Skip to main content

Advertisement

Log in

TRT: thermo racing tyre a physical model to predict the tyre temperature distribution

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In the paper a new physical tyre thermal model is presented. The model, called Thermo Racing Tyre (TRT) was developed in collaboration between the Department of Industrial Engineering of the University of Naples Federico II and a top ranking motorsport team.

The model is three-dimensional and takes into account all the heat flows and the generative terms occurring in a tyre. The cooling to the track and to external air and the heat flows inside the system are modelled. Regarding the generative terms, in addition to the friction energy developed in the contact patch, the strain energy loss is evaluated. The model inputs come out from telemetry data, while its thermodynamic parameters come either from literature or from dedicated experimental tests.

The model gives in output the temperature circumferential distribution in the different tyre layers (surface, bulk, inner liner), as well as all the heat flows. These information have been used also in interaction models in order to estimate local grip value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. In Figs. 3 and 4 camber values A, B, C, vertical load values FzA, FzB, FzC and inflating pressure values A, B, C are inside typical working ranges of the considered tyres. Their relative order is specified in figure captions and they are not explicited for confidentiality reasons.

Abbreviations

T :

temperature [K]

T air :

air temperature [K]

T :

air temperature at an infinite distance [K]

T r :

road surface temperature [K]

t :

time [s]

\(\alpha=\frac{k}{\rho\cdot c_{v}}\) :

thermal diffusivity; α t tyre, α r road \([\frac{\mathrm{m}^{2}}{\mathrm{s}}]\)

\(\dot{q_{G}}\) :

heat generated per unit of volume and time \([\frac{\mathrm{J}}{\mathrm{s}{\cdot}\mathrm{m}^{3}}]\)

ρ :

density \([\frac{\mathrm{kg}}{\mathrm{m}^{3}}]\)

c v :

specific heat at constant volume \([\frac{\mathrm{J}}{\mathrm{kg}{\cdot}\mathrm{K}}]\)

c p :

specific heat at constant pressure \([\frac{\mathrm{J}}{\mathrm{kg}{\cdot}\mathrm{K}}]\)

k t , k r :

tyre and road thermal conductivity \([\frac{\mathrm{W}}{\mathrm{m}{\cdot}\mathrm{K}}]\)

H c :

heat transfer coefficient \([\frac{\mathrm{W}}{\mathrm{m}^{2}{\cdot}\mathrm{K}}]\)

h :

external air natural convection coefficient \([\frac{\mathrm{W}}{\mathrm{m}^{2}{\cdot}\mathrm{K}}]\)

h forc :

external air forced convection coefficient \([\frac{\mathrm{W}}{\mathrm{m}^{2}{\cdot}\mathrm{K}}]\)

h int :

internal air natural convection coefficient \([\frac{\mathrm{W}}{\mathrm{m}^{2}{\cdot}\mathrm{K}}]\)

x, y, z :

coordinates

F x , F y :

longitudinal and lateral tyre-road interaction forces [N]

F z :

normal load acting on the single wheel [N]

v x , v y :

longitudinal and lateral slip velocity \([\frac{\mathrm{m}}{\mathrm{s}}]\)

A :

tyre-road contact area [m2]

A tot :

total area of external surface [m2]

k air :

air thermal conductivity \([\frac{\mathrm{W}}{\mathrm{m}{\cdot}\mathrm{K}}]\)

V :

air velocity \([\frac{\mathrm{m}}{\mathrm{s}}]\)

ν :

air kinematic viscosity \([\frac{\mathrm{m}^{2}}{\mathrm{s}}]\)

μ :

air dynamic viscosity [\(\frac{\mathrm{kg}}{\mathrm{s}{\cdot}\mathrm{m}}\)]

\(L= \frac{1}{\frac{1}{D_{e}} + \frac{1}{W}}\) :

characteristic length of the heat exchange surface [m]

W :

tread width [m]

La :

contact patch length [m]

De :

tyre external diameter [m]

pi :

tyre inflating pressure [bar]

g :

gravity acceleration \([\frac{\mathrm{m}}{\mathrm{s}^{2}}]\)

β :

coefficient of thermal air expansion [1/T]

