Skip to main content

Advertisement

Log in

Indian Ginseng (Withania somnifera) supplementation ameliorates oxidative stress and mitochondrial dysfunctions in experimental model of stroke

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

A Correction to this article was published on 01 June 2023

This article has been updated

Abstract

Stroke is an increasingly prevalent clinical condition and second leading cause of death globally. The present study evaluated the therapeutic potential of Indian Ginseng, also known as Withania somnifera (WS), supplementation on middle cerebral artery occlusion (MCAO) induced mitochondrial dysfunctions in experimental model of ischemic stroke. Stroke was induced in animals by occluding the middle cerebral artery, followed by reperfusion injury. Ischemia reperfusion injury resulted in increased oxidative stress indicated by increased reactive oxygen species and protein carbonyl levels; compromised antioxidant system; in terms of reduced superoxide dismutase and catalase activity, along with reduction in GSH levels and the redox ratio, impaired mitochondrial functions and enhanced expression of apoptosis markers. Ischemia reperfusion injury induced mitochondrial dysfunctions in terms of (i) reduced activity of the mitochondrial respiratory chain enzymes, (ii) reduced histochemical staining of complex-II and IV, (iii) reduced in-gel activity of mitochondrial complex-I to V, (iv) mitochondrial structural changes in terms of increased mitochondrial swelling, reduced mitochondrial membrane potential and ultrastructural changes. Additionally, an increase in the activity of caspase-3 and caspase-9 was also observed, along with altered expression of apoptotic proteins Bcl-2 and Bax in MCAO animals. MCAO animals also showed significant impairment in cognitive functions assessed using Y maze test. WS pre-supplementation, on the other hand ameliorated MCAO induced oxidative stress, mitochondrial dysfunctions, apoptosis and cognitive impairments. The results show protective effect of WS pre-supplementation in ischemic stroke and are suggestive of its potential application in stroke management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

Abbreviations

WS :

Withania somnifera

IRI:

Ischemia reperfusion injury

Bcl-2:

B-cell lymphoma 2

Bax:

Bcl-2-associated X-protein

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Ahmed ME, Javed H, Khan MM et al (2013) Attenuation of oxidative damage-associated cognitive decline by Withania somnifera in rat model of streptozotocin-induced cognitive impairment. Protoplasma 250:1067–1078

    Article  PubMed  CAS  Google Scholar 

  • Andrabi SS, Parvez S, Tabassum H (2017) Progesterone induces neuroprotection following reperfusion-promoted mitochondrial dysfunction after focal cerebral ischemia in rats. Dis Model Mech 10(6):787–796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baitharu I, Jain V, Deep SN et al (2013) Withania somnifera root extract ameliorates hypobaric hypoxia induced memory impairment in rats. J Ethnopharmacol 145:431–441

    Article  PubMed  Google Scholar 

  • Balijepalli S, Boyd MR, Ravindranath V (2000) Human brain thioltransferase: constitutive expression and localization by fluorescence in situ hybridization. Brain Res Mol Brain Res 85:123–132

    Article  PubMed  CAS  Google Scholar 

  • Bizat N, Hermel JM, Humbert S et al (2003) In vivo calpain/caspase cross-talk during 3-nitropropionic acid-induced striatal degeneration: implication of a calpain-mediated cleavage of active caspase-3. J Biol Chem 278:43245–43253

    Article  PubMed  CAS  Google Scholar 

  • Bolanos JP, Almeida A (1999) Roles of nitric oxide in brain hypoxia-ischemia. Biochim Biophys Acta 1411:415–436

    Article  PubMed  CAS  Google Scholar 

  • Brodziak A, Kolat E, Rozyk-Myrta A (2014) In search of memory tests equivalent for experiments on animals and humans. Med Sci Monit 20:2733–2739

    Article  PubMed  PubMed Central  Google Scholar 

  • Broughton BR, Reutens DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40:331–339

    Article  Google Scholar 

  • Brouillet E, Guyot MC, Mittoux V et al (1998) Partial inhibition of brain succinate dehydrogenase by 3-nitropropionic acid is sufficient to initiate striatal degeneration in rat. J Neurochem 70:794–805

    Article  PubMed  CAS  Google Scholar 

  • Coore HG, Denton RM, Martin BR, Randle PJ (1971) Regulation of adipose tissue pyruvate dehydrogenase by insulin and other hormones. Biochem J 125:115–127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonzalez-Lima F, Jones D (1994) Quantitative mapping of cytochrome oxidase activity in the central auditory system of the gerbil: a study with calibrated activity standards and metal-intensified histochemistry. Brain Res 660:34–49

    Article  PubMed  CAS  Google Scholar 

  • Griffiths DE, Houghton RL (1974) Studies on energy-linked reactions: modified mitochondrial ATPase of oligomycin-resistant mutants of Saccharomyces cerevisiae. Eur J Biochem 46:157–167

