Skip to main content
Log in

Geometric continuum mechanics

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Geometric Continuum Mechanics ( GCM) is a new formulation of Continuum Mechanics ( CM) based on the requirement of Geometric Naturality ( GN). According to GN, in introducing basic notions, governing principles and constitutive relations, the sole geometric entities of space-time to be involved are the metric field and the motion along the trajectory. The additional requirement that the theory should be applicable to bodies of any dimensionality, leads to the formulation of the Geometric Paradigm ( GP) stating that push-pull transformations are the natural comparison tools for material fields. This basic rule implies that rates of material tensors are Lie-derivatives and not derivatives by parallel transport. The impact of the GP on the present state of affairs in CM is decisive in resolving questions still debated in literature and in clarifying theoretical and computational issues. As a consequence, the notion of Material Frame Indifference ( MFI) is corrected to the new Constitutive Frame Invariance ( CFI) and reasons are adduced for the rejection of chain decompositions of finite elasto-plastic strains. Geometrically consistent notions of Rate Elasticity ( RE) and Rate Elasto-Visco-Plasticity ( REVP) are formulated and consistent relevant computational methods are designed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In differential geometry these are respectively denoted by low and high asterisks ; [51]. This standard notation leads however to consider too many similar stars in the geometric sky, i.e. push, pull, duality, Hodge operator.

  2. The time-function is assumed to be a projection, i.e. surjective with a surjective tangent map.

  3. An immersion is a injective map whose tangent map is injective too.

  4. The introduction of the geometric notions of connection and parallel transport can be avoided by restricting oneself to transport by translation in Euclid space.

  5. The proof is due to Fréchet, von Neumann, Jordan, see [59]. Validity of parallelogram identity is an assumption stronger than the one of validity of Pythagoras’ theorem.

  6. For bodies of maximal dimension, the VPP is a proved theorem [27].

  7. The Whitney product of tensor bundles with projection \(\boldsymbol{\pi}_{\mathbb{M},\mathbb{N}}\in \mathrm{C}^{1}(\mathbb{N};\mathbb{M}) \) and \(\boldsymbol{\pi}_{\mathbb{M},\mathbb{H}}\in \mathrm{C}^{1}(\mathbb{H};\mathbb{M}) \) over the same base manifold \(\mathbb{M}\), is the product bundle fulfilling the condition \(\mathbb{N}\times_{\mathbb{M}}\mathbb{H}:=\{(\mathbf{n},\mathbf{h})\in \mathbb{N}\times \mathbb{H}\mid \boldsymbol{\pi}_{\mathbb{M},\mathbb{N}}(\mathbf{n})= \boldsymbol{\pi}_{\mathbb{M},\mathbb{H}}(\mathbf{h})\}\) [27].

  8. CFI substitutes the notion of Material Frame Indifference stated in [54] by the equality in which the change of constitutive operator due to the change of observer is not taken into account [31].

  9. An hypo-elastic model was introduced by Truesdell in [52] with a different definition. The new formulation of rate elasticity was first contributed in [29].

References

  1. Ambrosi D et al. (2011) Perspectives on biological growth and remodeling. J Mech Phys Solids 59:863–888

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Argyris JH (1966) Continua discontinua. In: Proc conf matrix methods struct mech AFFDL-TR-66-80, Oct. 26–28, 1965, Wright-Patterson AFB Ohio

    Google Scholar 

  3. Barretta R (2012) On the relative position of twist and shear centres in the orthotropic and fiberwise homogeneous Saint-Venant beam theory. Int J Solids Struct 49:3038–3046

    Article  Google Scholar 

  4. Barretta R (2013) On Cesàro-Volterra method in orthotropic Saint-Venant beam. J Elast 112(2):233–253. doi:10.1007/s10659-013-9432-7

    Article  MATH  MathSciNet  Google Scholar 

  5. Barretta R (2013) On stress function in Saint-Venant beams. Meccanica. doi:10.1007/s11012-013-9747-2

    MathSciNet  Google Scholar 

  6. Barretta R, Barretta A (2010) Shear stresses in elastic beams: an intrinsic approach. Eur J Mech A, Solids 29:400–409

    Article  Google Scholar 

  7. Barretta R (2013) Analogies between Kirchhoff plates and Saint-Venant beams under torsion. Acta Mech. doi:10.1007/s00707-013-0912-4

    Google Scholar 

  8. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  9. Bernstein B (1960) Hypo-elasticity and elasticity. Arch Ration Mech Anal 6:90–104

