Skip to main content
Log in

Rotordynamics analysis of a double-helical gear transmission system

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The rotordynamics of a double-helical gear transmission system is investigated. The equation of motion of the system with bearing and gyroscopic effect is derived by using the finite element method, in which Timoshenko beam finite element is used to represent the shaft, a rigid mass for the gear. Natural frequencies, mode shapes and Campbell diagrams are illustrated to indicate the effects of gear input speed and time varying mesh stiffness. Besides, effects of mesh stiffness on the critical speed of the gear transmission system are analyzed. The numerical results show that the axial force has significant influence on the natural frequency and the mode shape of the double-helical gear transmission system, for which the mix whirling motion dominates the natural characteristics. There are two higher critical speed curves which increase with the mesh stiffness, but one of them is related to the gyroscopic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kang MR, Kahraman A (2012) Measurement of vibratory motions of gears supported by compliant shafts. Mech Syst Signal Process 29:391–403

    Article  ADS  Google Scholar 

  2. Ericson TM, Parker RG (2013) Planetary gear modal vibration experiments and correlation against lumped-parameter and finite element models. J Sound Vib 332:2350–2375

    Article  ADS  Google Scholar 

  3. Kahraman A, Singh R (1990) Routes to chaos in a geared system with backlash. J Acoust Soc Am 88:S195–S195

    Article  ADS  Google Scholar 

  4. Kahraman A, Singh R (1990) Non-linear dynamics of a spur gear pair. J Sound Vib 142:49–75

    Article  ADS  Google Scholar 

  5. Li S, Wu Q, Zhang Z (2014) Bifurcation and chaos analysis of multistage planetary gear train. Nonlinear Dynam 75:217–233

    Article  MathSciNet  Google Scholar 

  6. Chen S, Tang J, Wu L (2014) Dynamics analysis of a crowned gear transmission system with impact damping: Based on experimental transmission error. Mech Mach Theory 74:354–369

    Article  Google Scholar 

  7. Hortel M, Škuderová A (2014) Nonlinear time heteronymous damping in nonlinear parametric planetary systems. Acta Mech 225:1–15

    Article  MathSciNet  Google Scholar 

  8. Lu J-W, Chen H, Zeng F-L, Vakakis A, Bergman L (2014) Influence of system parameters on dynamic behavior of gear pair with stochastic backlash. Meccanica 49:429–440

    Article  MATH  MathSciNet  Google Scholar 

  9. Sánchez M, Pleguezuelos M, Pedrero J (2014) Tooth-root stress calculation of high transverse contact ratio spur and helical gears. Meccanica 49:347–364

    Article  MATH  Google Scholar 

  10. Chouksey M, Dutt JK, Modak SV (2012) Modal analysis of rotor-shaft system under the influence of rotor-shaft material damping and fluid film forces. Mech Mach Theory 48:81–93

    Article  Google Scholar 

  11. Lund JW (1978) Critical Speeds, Stability and Response of a Geared Train of Rotors. J Mech Des 100:535–538

    Article  Google Scholar 

  12. Iida H, Tamura A, Kikuchi K, Agata H (1980) Coupled torsional-flexural vibration of a shaft in a geared system of rotors: 1st report. Bull JSME 23:2111–2117

    Article  Google Scholar 

  13. Kahraman A (1994) Planetary gear train dynamics. J Mech Des 116:713–720

    Article  Google Scholar 

  14. Kahraman A, Ozguven HN, Houser DR, Zakrajsek JJ (1992) Dynamic analysis of geared rotors by finite elements. J Mech Des 114:507–514

    Article  Google Scholar 

  15. Baud S, Velex P (2002) Static and dynamic tooth loading in spur and helical geared systems-experiments and model validation. J Mech Des 124:334–346

    Article  Google Scholar 

  16. Baguet S, Velex P (2005) Influence of the nonlinear dynamic behavior of journal bearings on gear-bearing assemblies. Proc ASME Int Des Eng Tech Conf Comput Inf Eng Conf 5:735–745