\(\mathit{Gr}=\frac{\mathrm{g}\cdot\beta\cdot L^{3}\cdot(T-T_{\infty})}{\nu^{2}}\) :

Grashof number [–]

\(\mathit{Pr}= \frac{\mu\cdot c_{p}}{K_{air}}\) :

Prandtl number [–]

References

  1. Pacejka HB (2007) Tyre and vehicle dynamics. Butterworth-Heinemann, Stoneham

    Google Scholar 

  2. Capone G, Giordano D, Russo M, Terzo M, Timpone F (2008) Ph.An.Ty.M.H.A.: a physical analytical tyre model for handling analysis—the normal interaction. Veh Syst Dyn 47:15–27

    Article  Google Scholar 

  3. Castagnetti D, Dragoni E, Scirè Mammano G (2008) Elastostatic contact model of rubber-coated truck wheels loaded to the ground. Proc Inst Mech Eng, Part L 222:245–257

    Article  Google Scholar 

  4. Farroni F, Rocca E, Russo R, Savino S, Timpone F (2012) Experimental investigations about adhesion component of friction coefficient dependence on road roughness, contact pressure, slide velocity and dry/wet conditions. In: Proceedings of the 14th mini conference on vehicle system dynamics, identification and anomalies, VSDIA

    Google Scholar 

  5. Farroni F, Russo M, Russo R, Timpone F (2012) Tyre-road interaction: experimental investigations about the friction coefficient dependence on contact pressure, road roughness, slide velocity and temperature. In: Proceedings of the ASME 11th biennial conference on engineering systems design and analysis, ESDA2012

    Google Scholar 

  6. Park HC, Youn ISK, Song TS, Kim NJ (1997) Analysis of temperature distribution in a rolling tire due to strain energy dissipation. Tire Sci Technol 25:214–228

    Article  Google Scholar 

  7. Lin YJ, Hwang SJ (2004) Temperature prediction of rolling tires by computer simulation. Math Comput Simul 67:235–249

    Article  MATH  MathSciNet  Google Scholar 

  8. De Rosa R, Di Stazio F, Giordano D, Russo M, Terzo M (2008) Thermo tyre: tyre temperature distribution during handling maneuvers. Veh Syst Dyn 46:831–844. ISSN: 0042-3114

    Article  Google Scholar 

  9. Allouis C, Amoresano A, Giordano D, Russo M, Timpone F (2012) Measurement of the thermal diffusivity of a tyre compound by mean of infrared optical technique. Int Rev Mech Eng 6:1104–1108. ISSN: 1970-8734

    Google Scholar 

  10. Kreith F, Manglik RM, Bohn MS (2010) Principles of heat transfer, 6th edn. Brooks/Cole, New York

    Google Scholar 

  11. Gent AN, Walter JD (2005). The pneumatic tire. NHTSA, Washington

    Google Scholar 

  12. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  13. Agrawal R, Saxena NS, Mathew G, Thomas S, Sharma KB (2000) Effective thermal conductivity of three-phase styrene butadiene composites. J Appl Polym Sci 76:1799–1803

    Article  Google Scholar 

  14. Dashora P (1994) A study of variation of thermal conductivity of elastomers with temperature. Phys Scr 49:611–614

    Article  ADS  Google Scholar 

  15. Brancati R, Rocca E, Timpone F (2010) An experimental test rig for pneumatic tyre mechanical parameters measurement. In: Proceedings of the 12th mini conference on vehicle system dynamics, identification and anomalies, VSDIA

    Google Scholar 

  16. Giordano D (2009) Temperature prediction of high performance racing tyres. PhD thesis

  17. Brancati R, Strano S, Timpone F (2011) An analytical model of dissipated viscous and hysteretic energy due to interaction forces in a pneumatic tire: theory and experiments. Mech Syst Signal Process 25:2785–2796. ISSN: 0888-3270

    Article  ADS  Google Scholar 

  18. Chadbourn BA, Luoma JA, Newcomb DE, Voller VR (1996) Consideration of hot-mix asphalt thermal properties during compaction—quality management of hot-mix asphalt. In: ASTM STP 1299

    Google Scholar 

  19. Browne AL, Wickliffe LE (1980) Parametric study of convective heat transfer coefficients at the tire surface. Tire Sci Technol 8:37–67

    Article  Google Scholar 

  20. Fluent 6.3 user’s guide (2006) Fluent Inc, Chap 3

  21. Karniadakis GEM (1988) Numerical simulation of forced convection heat transfer from a cylinder in crossflow. Int J Heat Mass Transf 31:107–118

    Article  Google Scholar 

  22. van der Steen R (2007) Tyre/road friction modeling. PhD thesis, Eindhoven University of Technology, Department of Mechanical Engineering

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Farroni.

