Skip to main content
Log in

Analysis for the thermoelastic bending of a functionally graded material cylindrical shell

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

An analytic study for thermoelastic bending of a functionally graded material (FGM) cylindrical shell subjected to a uniform transverse mechanical load and non-uniform thermal loads is presented. Based on the classical linear shell theory, the equations with the radial deflection and horizontal displacement are derived out. An arbitrary material property of the FGM cylindrical shell is assumed to vary through the thickness of the cylindrical shell, and exact solution of the problem is obtained by using an analytic method. For the FGM cylindrical shell with fixed and simply supported boundary conditions, the effects of mechanical load, thermal load and the power law exponent on the deformation of the FGM cylindrical shell are analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ng TY, Lam KY, Liew KM, Reddy JN (2001) Dynamic stability analysis of functionally graded cylindrical shells under periodic axial loading. Int J Solids Struct 38:1295–1309

    Article  MATH  Google Scholar 

  2. Sofiyev AH, Aksogan O (2004) Bucking of a conical thin shell with variable thickness under a dynamic loading. J Sound Vib 270:903–915

    Article  MATH  ADS  Google Scholar 

  3. Sofiyev AH (2010) Dynamic response of an FGM cylindrical shell under moving loads. Compos Struct 93:58–66

    Article  Google Scholar 

  4. Zhu JQ, Chen CQ, Shen YP, Wang SL (2005) Dynamic stability of functionally graded piezoelectric circular cylindrical shells. Mater Lett 59:477–485

    Article  Google Scholar 

  5. Cao ZY, Wang HN (2007) Free vibration of FGM cylindrical shells with holes under various boundary conditions. J Sound Vib 306:227–237

    Article  Google Scholar 

  6. Hasheminejad SM, Rajabi M (2008) Effect of FGM core on dynamic response of a buried sandwich cylindrical shell in poroelastic soil to harmonic body waves. Int J Press Vessels Piping 85:762–771

    Article  Google Scholar 

  7. Matsunaga H (2009) Free vibration and stability of functionally graded circular cylindrical shells according to a 2D higher-order deformation theory. Compos Struct 88:519–531

    Article  Google Scholar 

  8. Sheng GG, Wang X (2009) Studies on dynamic behavior of functionally graded cylindrical shells with PZT layers under moving loads. J Sound Vib 323:772–789

    Article  ADS  Google Scholar 

  9. Pradhan SC, Loy CJ, Lam KY, Reddy JN (2010) Vibration characteristics of functionally graded cylindrical shells under various boundary conditions. Appl Acoust 61:111–129

    Article  Google Scholar 

  10. Vel SS (2010) Exact elasticity solution for the vibration of functionally graded anisotropic cylindrical shells. Compos Struct 92:2712–2727

    Article  Google Scholar 

  11. Huang HW, Han Q, Wei DM (2011) Buckling of FGM cylindrical shells subjected to pure bending load. Compos Struct 93:2945–2952

    Article  Google Scholar 

  12. Dai HL, Dai T, Zheng HY (2012) Stresses distributions in a rotating functionally graded piezoelectric hollow cylinder. Meccanica 47:423–436

    Article  MathSciNet  Google Scholar 

  13. Asemi K, Akhlaghi M, Salehi M (2012) Dynamic analysis of thick short length FGM cylinders. Meccanica 47:1441–1453

    Article  MathSciNet  Google Scholar 

  14. Najafov AM, Sofiyev AH, Kuruoglu N (2013) Torsional vibration and stability of functionally graded orthotropic cylindrical shells on elastic foundations. Meccanica 48:829–840

    Article  MathSciNet  Google Scholar 

  15. Tornabene F, Viola E (2013) Static analysis of functionally graded doubly-curved shells and panels of revolution. Meccanica 48:901–930

    Article  MathSciNet  Google Scholar 

  16. Jabbari M, Sohrabpour S, Eslami MR (2002) Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads. Int J Press Vessels Piping 79:493–497

    Article  Google Scholar 

  17. Jabbari M, Mohazzab AH, Bahtui A, Eslami MR (2007) Analytical solution for three-dimensional stresses in a short length FGM hollow cylinder. Z Angew Math Mech 87:413–429

    Article  MATH  MathSciNet  Google Scholar 

  18. Jabbari M, Bahtui A, Eslami MR (2009) Axisymmetric mechanical and thermal stresses in thick short length FGM cylinders. Int J Press Vessels Piping 86:296–306

