Skip to main content
Log in

Slow Motion of a Porous Cylindrical Shell in a concentric cylindrical cavity

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper concerns the Slow Motion of a Porous Cylindrical Shell in a concentric cylindrical cavity using particle-in-cell method. The Brinkman’s equation in the porous region and the Stokes equation for clear fluid in their stream function formulations are used. The hydrodynamic drag force acting on each porous cylindrical particle in a cell and permeability of membrane built up by cylindrical particles with a porous shell are evaluated. Four known boundary conditions on the hypothetical surface are considered and compared: Happel’s, Kuwabara’s, Kvashnin’s and Cunningham’s (Mehta-Morse’s condition). Some previous results for hydrodynamic drag force and dimensionless hydrodynamic permeability have been verified. Variation of the drag coefficient and dimensionless hydrodynamic permeability with permeability parameter σ, particle volume fraction γ has been studied and some new results are reported. The flow patterns through the regions have been analyzed by stream lines. Effect of particle volume fraction γ and permeability parameter σ on flow pattern is also discussed. In our opinion, these results will have significant contributions in studying, Stokes flow through cylindrical swarms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ehlers W, Bluhm J (eds) (2002) Porous media, theory, experiments and numerical applications. Springer, Berlin. ISBN:3-540-43763-0

    MATH  Google Scholar 

  2. Happel J, Brenner H (1965) Low Reynolds number hydrodynamics with special applications to particulate media. Prentice-Hall, New York. Reprinted by Wolters-Nordhoff (1973); paperback edition, Martinus Nijhoff; Kluwer Academic Publishers (1983)

    Google Scholar 

  3. Uchida S (1954) Viscous flow in multiparticle systems: slow viscous flow through a mass of particles. Int Sci Technol Univ Tokyo 3:97 (in Japanese); (transl. by T. Motai) Abstract. Ind Eng Chem 46:1194–1195

    Article  Google Scholar 

  4. Brenner H (1957) Eng. Sc. D. thesis, New York University

  5. Deo S (2004) Stokes flow past a swarm of porous circular cylinder with Happel and Kuwabara boundary conditions. Sâdhana 29(4):381–387

    Article  MATH  Google Scholar 

  6. Happel J (1959) Viscous flow relative to arrays of cylinders. AIChE 5(2):174–177

    Article  Google Scholar 

  7. Kuwabara S (1959) The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds number. J Phys Soc Jpn 14:527–532

    Article  MathSciNet  ADS  Google Scholar 

  8. Kvashnin AG (1979) Cell model of suspension of spherical particles. Fluid Dyn 14:598–602

    Article  ADS  MATH  Google Scholar 

  9. Mehta GD, Morse TF (1975) Flow through charged membranes. J Chem Phys 63(5):1878–1889

    Article  ADS  Google Scholar 

  10. Filippov AN, Vasin SI, Starov VM (2006) Mathematical modeling of the hydrodynamic permeability of a membrane built up from porous particles with a permeable shell. Colloids Surf A 282–283:272–278

    Article  Google Scholar 

  11. Vasin SI, Filippov AN, Starov VM (2008) Hydrodynamic permeability of membranes built up by particles covered by porous shells: cell models. Adv Colloid Interface Sci 139:83–96

    Article  Google Scholar 

  12. Stechkina IB (1979) Drag of porous cylinders in a viscous fluid at low Reynolds numbers. Fluid Dyn 14(6):912–915

    Article  ADS  MATH  Google Scholar 

  13. Pop I, Cheng P (1992) Flow past a circular cylinder embedded in a porous medium based on the Brinkman model. Int J Eng Sci 30(2):257–262

    Article  MATH  Google Scholar 

  14. Singh MP, Gupta JL (1971) The flow of a viscous fluid past an inhomogeneous porous cylinder. Z Angew Math Mech 54:17–25

    Article  Google Scholar 

  15. Gupta JL (1980) Fluid motion past a porous circular cylinder with initial pressure gradient. J Appl Mech 47:489–492

    Article  MATH  Google Scholar 

  16. Kaplun S (1957) Low Reynolds number flow past a circular cylinder. J Math Mech 6(5):585–603

    MathSciNet  MATH  Google Scholar 

  17. Deo S (2004) Stokes flow past a swarm of porous circular cylinder with Happel and Kuwabara boundary conditions. Sâdhana 29(4):381–387