    Google Scholar 

  10. Cowin CS (1996) Strain or deformation rate dependent finite growth in soft tissues. J Biomech 29:647–649

    Article  Google Scholar 

  11. Crisfield MA (1991) Non-linear finite element analysis of solids and structures, vol. 1: Essentials. Wiley, London

    Google Scholar 

  12. Crisfield MA (1996) Non-linear finite element analysis of solids and structures, vol. 2: Advanced topics. Wiley, London

    Google Scholar 

  13. De Cicco S, Diaco M (2002) A theory of thermoelastic materials with voids without energy dissipation. J Therm Stresses 25(5):493–503

    Article  Google Scholar 

  14. Epstein M (2010) The geometrical language of continuum mechanics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  15. Euler L (1761) Principia motus fluidorum. Novi Comm Acad Sci Petrop 6:271–311

    Google Scholar 

  16. Gurtin ME (1981) An introduction to continuum mechanics. Academic Press, San Diego

    MATH  Google Scholar 

  17. Humphrey JD (2003) Continuum biomechanics of soft biological tissues. Proc R Soc Lond A 459:3–46

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Lee EH (1969) Elastic-plastic deformations at finite strains. J Appl Mech 36(1):1–6

    Article  MATH  Google Scholar 

  19. Lubarda V (2004) Constitutive theories based on the multiplicative decomposition deformation gradient: thermoelasticity, elastoplasticity, and biomechanics. Appl Mech Rev 57(2):95–108

    Article  ADS  Google Scholar 

  20. Lubliner J (1990) Plasticity theory. McMillan, New York

    MATH  Google Scholar 

  21. Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Prentice Hall, Redwood City

    MATH  Google Scholar 

  22. Noll W (1958) A mathematical theory of the mechanical behavior of continuous media. Arch Ration Mech Anal 2:197–226

    Article  MATH  Google Scholar 

  23. Oden JT (2006) Finite elements of nonlinear continua. McGraw-Hill, New York. Dover, New York (1972)

    MATH  Google Scholar 

  24. Ogden RW (1997) Non-linear elastic deformations. Dover, New York

    Google Scholar 

  25. Ogden RW (2001) Elements of the theory of finite elasticity. In: Fu YB, Ogden RW (eds) Nonlinear elasticity: theory and applications. Cambridge University Press, Cambridge, pp 1–47

    Chapter  Google Scholar 

  26. Pinsky PM, Ortiz M, Pister KS (1983) Numerical integration of rate constitutive equations in finite deformation analysis. Comput Methods Appl Mech Eng 40:137–158

    Article  ADS  MATH  Google Scholar 

  27. Romano G (2007) Continuum mechanics on manifolds. Lecture notes, University of Naples Federico II, Naples, Italy, pp 1–695. http://wpage.unina.it/romano

  28. Romano G (2011) On the geometric approach to non-linear continuum mechanics. In: General lecture, XX Congress AIMETA, Bologna, Italy, 13 September. http://wpage.unina.it/romano

    Google Scholar 

  29. Romano G, Barretta R (2011) Covariant hypo-elasticity. Eur J Mech A, Solids 30(6):1012–1023

    Article  MATH  MathSciNet  Google Scholar 

  30. Romano G, Barretta R (2013) On Euler’s stretching formula in continuum mechanics. Acta Mech 224:211–230

    Article  MATH  MathSciNet  Google Scholar 

  31. Romano G, Barretta R (2013) Geometric constitutive theory and frame invariance. Int J Non-Linear Mech 51:75–86

    Article  Google Scholar 

  32. Romano G, Marotti de Sciarra F, Diaco M (1998) Hybrid variational principles for non-smooth structural problems. In: Proceedings of the international conference on nonlinear mechanics, ICNM, pp 353–359

    Google Scholar 

  33. Romano G, Rosati L, Diaco M (1999) Well-posedness of mixed formulations in elasticity. Z Angew Math Mech 79(7):435–454

    Article  MATH  MathSciNet  Google Scholar 

  34. Romano G, Marotti de Sciarra F, Diaco M (2001) Well-posedness and numerical performances of the strain gap method. Int J Numer Methods Eng 51(1):103–126

    Article  MATH  MathSciNet  Google Scholar 

  35. Romano G, Barretta R, Sellitto C (2005) On the evaluation of the elastoplastic tangent stiffness. In: Owen DRJ, Oñate E, Suarez B (eds) Computational plasticity—fundamentals and applications, part 2. CIMNE, Barcelona, pp 1118–1121