Appendix

Appendix

As an example, heat balance equation for node 2 along the x direction is reported, recalling that, for the performed discretization, the nodes adjacent to 2 are 6 and 58:

$$\begin{aligned} &{\frac{k_{1}}{\Delta X} \cdot ( T_{6} - T_{2} ) \cdot \Delta Y \cdot \frac{\Delta Z_{1}}{2} - \frac{k_{1}}{\Delta X} \cdot ( T_{2} - T_{58} ) \cdot \Delta Y} \\ &{\quad{}\cdot \frac{\Delta Z_{1}}{2} = m_{2} \cdot c_{v 1} \cdot \frac{\Delta T_{2}}{ \Delta t}} \end{aligned}$$
(25)

Substituting the expression of the mass (2) (reminding that in this case C=1/2) leads to the equation:

$$ \frac{\Delta T_{2}}{\Delta t} = \frac{1}{\rho\cdot c_{v 1}} \cdot \biggl[ \frac{k_{1}}{\Delta X^{2}} \cdot T_{6} - \frac{2 \cdot k_{1}}{\Delta X^{2}} \cdot T_{2} + \frac{k_{1}}{\Delta X^{2}} \cdot T_{58} \biggr] $$
(26)

Taking into account the exchanges along all directions and all the possible heat generations, the equation of node 2 can be written:

• in the case of contact with the road

$$\begin{aligned} &\dot{Q}_{SEL} + \frac{k_{1}}{\Delta X} \cdot ( T_{6} - T_{2} ) \cdot \Delta Y\cdot \frac {\Delta Z_{1}}{2} - \frac{k_{1}}{\Delta X} \\ &\quad{} \cdot ( T_{2} - T_{58} ) \cdot \Delta Y\cdot \frac{\Delta Z_{1}}{2} + \frac{k_{1}}{\Delta Y} \cdot ( T_{1} - T_{2} ) \cdot \Delta X \\ &\quad{}\cdot \frac{\Delta Z_{1}}{2} - \frac{k_{1}}{\Delta Y} \cdot ( T_{2} - T_{3} ) \cdot \Delta X\cdot \frac{\Delta Z_{1}}{2} + \frac{k_{1}}{\Delta Z_{1}} \\ &\quad{} \cdot ( T_{62} - T_{2} ) \cdot \Delta X\cdot \Delta Y + CR\cdot \frac{F_{x} \cdot v_{x} + F_{y} \cdot v_{y}}{A} \\ &\quad{} \cdot \Delta X\cdot \Delta Y + H_{c} \cdot ( T_{r} - T_{2} ) \\ &\quad{} \cdot \Delta X\cdot \Delta Y = m_{2} \cdot c_{v 1} \cdot \frac{\Delta T_{2}}{\Delta t} \end{aligned}$$
(A)

• in the case of contact with external air

$$\begin{aligned} &\dot{Q}_{SEL} + \frac{k_{1}}{\Delta X} \cdot ( T_{6} - T_{2} ) \cdot \Delta Y\cdot \frac {\Delta Z_{1}}{2} - \frac{k_{1}}{\Delta X} \\ &\quad{} \cdot ( T_{2} - T_{58} ) \cdot \Delta Y\cdot \frac{\Delta Z_{1}}{2} + \frac{k_{1}}{\Delta Y} \cdot ( T_{1} - T_{2} ) \cdot \Delta X \\ &\quad{}\cdot \frac{\Delta Z_{1}}{2} - \frac{k_{1}}{\Delta Y} \cdot ( T_{2} - T_{3} )\cdot \Delta X\cdot \frac{\Delta Z_{1}}{2} + \frac{k_{1}}{\Delta Z_{1}} \\ &\quad{}\cdot ( T_{62} - T_{2} ) \cdot \Delta X\cdot \Delta Y + h_{forc} \cdot ( T_{air} - T_{2} ) \\ &\quad{} \cdot \Delta X\cdot \Delta Y = m_{2} \cdot c_{v 1} \cdot \frac {\Delta T_{2}}{\Delta t} \end{aligned}$$
(B)

having denoted by \(\dot{Q}_{SEL}\) the power dissipated by cyclic deformation.