    Article  PubMed  CAS  Google Scholar 

  • Grimsrud PA, Xie H, Griffin TJ, Bernlohr DA (2008) Oxidative stress and covalent modification of protein with bioactive aldehydes. J Biol Chem 283:21837–21841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heales SJ, Bolanos JP, Stewart VC et al (1999) Nitric oxide, mitochondria and neurological disease. Biochim Biophys Acta 1410:215–228

    Article  PubMed  CAS  Google Scholar 

  • Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  PubMed  CAS  Google Scholar 

  • Jung WR, Kim HG, Kim KL (2008) Ganglioside GQ1b improves spatial learning and memory of rats as measured by the Y-maze and the morris water maze tests. Neurosci Lett 439:220–225

    Article  PubMed  CAS  Google Scholar 

  • Kalogeris T, Bao Y, Korthuis RJ (2014) Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol 2:702–714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kataria H, Wadhwa R, Kaul SC, Kaur G (2012) Water extract from the leaves of Withania somnifera protect RA differentiated C6 and IMR-32 cells against glutamate-induced excitotoxicity. PLoS One 7:1–13

    Article  CAS  Google Scholar 

  • Khan MM, Ahmad A, Ishrat T et al (2009) Rutin protects the neural damage induced by transient focal ischemia in rats. Brain Res 1292:123–135

    Article  PubMed  CAS  Google Scholar 

  • King TE, Howard RL (1967) Preparation and properties of soluble NADH dehydrogenase from cardiac muscle. Methods Enzymol 10:322–331

    Article  CAS  Google Scholar 

  • King TE, Ohnishi T, Winter DB, Wu JT (1976) Biochemical and EPR probes for structure-function studies of iron sulfur centers of succinate dehydrogenase. Adv Exp Med Biol 74:182–227

    Article  PubMed  CAS  Google Scholar 

  • Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186:189–195

    Article  PubMed  CAS  Google Scholar 

  • Kuboyama T, Tohda C, Komatsu K (2005) Neuritic regeneration and synaptic reconstruction induced by withanolide A. Br J Pharmacol 144:961–971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar P, Kumar A (2009) Possible neuroprotective effect of Withania somnifera root extract against 3-nitropropionic acid-induced behavioral, biochemical, and mitochondrial dysfunction in an animal model of Huntington's disease. J Med Food 12:591–600

    Article  PubMed  CAS  Google Scholar 

  • Kumar SH, Sharma C, Kataria A et al (2013) Role of ayurvedic herbs in child psychic healthcare- A review. IAMJ 1:1–11

    Google Scholar 

  • Kurapati KR, Atluri VS, Samikkannu T, Nair MP (2013) Ashwagandha (Withania somnifera) reverses beta-amyloid1-42 induced toxicity in human neuronal cells: implications in HIV-associated neurocognitive disorders (HAND). PLoS One 8:1–15

    Article  CAS  Google Scholar 

  • Levine RL, Garland D, Oliver CN et al (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  PubMed  CAS  Google Scholar 

  • Li P, Stetler RA, Leak RK et al (2017) Oxidative stress and DNA damage after cerebral ischemia: potential therapeutic targets to repair the genome and improve stroke recovery. Neuropharmacol. https://doi.org/10.1016/j.neuropharm.2017.11.011

  • Liu KZ, Schultz CP, Johnston JB et al (1997) Comparison of infrared spectra of CLL cells with their ex vivo sensitivity (MTT assay) to chlorambucil and cladribine. Leuk Res 21:1125–1133

    Article  PubMed  CAS  Google Scholar 

  • Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Martin LJ (2010) Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases. Pharm (Basel) 3:839–915

    Article  CAS  Google Scholar 

  • Mehrotra A, Kanwal A, Banerjee SK, Sandhir R (2015) Mitochondrial modulators in experimental Huntington's disease: reversal of mitochondrial dysfunctions and cognitive deficits. Neurobiol Aging 36:2186–2200

    Article  PubMed  CAS  Google Scholar 

  • Mehrotra A, Sandhir R (2014) Mitochondrial cofactors in experimental Huntington's disease: behavioral, biochemical and histological evaluation. Behav Brain Res 261:345–355

    Article  PubMed  CAS  Google Scholar 

  • Mohanty IR, Arya DS, Gupta SK (2008) Withania somnifera provides cardioprotection and attenuates ischemia-reperfusion induced apoptosis. Clin Nutr 27:635–642

    Article  PubMed  Google Scholar 

  • Muralikrishnan G, Amanullah S, Basha MI et al (2010) Modulating effect of Withania somnifera on TCA cycle enzymes and electron transport chain in azoxymethane-induced colon cancer in mice. Immunopharmacol Immunotoxicol 32:523–527

    Article  PubMed  Google Scholar 

  • Niizum K, Yoshioka H, Chen H et al (2010) Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta 1802:92–99

    Article  CAS  Google Scholar 

  • Oyenihi AB, Ayeleso AO, Mukwevho E, Masola B (2015) Antioxidant strategies in the management of diabetic neuropathy. Biomed Res Int 2015:515042

  • Pandey A, Bani S, Dutt P et al (2017) Multifunctional neuroprotective effect of Withanone, a compound from Withania somnifera roots in alleviating cognitive dysfunction. Cytokine pii S1043-4666(17):30333–30332