    Google Scholar 

  36. Romano G, Diaco M, Barretta R (2006) On the theory of material inhomogeneities. Mech Res Commun 33(6):758–763

    Article  MATH  MathSciNet  Google Scholar 

  37. Romano G, Barretta R, Diaco M (2007) Conservation laws for multiphase fracturing materials. In: Carpinteri A, Gambarova P, Ferro G, Plizzari G (eds) Proceedings of the 6th international conference on fracture mechanics of concrete and concrete structures—fracture mechanics of concrete and concrete structures, vol 1. Taylor & Francis, London, pp 411–418

    Google Scholar 

  38. Romano G, Sellitto C, Barretta R (2007) Nonlinear shell theory: a duality approach. J Mech Mater Struct 2(7):1207–1230

    Article  Google Scholar 

  39. Romano G, Barretta R, Barretta A (2009) On Maupertuis principle in dynamics. Rep Math Phys 63(3):331–346

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. Romano G, Barretta R, Diaco M (2009) On the general form of the law of dynamics. Int J Non-Linear Mech 44(6):689–695

    Article  Google Scholar 

  41. Romano G, Barretta R, Diaco M (2009) On continuum dynamics. J Math Phys 50:102903

    Article  ADS  MathSciNet  Google Scholar 

  42. Romano G, Barretta R, Diaco M (2010) Algorithmic tangent stiffness in elastoplasticity and elastoviscoplasticity: a geometric insight. Mech Res Commun 37(3):289–292

    Article  MATH  MathSciNet  Google Scholar 

  43. Romano G, Diaco M, Barretta R (2010) Variational formulation of the first principle of continuum thermodynamics. Contin Mech Thermodyn 22(3):177–187

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. Romano G, Barretta A, Barretta R (2012) On torsion and shear of Saint-Venant beams. Eur J Mech A, Solids 35:47–60

    Article  MathSciNet  Google Scholar 

  45. Segev R (2013) Notes on metric independent analysis of classical fields. Math Methods Appl Sci 36:497–566

    Article  MATH  MathSciNet  Google Scholar 

  46. Segev R, Rodnay G (1999) Cauchy theorem on manifold. J Elast 56(2):129–144

    MATH  MathSciNet  Google Scholar 

  47. Šilhavý M (1997) Mechanics and thermodynamics of continuous media. Springer, Berlin

    MATH  Google Scholar 

  48. Simó JC (1988) A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: continuum formulation. Comput Methods Appl Mech Eng 66:199–219

    Article  ADS  MATH  Google Scholar 

  49. Simó JC, Ortiz M (1985) A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations. Comput Methods Appl Mech Eng 49:221–245

    Article  ADS  MATH  Google Scholar 

  50. Simó JC, Pister KS (1984) Remarks on rate constitutive equations for finite deformation problems: computational implications. Comput Methods Appl Mech Eng 46:201–215

    Article  ADS  MATH  Google Scholar 

  51. Spivak M (2005) A comprehensive introduction to differential geometry, vols. I–V, 3rd edn. Publish or Perish, Houston

    Google Scholar 

  52. Truesdell C (1955) Hypo-elasticity. J Ration Mech Anal 4(83–133):1019–1020

    MathSciNet  Google Scholar 

  53. Truesdell C (1977/1991) A first course in rational continuum mechanics. Academic Press, New York

    Google Scholar 

  54. Truesdell C, Noll W (1965) The non-linear field theories of mechanics. Handbuch der physik, vol III/3. Springer, Berlin, pp 1–602

    Google Scholar 

  55. Truesdell C, Toupin RA (1960) The classical field theories. Handbuch der physik, vol III/1. Springer, Berlin, pp 226–793

    Google Scholar 

  56. Villaggio P (1997) Mathematical models for elastic structures. Cambridge University Press, Cambridge

    Book  Google Scholar 

  57. Villaggio P (2013) Crisis of mechanics literature? Meccanica. doi:10.1007/s11012-013-9722-y

    Google Scholar 

  58. Yavari A, Ozakin A (2008) Covariance in linearized elasticity. Z Angew Math Phys 59:1081–1110

    Article  MATH  MathSciNet  Google Scholar 

  59. Yosida K (1980) Functional analysis. Springer, New York

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The geometric formulation of CM has been the subject of a general lecture delivered by the first author at the AIMETA XX Congress, in Bologna, Italy, on Sept. 13, 2011. The kind invitation of the president of AIMETA and of the president of the local organizing committee is gratefully acknowledged. Useful hints and precious comments by an anonymous reviewer are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Romano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romano, G., Barretta, R. & Diaco, M. Geometric continuum mechanics. Meccanica 49, 111–133 (2014). https://doi.org/10.1007/s11012-013-9777-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-013-9777-9

Keywords

Navigation