Once developed, the two expressions lead respectively to:

• in the case of contact with the road

$$\begin{aligned} \frac{\Delta T_{2}}{\Delta t} =& \frac{1}{\rho\cdot c_{v 1}} \cdot \biggl[ \frac{2 \cdot \dot{Q}_{SEL}}{ \Delta X \cdot \Delta Y \cdot \Delta Z_{1}} \\ &{} + \biggl( - \frac{2 \cdot k_{1}}{\Delta X^{2}} - \frac{2 \cdot k_{1}}{\Delta Y^{2}} - \frac{2 \cdot k_{1}}{\Delta Z_{1}^{2}} - \frac{2 \cdot H_{c}}{\Delta Z_{1}} \biggr) \\ &{}\cdot T_{2} + \frac{k_{1}}{\Delta Y^{2}} \cdot T_{1} + \frac{k_{1}}{\Delta Y^{2}} \cdot T_{3} + \frac{k_{1}}{\Delta X^{2}} \cdot T_{6} \\ &{}+ \frac{k_{1}}{ \Delta X^{2}} \cdot T_{58} + \frac{2 \cdot k_{1}}{\Delta Z_{1}^{2}} \cdot T_{62} \\ &{} + \frac{2 \cdot FP}{\Delta Z_{1}} + \frac{2 \cdot H_{c}}{ \Delta Z_{1}} \cdot T_{r} \biggr] \end{aligned}$$
(27)

• in the case of contact with external air

$$\begin{aligned} \frac{\Delta T_{2}}{\Delta t} =& \frac{1}{\rho\cdot c_{v 1}} \cdot \biggl[ \frac{2 \cdot \dot{Q}_{SEL}}{ \Delta X\cdot \Delta Y\cdot \Delta Z_{1}} \\ &{}+\biggl( - \frac{2 \cdot k_{1}}{\Delta X^{2}} - \frac{2 \cdot k_{1}}{\Delta Y^{2}} - \frac{2 \cdot k_{1}}{\Delta Z_{1}^{2}} - \frac{2 \cdot h_{forc}}{\Delta Z_{1}} \biggr) \\ &{}\cdot T_{2} + \frac{k_{1}}{\Delta Y^{2}} \cdot T_{1} + \frac{k_{1}}{\Delta Y^{2}} \cdot T_{3} + \frac{k_{1}}{\Delta X^{2}} \cdot T_{6} \\ &{} + \frac{k_{1}}{ \Delta X^{2}} \cdot T_{58} + \frac{2 \cdot k_{1}}{\Delta Z_{1}^{2}} \cdot T_{62} \\ &{} + \frac{2 \cdot h_{forc}}{\Delta Z_{1}} \cdot T_{air} \biggr] \end{aligned}$$
(28)

The equations showed for node 2 are valid for all the nodes belonging to the surface layer, localized internally in lateral direction.

For a node still belonging to the surface layer, but external in lateral direction (C=1/4), for example node 1, the complete equations are:

