG, Palmieri G, Fabbri D, Dettori MA, Delogu G, Ponzoni M, Rozzo C (2007) Antiproliferative and pro-apoptotic activity of eugenol-related biphenyls on malignant melanoma cells. Mol Cancer 6:8. https://doi.org/10.1186/1476-4598-6-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fadok VA, Bratton DL, Guthrie L, Henson PM (2001) Differential effects of apoptotic versus lysed cells on macrophage production of cytokines: role of proteases. J Immunol 166(11):6847–6854

    Article  CAS  Google Scholar 

  34. Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH (1994) Annexin V flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84(5):1415–1420

    CAS  PubMed  Google Scholar 

  35. Wen J, Huang YC, Xiu HH, Shan ZM, Xu KQ (2016) Altered expression of stromal interaction molecule (STIM)-calcium release-activated calcium channel protein (ORAI) and inositol 1,4,5-triosphosphate receptors (IP3Rs) in cancer: will they become a new battlefield for oncotherapy? Chin J Cancer 35:32. https://doi.org/10.1186/s40880-016-0094-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rizzuto R, Pinton P, Ferrari D, Chami M, Szabadkai G, Magalhães PJ, Di Virgilio F, Pozzan T (2003) Calcium and apoptosis: facts and hypotheses. Oncogene 22(53):8619–8627

    Article  CAS  Google Scholar 

  37. Rao GK, Zhang W, Kaminski NE (2004) Cannabinoid receptor-mediated regulation of intracellular calcium by delta(9)-tetrahydrocannabinol in resting T cells. J Leukoc Biol 75(5):884–892

    Article  CAS  Google Scholar 

  38. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4(7):552–565

    Article  CAS  Google Scholar 

  39. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814. https://doi.org/10.1021/nn1006368

    Article  CAS  PubMed  Google Scholar 

  40. Yang K, Zhang S, Zhang G, Sun X, Lee ST, Liu Z (2010) Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10(9):3318–3323. https://doi.org/10.1021/nl100996u

    Article  CAS  PubMed  Google Scholar 

  41. Feng L, Liu Z (2011) Graphene in biomedicine: opportunities and challenges. Nanomedicine 6(2):317–324. https://doi.org/10.2217/nnm.10.158

    Article  CAS  PubMed  Google Scholar 

  42. Burke E, Deasy J, Hasson R, McCormack R, Randhawa V, Walsh P (2003) Antimalarial drugs from nature. Trinity Stud Med J. https://www.tcd.ie/tsmj/2003/index2003.htm

  43. Feasey N, Wansbrough-Jones M, Mabey DC, Solomon AW (2010) Neglected tropical diseases. Br Med Bull 93:179–200. https://doi.org/10.1093/bmb/ldp046

    Article  PubMed  Google Scholar 

  44. Reithinger R, Dujardin JC, Louzir H, Pirmez C, Alexander B, Brooker S (2007) Cutaneous leishmaniasis. Lancet Infect Dis 7(9):581–596

    Article  Google Scholar 

  45. Marsh K (2010) Research priorities for malaria elimination. Lancet 376(9753):1626–1627. https://doi.org/10.1016/S0140-6736(10)61499-7

    Article  PubMed  Google Scholar 

  46. Alvar J, Croft S, Olliaro P (2006) Chemotherapy in the treatment and control of leishmaniasis. Adv Parasitol 61:223–274

    Article  Google Scholar 

  47. Phyo AP, Nkhoma S, Stepniewska K et al (2012) Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet 379(9830):1960–1966. https://doi.org/10.1016/S0140-6736(12)60484-X

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ștefan I (2015) Combination therapy—a way to forestall artemisinin resistance and optimize uncomplicated malaria treatment. J Med Life 8(3):326–328

    PubMed  PubMed Central  Google Scholar 

  49. Willcox ML, Bodeker G (2004) Traditional herbal medicines for malaria. BMJ 329(7475):1156–1159

    Article  Google Scholar 

  50. Olliaro PL, Guerin PJ, Gerstl S, Haaskjold AA, Rottingen JA, Sundar S (2005) Treatment options for visceral leishmaniasis: a systematic review of clinical studies done in India, 1980–2004. Lancet Infect Dis 5(12):763–774

    Article  Google Scholar 

  51. Petit PX, Lecoeur H, Zorn E, Dauguet C, Mignotte B, Gougeon ML (1995) Alterations in mitochondrial structure and function are early events of dexamethasone-induced thymocyte apoptosis. J Cell Biol 130(1):157–167

    Article  CAS  Google Scholar 

  52. Mizumoto N, Kumamoto T, Robson SC, Sévigny J, Matsue H, Enjyoji K, Takashima A (2002) CD39 is the dominant Langerhans cell-associated ecto-NTPDase: modulatory roles in inflammation and immune responsiveness. Nat Med 8:358

    Article  CAS  Google Scholar 

  53. Chatterjee N, Eom HJ, Choi J (2014) A systems toxicology approach to the surface functionality control of graphene-cell interactions. Biomaterials 35(4):1109–1127. https://doi.org/10.1016/j.biomaterials.2013.09.108

    Article  CAS  PubMed  Google Scholar 

  54. Zhou T, Zhang B, Wei P, Du Y, Zhou H, Yu M, Yan L, Zhang W, Nie G, Chen C, Tu Y, T (2014) WeiEnergy metabolism analysis reveals the mechanism of inhibition of breast cancer cell metastasis by PEG-modified graphene oxide nanosheets. Biomaterials 35:9833–9843

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Seema Sehrawat is the recipient of Bio-CARe Award from Ministry of Science and Technology, Department of Biotechnology, Govt. of India, and acknowledges the funding support. Shailja Singh acknowledges Department of Biotechnology, India through pilot grant BT/Med/Pilot Project Cancer/2014. The authors (NA, BL) would like to acknowledge the financial support from Department of Science and Technology (Grant No. DST/SB/S5/GC-05/2014). NY, NK, VS, SS, AS, PP and SG are financially supported by Shiv Nadar Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shailja Singh, Seema Sehrawat or Bimlesh Lochab.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2018_3458_MOESM1_ESM.docx

Supplementary material 1. Supplementary information contains structural characterization details of the compounds, cytotoxicity analysis of all the compounds in different cancer cell lines at 48 and 72 h, toxicity analysis of graphene oxide on breast cancer cell line. (DOCX 2550 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Yadav, N., Amarnath, N. et al. Integrative natural medicine inspired graphene nanovehicle-benzoxazine derivatives as potent therapy for cancer. Mol Cell Biochem 454, 123–138 (2019). https://doi.org/10.1007/s11010-018-3458-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3458-x

Keywords

Navigation