    Article  MATH  Google Scholar 

  18. Ellero M, Kroger M, Hess S (2002) Viscoelastic flows studied by smoothed particle dynamics. J Non-Newton Fluid Mech 105:35–51

    Article  MATH  Google Scholar 

  19. Kim AS, Yuan R (2005) A new model for calculating specific resistance of aggregated colloidal cake layers in membrane filtration processes. J Membr Sci 249:89–101

    Article  Google Scholar 

  20. Matthews MT, Hill JM (2006) Flow around nano spheres and nano cylinders. Q J Mech Appl Math 59(2):191–210

    Article  MathSciNet  MATH  Google Scholar 

  21. Palaniappan D, Archana K, Khan SK (1997) Two-dimensional creeping flows with permeable cylinders. Z Angew Math Mech 77(10):791–796

    Article  MathSciNet  MATH  Google Scholar 

  22. Datta S, Shukla M (2003) Drag on flow past a cylinder with slip. Bull Calcutta Math Soc 95(1):63–72

    MathSciNet  MATH  Google Scholar 

  23. Qin Y, Kaloni PN (1988) A Cartesian-tensor solution of Brinkman equation. J Eng Math 22:177–188

    Article  MathSciNet  MATH  Google Scholar 

  24. Qin Y, Kaloni PN (1993) Creeping flow past a porous spherical shell. Z Angew Math Mech 77(2):77–84

    Article  MathSciNet  Google Scholar 

  25. Roux CL (2009) Flow of fluids with pressure dependent viscosities in an orthogonal rheometer subject to slip boundary conditions. Meccanica 44:71–83

    Article  MathSciNet  MATH  Google Scholar 

  26. Lok YY, Pop I, Ingham DB (2010) Oblique stagnation slip flow of a micropolar fluid. Meccanica 45:187–198

    Article  MathSciNet  MATH  Google Scholar 

  27. Deo S, Yadav PK (2008) Stokes flow past a swarm of porous nanocylindrical particles enclosing a solid core. Int J Math Math Sci. doi:10.1155/2008/651910. Article ID 651910 (published online)

    MathSciNet  Google Scholar 

  28. Yadav PK, Deo S (2012) Stokes flow past a porous spheroid embedded in another porous medium. Meccanica 47:1499–1516

    Article  MathSciNet  Google Scholar 

  29. Prakash J, Raja Sekhar GP (2012) Arbitrary oscillatory Stokes flow past a porous sphere using Brinkman model. Meccanica 47(5):1079–1095

    Article  MathSciNet  Google Scholar 

  30. Vasin SI, Filippov AN (2009) Cell models for flows in concentrated media composed of rigid impermeable cylinders covered. Colloid J 71(2):141–155, 149–163

    Article  Google Scholar 

  31. Deo S, Yadav PK, Tiwari A (2010) Slow viscous flow through a membrane built up from porous cylindrical particles with an impermeable core. Appl Math Model 34:1329–1343

    Article  MathSciNet  MATH  Google Scholar 

  32. Deo S, Filippov AN, Tiwari A, Vasin SI, Starov VM (2011) Hydrodynamic permeability of aggregates of porous particles with an impermeable core. Adv Colloid Interface Sci 164:21–27

    Article  Google Scholar 

  33. Brinkman HC (1947) A calculation of viscous force exerted by a flowing fluid on a dense swarm of particles. J Appl Sci Res A 1:27–34

    Article  Google Scholar 

  34. Abramowitz M, Stegun IA (1970) Handbook of mathematical functions. Dover, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Kumar Yadav.

Appendix

Appendix

Happel’s cell model

Kuwabara’s cell model

Kvashnin’s cell model

Cunningham/Mehta-Morse’s cell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yadav, P.K. Slow Motion of a Porous Cylindrical Shell in a concentric cylindrical cavity. Meccanica 48, 1607–1622 (2013). https://doi.org/10.1007/s11012-012-9689-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-012-9689-0

Keywords

Navigation