• in the case of contact with the road

$$\begin{aligned} &\dot{Q}_{SEL} + \frac{k_{1}}{\Delta X} \cdot ( T_{5} - T_{1} ) \cdot \frac{\Delta Y}{2} \cdot \frac{\Delta Z_{1}}{2} - \frac{k_{1}}{\Delta X} \\ &\quad{} \cdot ( T_{1} - T_{57} ) \cdot \frac{\Delta Y}{2} \cdot \frac{\Delta Z_{1}}{2} + \frac{k_{1}}{ \Delta Y} \cdot ( T_{2} - T_{1} ) \cdot\Delta X \\ &\quad{}\cdot \frac{\Delta Z_{1}}{2} + \frac {k_{1}}{\Delta Z_{1}} \cdot ( T_{61} - T_{1} ) \cdot \Delta X\cdot \frac{\Delta Y}{2} + CR \\ &\quad{}\cdot \frac{F_{x} \cdot v_{x} + F_{y} \cdot v_{y}}{A} \cdot \Delta X \cdot \frac{\Delta Y}{2} + H_{c} \cdot ( T_{r} - T_{1} ) \\ &\quad{} \cdot \Delta X\cdot \frac{\Delta Y}{2} = m_{1} \cdot c_{v 1} \cdot \frac {\Delta T_{1}}{\Delta t} \end{aligned}$$
(C)

• in the case of contact with external air

$$\begin{aligned} &\dot{Q}_{SEL} + \frac{k_{1}}{\Delta X} \cdot ( T_{5} - T_{1} ) \cdot \frac{\Delta Y}{2} \cdot \frac{\Delta Z_{1}}{2} - \frac{k_{1}}{\Delta X} \\ &\quad{} \cdot ( T_{1} - T_{57} ) \cdot \frac{\Delta Y}{2} \cdot \frac{\Delta Z_{1}}{2} + \frac{k_{1}}{ \Delta Y} \cdot ( T_{2} - T_{1} ) \cdot\Delta X \\ &\quad{} \cdot \frac{\Delta Z_{1}}{2} + \frac{k_{1}}{\Delta Z_{1}} \cdot ( T_{61} - T_{1} ) \cdot \Delta X \cdot \frac{\Delta Y}{2} + h_{forc} \\ &\quad{} \cdot ( T_{air} - T_{1} ) \cdot\Delta X \cdot \frac{\Delta Y}{2} = m_{1} \cdot c_{v 1} \cdot \frac{\Delta T_{1}}{ \Delta t} \end{aligned}$$
(D)

leading, respectively, to:

• for the first case

$$\begin{aligned} \frac{\Delta T_{1}}{\Delta t} =& \frac{1}{\rho\cdot c_{v 1}} \cdot \biggl[ \frac{4 \cdot \dot{Q}_{SEL}}{ \Delta X \cdot \Delta Y \cdot \Delta Z_{1}} \\ &{} + \biggl( - \frac{2 \cdot k_{1}}{\Delta X^{2}} - \frac{2 \cdot k_{1}}{\Delta Y^{2}} - \frac{2 \cdot k_{1}}{\Delta Z_{1}^{2}} - \frac{2 \cdot H_{c}}{\Delta Z_{1}} \biggr) \cdot T_{1} \\ &{}+ \frac{2 \cdot k_{1}}{ \Delta Y^{2}} \cdot T_{2} + \frac{k_{1}}{\Delta X^{2}} \cdot T_{5} + \frac{k_{1}}{\Delta X^{2}} \cdot T_{57} \\ &{} + \frac{2 \cdot k_{1}}{\Delta Z_{1}^{2}} \cdot T_{61} + \frac{2 \cdot FP}{\Delta Z_{1}} + \frac{2 \cdot H_{c}}{\Delta Z_{1}} \cdot T_{r} \biggr] \end{aligned}$$
(29)

• for the second case

$$\begin{aligned} \frac{\Delta T_{1}}{\Delta t} =& \frac{1}{\rho\cdot c_{v 1}} \cdot \biggl[ \frac{4 \cdot \dot{Q}_{SEL}}{ \Delta X\cdot \Delta Y\cdot \Delta Z_{1}} \\ &{}+ \biggl( - \frac{2 \cdot k_{1}}{\Delta X^{2}} - \frac{2 \cdot k_{1}}{\Delta Y^{2}} - \frac{2 \cdot k_{1}}{\Delta Z_{1}^{2}} - \frac{2 \cdot h_{forz}}{\Delta Z_{1}} \biggr) \\ &{} \cdot T_{1} + \frac{2 \cdot k_{1}}{ \Delta Y^{2}} \cdot T_{2} + \frac{k_{1}}{\Delta X^{2}} \cdot T_{5} + \frac{k_{1}}{\Delta X^{2}} \\ &{}\cdot T_{57} + \frac{2 \cdot k_{1}}{\Delta Z_{1}^{2}} \cdot T_{61} + \frac{2 \cdot h_{forc}}{\Delta Z_{1}} \cdot T_{air} \biggr] \end{aligned}$$
(30)