    Google Scholar 

  17. Baguet S, Jacquenot G (2010) Nonlinear couplings in a gear-shaft-bearing system. Mech Mach Theory 45:1777–1796

    Article  MATH  Google Scholar 

  18. Kang CH, Hsu WC, Lee EK, Shiau TN (2011) Dynamic analysis of gear-rotor system with viscoelastic supports under residual shaft bow effect. Mech Mach Theory 46:264–275

    Article  MATH  Google Scholar 

  19. Ajmi M, Velex P (2001) A model for simulating the quasi-static and dynamic behavior of double helical gears. In: MPT… Fukuoka: the JSME international conference on motion and power transmissions, p 132–137

  20. Sondkar P, Kahraman A (2013) A dynamic model of a double-helical planetary gear set. Mech Mach Theory 70:157–174

    Article  Google Scholar 

  21. Liu C, Qin D, Liao Y (2014) Dynamic model of variable speed process for herringbone gears including friction calculated by variable friction coefficient. J Mech Des 136:041006

    Article  Google Scholar 

  22. Muszynska A (2005) Rotordynamics. Taylor & Francis, Boca Raton

    Book  MATH  Google Scholar 

  23. Ishida Y, Yamamoto T (2012) Linear and nonlinear rotordynamics. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  24. Shiau TN, Hwang JL (1993) Generalized polynomial expansion method for the dynamic analysis of rotor-bearing systems. J Eng Gas Turbines Power 115:209–217

    Article  Google Scholar 

  25. Rao JS, Shiau TN, Chang JR (1998) Theoretical analysis of lateral response due to torsional excitation of geared rotors. Mech Mach Theory 33:761–783

    Article  MATH  Google Scholar 

  26. Nelson H (1980) A finite rotating shaft element using Timoshenko beam theory. J Mech Des 102:793–803

    Article  Google Scholar 

  27. Harnoy A (2002) Bearing design in machinery: engineering tribology and lubrication. CRC Press, New York

    Book  Google Scholar 

  28. Friswell MI (2010) Dynamics of rotating machines. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  29. Feng S, Geng H, Yu L (2014) Rotordynamics analysis of a quill-shaft coupling-rotor-bearing system. Proc Inst Mech Eng, Part C: J Mech Eng Sci. doi:10.1177/0954406214543673

  30. Swanson E, Powell CD, Weissman S (2005) A practical review of rotating machinery critical speeds and modes. Sound Vib 39:16–17

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the National Science Foundation of China (NSFC) through Grants Nos. 51305462 and 51275530.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyu Chen.

Appendices

Appendix 1

Mass and stiffness matrices for the shaft beam element are listed as follows:

1.1 Mass matrix \( {\mathbf{M}}^{e} \)

The mass matrix consists of three parts, which can be represented as

$$ {\mathbf{M}}^{e} = {\mathbf{M}}_{T}^{e} + {\mathbf{M}}_{R}^{e} + {\mathbf{M}}_{\theta}^{e} $$
(39)
  1. 1.

    Translational mass matrix \( {\mathbf{M}}_{T}^{e} \)

    $$ {\mathbf{M}}_{T}^{e} = {\mathbf{M}}_{T1}^{e} + \phi {\mathbf{M}}_{T2}^{e} + \phi^{2} {\mathbf{M}}_{T3}^{e} $$
    (40)