    Article  Google Scholar 

  19. Haddadpour H, Mahmoudkhani S, Navazi HM (2007) Free vibration analysis of functionally graded cylindrical shells including thermal effects. Thin-Walled Struct 45:591–599

    Article  Google Scholar 

  20. Azadi M, Shariyat M (2010) Nonlinear transient transfinite element thermal analysis of thick-walled FGM cylinders with temperature-dependent material properties. Meccanica 45:305–318

    Article  MATH  MathSciNet  Google Scholar 

  21. Dai HL, Zheng HY (2011) Buckling and post-buckling analyses for an axially compressed laminated cylindrical shell of FGM with PFRC in thermal environments. Eur J Mech A, Solids 30:913–923

    Article  MATH  MathSciNet  Google Scholar 

  22. Sladek J, Sladek V, Solek P, Wen PH, Atluri SN (2008) Thermal analysis of Reissner-Mindlin shallow shells with FGM properties by the MLPG. Comput Model Eng Sci 30:77–97

    Google Scholar 

  23. Hosseini SM, Sladek J, Sladek V (2011) Meshless Petrov-Galerkin method for coupled thermoelasticity analysis of a functionally graded thick hollow cylinder. Eng Anal Bound Elem 35:827–835

    Article  MATH  MathSciNet  Google Scholar 

  24. Hosseini SM, Shahabian F, Sladek J, Sladek V (2011) Stochastic meshless local Petrov-Galerkin method for thermo-elastic wave propagation analysis in functionally graded thick hollow cylinders. Comput Model Eng Sci 71:39–66

    MATH  MathSciNet  Google Scholar 

  25. Shen HS (2004) Thermal postbuckling behavior of functionally graded cylindrical shells with temperature-dependent properties. Int J Solids Struct 41:1961–1974

    Article  MATH  Google Scholar 

  26. Shen HS (2007) Thermal postbuckling of shear deformable FGM cylindrical shells with temperature-dependent properties. Mech Adv Mat Struct 14:439–452

    Article  Google Scholar 

  27. Shen HS, Noda N (2007) Postbuckling of pressure-loaded FGM hybrid cylindrical shells in thermal environments. Compos Struct 77:546–560

    Article  Google Scholar 

  28. Shen HS (2009) Torsional buckling and postbuckling of FGM cylindrical shells in thermal environments. Int J Non-Linear Mech 44:644–657

    Article  MATH  Google Scholar 

  29. Shen HS (2011) Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, part I: axially-loaded shells. Compos Struct 93:2096–2108

    Article  Google Scholar 

  30. Shen HS (2011) Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, part II: pressure-loaded shells. Compos Struct 93:2496–2503

    Article  Google Scholar 

  31. Shen HS (2012) Nonlinear vibration of shear deformable FGM cylindrical shells surrounded by an elastic medium. Compos Struct 94:1144–1154

    Article  Google Scholar 

  32. Shen HS, Xiang Y (2012) Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments. Comput Methods Appl Mech Eng 213–216:196–205

    Article  MathSciNet  Google Scholar 

  33. Wu LH, Jiang ZQ, Liu J (2005) Thermoelastic stability of functionally graded cylindrical shells. Compos Struct 70:60–68

    Article  Google Scholar 

  34. Pelletier JL, Vel SS (2006) An exact solution for the steady-state thermoelastic response of functionally graded orthotropic cylindrical shells. Int J Solids Struct 43:1131–1158

    Article  MATH  Google Scholar 

  35. Zhang JH, Li SR, Ma LS (2008) Exact solution of thermoelastic bending for functionally graded truncated conical shells. Chin J Theor Appl Mech 40(2):185–193 (In Chinese)

    Google Scholar 

  36. Shariyat M (2008) Dynamic buckling of suddenly loaded imperfect hybrid FGM cylindrical shells with temperature-dependent material properties under thermo-electro-mechanical loads. Int J Mech Sci 50:1561–1571

    Article  Google Scholar 

  37. Shariyat M (2008) Dynamic thermal buckling of suddenly heated temperature-dependent FGM cylindrical shells, under combined axial compression and external pressure. Int J Solids Struct 45:2598–2612

    Article  MATH  Google Scholar 

  38. Santos H, Mota Soares CM, Mota Soares CA, Reddy JN (2008) A semi-analytical finite element model for the analysis of cylindrical shells made of functionally graded materials under thermal shock. Compos Struct 86:10–21