The equation relating to the bulk layer, for an internal node in the lateral direction (C=1), e.g. node 62, is:

$$\begin{aligned} &\dot{Q}_{SEL} + \frac{k_{2}}{\Delta X} \cdot ( T_{66} - T_{62} ) \cdot \Delta Y \cdot \biggl( \frac{\Delta Z_{1}}{2} + \frac{\Delta Z_{2}}{2} \biggr) \\ &\quad{} - \frac {k_{2}}{\Delta X} \cdot ( T_{62} - T_{118} ) \cdot \Delta Y \cdot \biggl( \frac{\Delta Z_{1}}{2} + \frac{\Delta Z_{2}}{2} \biggr) \\ &\quad{} + \frac{k_{2}}{\Delta Y} \cdot ( T_{61} - T_{62} ) \cdot \Delta X \cdot \biggl( \frac{\Delta Z_{1}}{2} + \frac {\Delta Z_{2}}{2} \biggr) \\ &\quad{} - \frac{k_{2}}{\Delta Y} \cdot ( T_{62} - T_{63} ) \cdot \Delta X \cdot \biggl( \frac{\Delta Z_{1}}{2} + \frac{\Delta Z_{2}}{2} \biggr) \\ &\quad{} + \frac{k_{2}}{\Delta Z_{2}} \cdot ( T_{122} - T_{62} ) \cdot \Delta X \cdot \Delta Y - \frac{k_{1}}{\Delta Z_{1}} \\ &\quad{}\cdot ( T_{62} - T_{2} ) \cdot \Delta X \cdot \Delta Y = m_{62} \cdot c_{v 2} \cdot \frac{\Delta T_{62}}{ \Delta t} \end{aligned}$$
(E)

Such expression, suitably developed, leads to:

$$\begin{aligned} \frac{\Delta T_{62}}{\Delta t} =& \frac{1}{\rho\cdot c_{v 2}} \cdot \biggl[ \frac{\dot{Q}_{SEL}}{\Delta X\cdot \Delta Y\cdot ( \frac{\Delta Z_{1}}{2} + \frac{\Delta Z_{2}}{2} )} \\ &{} + \biggl( - \frac{2 \cdot k_{2}}{\Delta X^{2}} - \frac{2 \cdot k_{2}}{\Delta Y^{2}} - \frac{k_{2}}{\Delta Z_{2} \cdot ( \frac{\Delta Z_{1}}{2} + \frac{\Delta Z_{2}}{2} )} \\ &{} - \frac{k_{1}}{\Delta Z_{1} \cdot ( \frac{\Delta Z_{1}}{2} + \frac{\Delta Z_{2}}{2} )} \biggr) \cdot T_{62} + \frac{k_{2}}{\Delta Y^{2}} \cdot T_{61} \\ &{}+ \frac{k_{2}}{ \Delta Y^{2}} \cdot T_{63} + \frac{k_{2}}{\Delta X^{2}} \cdot T_{66} + \frac{k_{2}}{\Delta X^{2}} \cdot T_{118} \\ &{}+ \frac{k_{2}}{\Delta Z_{2} \cdot ( \frac {\Delta Z_{1}}{2} + \frac{\Delta Z_{2}}{2} )} \cdot T_{122} \\ &{}+\frac{k_{1}}{\Delta Z_{1} \cdot ( \frac{\Delta Z_{1}}{2} + \frac{\Delta Z_{2}}{2} )} \cdot T_{2} \biggr] \end{aligned}$$
(31)