    Google Scholar 

  • Pingali U, Pilli R, Fatima N (2014) Effect of standardized aqueous extract of Withania somnifera on tests of cognitive and psychomotor performance in healthy human participants. Pharm Res 6:12–18

    Google Scholar 

  • Pizzino G, Irrera N, Cucinotta M et al (2017) Oxidative Stress: Harms and Benefits for Human Health. Oxidative Med Cell Longev 2017:8416763

  • Qian Y, Guan T, Huang M et al (2012) Neuroprotection by the soy isoflavone, genistein, via inhibition of mitochondria-dependent apoptosis pathways and reactive oxygen induced-NF-kappaB activation in a cerebral ischemia mouse model. Neurochem Int 60:759–767

    Article  PubMed  CAS  Google Scholar 

  • Raghavan A, Shah ZA (2015) Withania somnifera: a pre-clinical study on neuroregenerative therapy for stroke. Neural Regen Res 10:183–185

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren R, Shi C, Cao J et al (2016) Neuroprotective effects of standardized flavonoid extract of safflower against neurotoxin induced cellular and animal models of Parkinson’s disease. Sci Rep 6:22135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodrigo R, Fernandez-Gajardo R, Gutierrez R et al (2013) Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol Disord Drug Targets 12:698–714

    Article  PubMed  CAS  Google Scholar 

  • Rottenberg H, Hoek JB (2017) The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore. Aging Cell 16(5):943–955

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sankar SR, Manivasagam T, Krishnamurti A, Ramanathan M (2007) The neuroprotective effect of Withania somnifera root extract in MPTP-intoxicated mice: an analysis of behavioral and biochemical variables. Cell Mol Biol Lett 12:473–481

    Article  PubMed  CAS  Google Scholar 

  • Sarbishegi M, Heidari Z, Mahmoudzadeh-Sagheb H et al (2016) Neuroprotective effects of Withania coagulans root extract on CA1 hippocampus following cerebral ischemia in rats. Avicenna J Phytomed 6(4):399–409

    PubMed  PubMed Central  Google Scholar 

  • Shamas-Din A, Kale J, Leber B, Andrews DW (2013) Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb Perspect Biol 5:a008714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sood A, Kumar A, Dhawan DK, Sandhir R (2016) Propensity of withania somnifera to attenuate behavioural, biochemical, and histological alterations in experimental model of stroke. Cell Mol Neurobiol 36:1123–1138

    Article  PubMed  CAS  Google Scholar 

  • Sottocasa GL, Kuylenstierna B, Ernster L, Bergstrand A (1967) An electrontransport system associated with the outer membrane of liver mitochondria. A Biochem Morphol Study J Cell Biol 32:415–438

    CAS  Google Scholar 

  • Tedeschi H, Harris DL (1958) Some observations on the photometric estimation of mitochondrial volume. Biochim Biophys Acta 28:392–402

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1992) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Biotechnol 24:145–149

    CAS  Google Scholar 

  • Varbiro G, Veres B, Gallyas F Jr, Sumegi B (2001) Direct effect of Taxol on free radical formation and mitochondrial permeability transition. Free Radic Biol Med 31:548–558

    Article  PubMed  CAS  Google Scholar 

  • Walvekar M, Shaikh N, Sarvalkar P (2013) Effects of glycowithanolides on lipid peroxidation and lipofuscinogenesis in male reproductive organs of mice. Iran J Reprod Med 11:711–716

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616

    Article  PubMed  CAS  Google Scholar 

  • Widodo N, Priyandoko D, Shah N, Wadhwa R, Kaul SC (2010) Selective killing of cancer cells by Ashwagandha leaf extract and its component Withanone involves ROS signaling. PLoS One 5:e13536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wittig I, Schagger H (2007) Electrophoretic methods to isolate protein complexes from mitochondria. Methods Cell Biol 80:723–741

    Article  PubMed  CAS  Google Scholar 

  • Zuo L, Hemmelgarn BT, Chuang CC, Best TM (2015) The role of oxidative stress-induced epigenetic alterations in amyloid-beta production in Alzheimer's disease. Oxidative Med Cell Longev 2015:1–14

Download references

Acknowledgements

The authors acknowledge the financial assistance received from the University Grants Commission (New-Delhi) under Basic Science Research (BSR) scheme-Special Assistance Programme (SAP) and Department of Science and Technology (DST, New-Delhi) under DST-FIST Programme. Authors also acknowledge Dabur India Private Limited (Ghaziabad, India) for providing hydro-alcoholic root extract of WS for research purpose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajat Sandhir.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sood, A., Mehrotra, A., Dhawan, D.K. et al. Indian Ginseng (Withania somnifera) supplementation ameliorates oxidative stress and mitochondrial dysfunctions in experimental model of stroke. Metab Brain Dis 33, 1261–1274 (2018). https://doi.org/10.1007/s11011-018-0234-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-018-0234-2

Keywords

Navigation