    Article  Google Scholar 

  39. Zhao X, Liew KM (2009) Geometrically nonlinear analysis of functionally graded shells. Int J Mech Sci 51:131–144

    Article  MATH  Google Scholar 

  40. Liew KM, Zhao X, Lee YY (2012) Postbuckling responses of functionally graded cylindrical shells under axial compression and thermal loads. Composites, Part B, Eng 43:1621–1630

    Article  Google Scholar 

  41. Sheng GG, Wang X (2010) Dynamic characteristics of fluid-conveying functionally graded cylindrical shells under mechanical and thermal loads. Compos Struct 93:162–170

    Article  Google Scholar 

  42. Sheng GG, Wang X (2013) An analytical study of the non-linear vibrations of functionally graded cylindrical shells subjected to thermal and axial loads. Compos Struct 97:261–268

    Article  Google Scholar 

  43. Huang HW, Han Q (2010) Nonlinear buckling of torsion-loaded functionally graded cylindrical shells in thermal environment. Eur J Mech A, Solids 29:42–48

    Article  MathSciNet  Google Scholar 

  44. Alibeigloo A (2011) Thermoelastic solution for static deformations of functionally graded cylindrical shell bonded to thin piezoelectric layers. Compos Struct 93:961–972

    Article  Google Scholar 

  45. Malekzadeh P, Heydarpour Y (2012) Free vibration analysis of rotating functionally graded cylindrical shells in thermal environment. Compos Struct 94:2971–2981

    Article  Google Scholar 

  46. Malekzadeh P, Heydarpour Y (2012) Response of functionally graded cylindrical shells under moving thermo-mechanical loads. Thin-Walled Struct 58:51–66

    Article  Google Scholar 

  47. Malekzadeh P, Heydarpour Y, Golbahar Haghighi MR, Vaghefi M (2012) Transient response of rotating laminated functionally graded cylindrical shells in thermal environment. Int J Press Vessels Piping 98:43–56

    Article  Google Scholar 

  48. Ma LS, Wang TJ (2003) Nonlinear bending and postbuckling of a functionally graded circular plate under mechanical thermal loadings. Int J Solids Struct 40(13–14):3311–3330

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank reviewers for their valuable comments and the research is supported by the National Natural Science Foundation of China (11372105), New Century Excellent Talents Program in University (NCET-13-0184), Key Laboratory of Manufacture and Test Techniques for Automobile Parts, Ministry of Education (2012), Hunan Provincial Natural Science Foundation for Creative Research Groups of China (12JJ7001), and the central colleges of basic scientific research and operational costs (funded by the Hunan University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Liang Dai.