Similarly, relatively to a bulk external node in the transverse direction (C=1/2), it results:

$$\begin{aligned} &\dot{Q}_{SEL} + \frac{k_{2}}{\Delta X} \cdot ( T_{65} - T_{61} ) \cdot \frac{\Delta Y}{2} \cdot \biggl( \frac{\Delta Z_{1}}{2} + \frac{\Delta Z_{2}}{ 2} \biggr) \\ &\quad{} - \frac{k_{2}}{\Delta X} \cdot ( T_{61} - T_{117} ) \cdot \frac{\Delta Y}{2} \cdot \biggl( \frac{\Delta Z_{1}}{2} + \frac{\Delta Z_{2}}{2} \biggr) \\ &\quad{} + \frac{k_{2}}{\Delta Y} \cdot ( T_{62} - T_{61} ) \cdot \Delta X\cdot \biggl( \frac {\Delta Z_{1}}{2} + \frac{\Delta Z_{2}}{2} \biggr) \\ &\quad{} + \frac{k_{2}}{ \Delta Z_{2}} \cdot ( T_{121} - T_{61} ) \cdot \Delta X\cdot \frac{\Delta Y}{2} - \frac {k_{1}}{\Delta Z_{1}} \\ &\quad{} \cdot ( T_{61} - T_{1} ) \cdot \Delta X\cdot \frac{\Delta Y}{2} = m_{61} \cdot c_{v 2} \cdot \frac{\Delta T_{61}}{\Delta t} \end{aligned}$$
(F)

that becomes:

$$\begin{aligned} \frac{\Delta T_{61}}{\Delta t} =& \frac{1}{\rho\cdot c_{v 2}} \cdot \biggl[ \frac{2 \cdot \dot{Q}_{SEL}}{ \Delta X\cdot \Delta Y\cdot ( \frac{\Delta Z_{1}}{2} + \frac{\Delta Z_{2}}{2} )} \\ &{} + \biggl( - \frac{2 \cdot k_{2}}{\Delta X^{2}} - \frac{2 \cdot k_{2}}{\Delta Y^{2}} - \frac{k_{2}}{\Delta Z_{2} \cdot ( \frac{\Delta Z_{1}}{2} + \frac{\Delta Z_{2}}{2} )} \\ &{}- \frac{k_{1}}{\Delta Z_{1} \cdot ( \frac{\Delta Z_{1}}{2} + \frac{\Delta Z_{2}}{2} )} \biggr) \cdot T_{61} + \frac{2 \cdot k_{2}}{\Delta Y^{2}} \cdot T_{62} \\ &{} + \frac{k_{2}}{\Delta X^{2}} \cdot T_{65} + \frac{k_{2}}{ \Delta X^{2}} \cdot T_{117} \\ &{}+ \frac{k_{2}}{\Delta Z_{2} \cdot ( \frac{\Delta Z_{1}}{2} + \frac{\Delta Z_{2}}{2} )} \cdot T_{121} \\ &{}+ \frac{k_{1}}{\Delta Z_{1} \cdot ( \frac{\Delta Z_{1}}{2} + \frac{\Delta Z_{2}}{2} )} \cdot T_{1} \biggr] \end{aligned}$$
(32)

As concerns the innermost layer, the inner liner, the equation of exchange for an internal node in the transverse direction (C=1/2), e.g. 122, is:

$$\begin{aligned} &\dot{Q}_{SEL} + \frac{k_{2}}{\Delta X} \cdot ( T_{126} - T_{122} ) \cdot \Delta Y \cdot \frac{\Delta Z_{2}}{2} - \frac{k_{2}}{\Delta X} \\ &\quad{}\cdot ( T_{122} - T_{158} ) \cdot \Delta Y \cdot \frac{\Delta Z_{2}}{2} + \frac{k_{2}}{\Delta Y} \\ &\quad{} \cdot ( T_{121} - T_{122} ) \cdot \Delta X \cdot \frac{\Delta Z_{2}}{2} - \frac{k_{2}}{\Delta Y} \\ &\quad{} \cdot ( T_{122} - T_{123} ) \cdot \Delta X \cdot \frac{\Delta Z_{2}}{2} + \frac{k_{2}}{ \Delta Z_{2}} \\ &\quad{} \cdot ( T_{62} - T_{122} ) \cdot \Delta X \cdot \Delta Y + h_{int} \cdot ( T_{air \_ int} - T_{122} ) \\ &\quad{}\cdot\Delta X \cdot \Delta Y = m_{122} \cdot c_{v 2} \cdot \frac{\Delta T_{122}}{\Delta t} \end{aligned}$$
(G)

that simplified returns:

$$\begin{aligned} \frac{\Delta T_{122}}{\Delta t} =& \frac{1}{\rho\cdot c_{v2}} \cdot \biggl[ \frac{2 \cdot \dot{Q}_{SEL}}{ \Delta X \cdot \Delta Y \cdot \Delta Z_{2}} \\ &{}+ \biggl( - \frac{2 \cdot k_{2}}{\Delta X^{2}} - \frac{2 \cdot k_{2}}{\Delta Y^{2}} - \frac{2 \cdot k_{2}}{\Delta Z_{2}^{2}} - \frac{2 \cdot h_{int}}{\Delta Z_{2}} \biggr) \\ &{}\cdot T_{122} + \frac{k_{2}}{\Delta Y^{2}} \cdot T_{121} + \frac{k_{2}}{\Delta Y^{2}} \cdot T_{123} \\ &{}+ \frac{k_{2}}{\Delta X^{2}} \cdot T_{126} + \frac{k_{2}}{\Delta X^{2}} \cdot T_{158} + \frac{2 \cdot k_{2}}{\Delta Z_{2}^{2}} \\ &{}\cdot T_{62} + \frac{2 \cdot h_{int}}{\Delta Z_{2}} \cdot T_{air\_int} \biggr] \end{aligned}$$
(33)

Finally, for an external node in the transverse direction belonging to the Inner liner (C=1/4), it is:

$$\begin{aligned} &\dot{Q}_{SEL} + \frac{k_{2}}{\Delta X} \cdot ( T_{125} - T_{121} ) \cdot \frac{\Delta Y}{2} \cdot \frac{\Delta Z_{2}}{2} - \frac{k_{2}}{\Delta X} \\ &\qquad{} \cdot ( T_{121} - T_{157} ) \cdot \frac{\Delta Y}{2} \cdot \frac{\Delta Z_{2}}{2} + \frac {k_{2}}{\Delta Y} \\ &\qquad{} \cdot ( T_{122} - T_{121} ) \cdot \Delta X \cdot \frac{\Delta Z_{2}}{2} + \frac{k_{2}}{\Delta Z_{2}} \\ &\qquad{}\cdot ( T_{61} - T_{121} ) \cdot \Delta X \cdot \frac{\Delta Y}{ 2} \\ &\qquad{} + h_{int}\cdot ( T_{air\_int} - T_{121} ) \cdot \Delta X \cdot \frac{\Delta Y}{2} \\ &\quad{} = m_{121} \cdot c_{v2} \cdot \frac{\Delta T_{121}}{\Delta t} \end{aligned}$$
(H)

which, simplified, provides:

$$\begin{aligned} \frac{\Delta T_{121}}{\Delta t} =& \frac{1}{\rho\cdot c_{v2}} \cdot \biggl[ \frac{4 \cdot \dot{Q}_{SEL}}{ \Delta X \cdot \Delta Y \cdot \Delta Z_{2}} \\ &{}+ \biggl( - \frac{2 \cdot k_{2}}{\Delta X^{2}} - \frac{2 \cdot k_{2}}{\Delta Y^{2}} - \frac{2 \cdot k_{2}}{\Delta Z_{2}^{2}} - \frac{2 \cdot h_{int}}{\Delta Z_{2}} \biggr) \\ &{} \cdot T_{121} + \frac{2 \cdot k_{2}}{\Delta Y^{2}} \cdot T_{122} + \frac{k_{2}}{\Delta X^{2}} \cdot T_{125} \\ &{} + \frac{k_{2}}{\Delta X^{2}} \cdot T_{157} + \frac{2 \cdot k_{2}}{\Delta Z_{2}^{2}} \cdot T_{61} \\ &{}+ \frac{2 \cdot h_{int}}{ \Delta Z_{2}} \cdot T_{air\_int} \biggr] \end{aligned}$$
(34)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farroni, F., Giordano, D., Russo, M. et al. TRT: thermo racing tyre a physical model to predict the tyre temperature distribution. Meccanica 49, 707–723 (2014). https://doi.org/10.1007/s11012-013-9821-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-013-9821-9

Keywords

Navigation