Appendix

Appendix

$$\begin{aligned} &{\begin{array}{l} A_{10} = \varTheta_{10} + \varTheta_{12}, \qquad B_{10} = \varTheta_{11} + \varTheta_{13}, \\ \varGamma_{1}^{*} = \varGamma_{1} + \frac{1}{a}\varGamma_{2},\qquad A_{20} = \varTheta_{10},\\ B_{20} = \varTheta_{11},\qquad A_{30} = - a\varTheta_{12} - \varTheta_{13},\\ B_{30} = - a\varTheta_{13} - \varTheta_{14},\qquad \varGamma_{2}^{*} = - \varGamma_{2} - \frac{1}{a}\varGamma_{3}\end{array}} \end{aligned}$$
(A.1)
$$\begin{aligned} &{\varTheta_{10} = \int_{ - h/2}^{h/2} \frac{E_{2}}{1 - v^{2}} \biggl(1 + (E_{r} - 1) \biggl(\frac{h - 2z}{2h} \biggr)^{n} \biggr)\mathrm{d}z} \\ &{\varTheta_{11} = \int_{ - h/2}^{h/2} \frac{E_{2}}{1 - v^{2}} \biggl(1 + (E_{r} - 1) \biggl(\frac{h - 2z}{2h} \biggr)^{n} \biggr)z\mathrm{d}z} \\ &{\varTheta_{12} = \frac{1}{a}\int_{ - h/2}^{h/2} \frac{E_{2}}{1 - v^{2}} \biggl(1 + (E_{r} - 1) \biggl(\frac{h - 2z}{2h} \biggr)^{n} \biggr)} \\ &{\hphantom{\varTheta_{12} =} {}\times z\mathrm{d}z} \\ &{\varTheta_{13} = \frac{1}{a}\int_{ - h/2}^{h/2} \frac{E_{2}}{1 - v^{2}} \biggl(1 + (E_{r} - 1) \biggl(\frac{h - 2z}{2h} \biggr)^{n} \biggr)} \\ &{\hphantom{\varTheta_{13} =} {}\times z^{2}\mathrm{d}z} \\ &{\varTheta_{14} = \frac{1}{a}\int_{ - h/2}^{h/2} \frac{E_{2}}{1 - v^{2}} \biggl(1 + (E_{r} - 1) \biggl(\frac{h - 2z}{2h} \biggr)^{n} \biggr)} \\ &{\hphantom{\varTheta_{14} =} {}\times z^{3}\mathrm{d}z} \end{aligned}$$
(A.2)
$$\begin{aligned} &{\varGamma_{1} = \int_{ - h/2}^{h/2} \frac{E(z)}{1 - v}\alpha (z)T(z)\mathrm{d}z = \varDelta _{10} + \varDelta _{11} + \varDelta _{12}} \\ &{\hphantom{\varGamma_{1} =} {} + \varDelta _{13} + \varDelta _{14} + \varDelta _{15}} \\ &{\varGamma_{2} = \int_{ - h/2}^{h/2} \frac{E(z)}{1 - v}\alpha (z)T(z)z\mathrm{d}z = \varDelta _{20} + \varDelta _{21} + \varDelta _{22}} \\ &{\hphantom{\varGamma_{2} =} {} + \varDelta _{23} + \varDelta _{24} + \varDelta _{25}} \\ &{\varGamma_{3} = \int_{ - h/2}^{h/2} \frac{E_{2}\alpha_{1}T_{1}}{1 - v}\alpha_{r}z^{2}\mathrm{d}z = \varDelta _{30} + \varDelta _{31} + \varDelta _{32}} \\ &{\hphantom{\varGamma_{3} =} {} + \varDelta _{33} + \varDelta _{34} + \varDelta _{35}} \end{aligned}$$
(A.3)
$$\begin{aligned} &{\varDelta _{10} = \int_{ - h/2}^{h/2} \frac{E_{2}\alpha_{1}T_{1}}{1 - v}\alpha_{r}\mathrm{d}z,} \\ &{\varDelta _{11} = \int_{ - h/2}^{h/2} \frac{E_{2}\alpha_{1}T_{1}}{1 - v}(1 - 2 \alpha_{r} + \alpha_{r}E_{r}) \biggl( \frac{h - 2x}{2h}\biggr)^{n}\mathrm{d}x} \\ &{\varDelta _{12} = \int_{ - h/2}^{h/2} \frac{E_{2}\alpha_{1}T_{1}}{1 - v}(1 - \alpha_{r}) (E_{r} - 1) \biggl( \frac{h - 2z}{2h}\biggr)^{2n}\mathrm{d}z} \\ &{\varDelta _{13} = \int_{ - h/2}^{h/2} \frac{E_{2}\alpha_{1}T_{1}}{1 - v}(T_{r} - 1)\alpha_{r}\frac{\varPsi_{a}}{\varPsi_{b}} \mathrm{d}z} \\ &{\varDelta _{14} = \int_{ - h/2}^{h/2} \frac{E_{2}\alpha_{1}T_{1}}{1 - v}(T_{r} - 1) (1 - 2\alpha_{r}} \\ &{\hphantom{\varDelta _{14} =} {} + \alpha_{r}E_{r}) \biggl(\frac{h - 2z}{2h} \biggr)^{n}\frac{\varPsi_{a}}{\varPsi_{b}}\mathrm{d}z} \\ &{\varDelta _{15} = \int_{ - h/2}^{h/2} \frac{E_{2}\alpha_{1}T_{1}}{1 - v}(T_{r} - 1) (1 - \alpha_{r})} \\ &{\hphantom{\varDelta _{15} =} {}\times (E_{r} - 1) \biggl(\frac{h - 2z}{2h}\biggr)^{2n} \frac{\varPsi_{a}}{\varPsi_{b}}\mathrm{d}z} \\ &{\varDelta _{20} = \int_{ - h/2}^{h/2} \frac{E_{2}\alpha_{1}T_{1}}{1 - v}\alpha_{r}z\mathrm{d}z} \\ &{\varDelta _{21} = \int_{ - h/2}^{h/2} \frac{E_{2}\alpha_{1}T_{1}}{1 - v}(1 - 2\alpha_{r}} \\ &{\hphantom{\varDelta _{21} =} {} + \alpha_{r}E_{r}) \biggl(\frac{h - 2z}{2h}\biggr)^{n}z\mathrm{d}z} \\ &{\varDelta _{22} = \int_{ - h/2}^{h/2} \frac{E_{2}\alpha_{1}T_{1}}{1 - v}(1 - \alpha_{r})} \\ &{\hphantom{\varDelta _{22} =} {}\times (E_{r} - 1) \biggl( \frac{h - 2x}{2h}\biggr)^{2n}x\mathrm{d}x} \\ &{\varDelta _{23} = \int_{ - h/2}^{h/2} \frac{E_{2}\alpha_{1}T_{1}}{1 - v}(T_{r} - 1)\alpha_{r}\frac{\varPsi_{a}}{\varPsi_{b}}z \mathrm{d}z} \end{aligned}$$
(A.4)
$$\begin{aligned} &{\varDelta _{24} = \int_{ - h/2}^{h/2} \frac{E_{2}\alpha_{1}T_{1}}{1 - v}(T_{r} - 1) (1 - 2\alpha_{r} + \alpha_{r}E_{r})} \\ &{\hphantom{\varDelta _{24} =} {}\times \biggl(\frac{h - 2z}{2h} \biggr)^{n}\frac{\varPsi_{a}}{\varPsi_{b}}z\mathrm{d}z} \\ &{\varDelta _{25} = \int_{ - h/2}^{h/2} \frac{E_{2}\alpha_{1}T_{1}}{1 - v}(T_{r} - 1) (1 - \alpha_{r}) (E_{r} - 1)} \\ &{\hphantom{\varDelta _{25} =} {}\times \biggl(\frac{h - 2z}{2h}\biggr)^{2n} \frac{\varPsi_{a}}{\varPsi_{b}}z\mathrm{d}z} \\ &{\varDelta _{31} = \int_{ - h/2}^{h/2} \frac{E_{2}\alpha_{1}T_{1}}{1 - v}(1 - 2\alpha_{r}} \\ &{\hphantom{\varDelta _{31} =} {} + \alpha_{r}E_{r}) \biggl(\frac{h - 2x}{2h}\biggr)^{n}z^{2}\mathrm{d}z} \\ &{\varDelta _{32} = \int_{ - h/2}^{h/2} \frac{E_{2}\alpha_{1}T_{1}}{1 - v}(1 - \alpha_{r})} \\ &{\hphantom{\varDelta _{32} =} {}\times (E_{r} - 1) \biggl( \frac{h - 2x}{2h}\biggr)^{2n}z^{2}\mathrm{d}z} \\ &{\varDelta _{33} = \int_{ - h/2}^{h/2} \frac{E_{2}\alpha_{1}T_{1}}{1 - v}(T_{r} - 1)\alpha_{r}\frac{\varPsi_{a}}{\varPsi_{b}}z^{2} \mathrm{d}z} \\ &{\varDelta _{34} = \int_{ - h/2}^{h/2} \frac{E_{2}\alpha_{1}T_{1}}{1 - v}(T_{r} - 1) (1 - 2\alpha_{r} + \alpha_{r}E_{r})} \\ &{\hphantom{\varDelta _{34} =} {}\times \biggl(\frac{h - 2z}{2h} \biggr)^{n}\frac{\varPsi_{a}}{\varPsi_{b}}z^{2}\mathrm{d}z} \\ &{\varDelta _{35} = \int_{ - h/2}^{h/2} \frac{E_{2}\alpha_{1}T_{1}}{1 - v}(T_{r} - 1) (1 - \alpha_{r}) (E_{r} - 1)} \\ &{\hphantom{\varDelta _{35} =} {}\times \biggl(\frac{h - 2x}{2h}\biggr)^{2n} \frac{\varPsi_{a}}{\varPsi_{b}}z^{2}\mathrm{d}z} \\ &{\alpha_{r} = \frac{\alpha_{2}}{\alpha_{1}},\qquad E_{r} = \frac{E_{1}}{E_{2}},\qquad K_{r} = \frac{K_{1}}{K_{2}}} \end{aligned}$$
(A.5)
$$\begin{aligned} &{\begin{array}{l} \varPsi_{a} = \displaystyle\int_{ - h/2}^{z} \frac{1}{1 + (K_{r} - 1)(\frac{h - 2z}{2h})^{n}}\mathrm{d}z,\\ \varPsi_{b} = \int _{ - h/2}^{h/2} \frac{1}{1 + (K_{r} - 1)(\frac{h - 2z}{2h})^{n}}\mathrm{d}z \end{array}} \end{aligned}$$
(A.6)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, HL., Dai, T. Analysis for the thermoelastic bending of a functionally graded material cylindrical shell. Meccanica 49, 1069–1081 (2014). https://doi.org/10.1007/s11012-013-9853-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-013-9853-1

Keywords

Navigation