    Here,

    $$ {\mathbf{M}}_{T1}^{e} = m^{T} \left({\begin{array}{*{20}c} {312} & 0 & 0 & 0 & {44L} & 0 & {108} & 0 & 0 & 0 & {- 26L} & 0 \\ 0 & {312} & 0 & {- 44L} & 0 & 0 & 0 & {108} & 0 & {26L} & 0 & 0 \\ 0 & 0 & {280} & 0 & 0 & 0 & 0 & 0 & {140} & 0 & 0 & 0 \\ 0 & {- 44L} & 0 & {8L^{2}} & 0 & 0 & 0 & {- 26L} & 0 & {- 6L^{2}} & 0 & 0 \\ {44L} & 0 & 0 & 0 & {8L^{2}} & 0 & {26L} & 0 & 0 & 0 & {- 6L^{2}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ {108} & 0 & 0 & 0 & {26L} & 0 & {312} & 0 & 0 & 0 & {- 44L} & 0 \\ 0 & {108} & 0 & {- 26L} & 0 & 0 & 0 & {312} & 0 & {44L} & 0 & 0 \\ 0 & 0 & {140} & 0 & 0 & 0 & 0 & 0 & {280} & 0 & 0 & 0 \\ 0 & {26{\mkern 1mu} L} & 0 & {- 6L^{2}} & 0 & 0 & 0 & {44L} & 0 & {8L^{2}} & 0 & 0 \\ {- 26L} & 0 & 0 & 0 & {- 6L^{2}} & 0 & {- 44L} & 0 & 0 & 0 & {8L^{2}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array}} \right) $$
    (41)
    $$ \frac{{{\mathbf{M}}_{T2}^{e}}}{{m^{T}}} = \left({\begin{array}{*{20}c} {588} & 0 & 0 & 0 & {77L} & 0 & {252} & 0 & 0 & 0 & {- 63L} & 0 \\ 0 & {588} & 0 & {- 77L} & 0 & 0 & 0 & {252} & 0 & {63L} & 0 & 0 \\ 0 & 0 & {560} & 0 & 0 & 0 & 0 & 0 & {280} & 0 & 0 & 0 \\ 0 & {- 77L} & 0 & {14L^{2}} & 0 & 0 & 0 & {- 63L} & 0 & {- 14L^{2}} & 0 & 0 \\ {77L} & 0 & 0 & 0 & {14L^{2}} & 0 & {63L} & 0 & 0 & 0 & {- 14L^{2}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ {252} & 0 & 0 & 0 & {63L} & 0 & {588} & 0 & 0 & 0 & {- 77L} & 0 \\ 0 & {252} & 0 & {- 63L} & 0 & 0 & 0 & {588} & 0 & {77L} & 0 & 0 \\ 0 & 0 & {280} & 0 & 0 & 0 & 0 & 0 & {560} & 0 & 0 & 0 \\ 0 & {63L} & 0 & {- 14L^{2}} & 0 & 0 & 0 & {77L} & 0 & {14L^{2}} & 0 & 0 \\ {- 63L} & 0 & 0 & 0 & {- 14L^{2}} & 0 & {- 77L} & 0 & 0 & 0 & {14L^{2}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array}} \right) $$
    (42)
    $$ {\mathbf{M}}_{T3}^{e} = m^{T} \left({\begin{array}{*{20}c} {280} & 0 & 0 & 0 & {35L} & 0 & {140} & 0 & 0 & 0 & {- 35L} & 0 \\ 0 & {280} & 0 & {- 35L} & 0 & 0 & 0 & {140} & 0 & {35{\mkern 1mu} L} & 0 & 0 \\ 0 & 0 & {280} & 0 & 0 & 0 & 0 & 0 & {140} & 0 & 0 & 0 \\ 0 & {- 35L} & 0 & {7L^{2}} & 0 & 0 & 0 & {- 35L} & 0 & {- 7{\mkern 1mu} L^{2}} & 0 & 0 \\ {35L} & 0 & 0 & 0 & {7L^{2}} & 0 & {35L} & 0 & 0 & 0 & {- 7L^{2}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ {140} & 0 & 0 & 0 & {35L} & 0 & {280} & 0 & 0 & 0 & {- 35L} & 0 \\ 0 & {140} & 0 & {- 35L} & 0 & 0 & 0 & {280} & 0 & {35L} & 0 & 0 \\ 0 & 0 & {140} & 0 & 0 & 0 & 0 & 0 & {280} & 0 & 0 & 0 \\ 0 & {35L} & 0 & {- 7L^{2}} & 0 & 0 & 0 & {35L} & 0 & {7L^{2}} & 0 & 0 \\ {- 35L} & 0 & 0 & 0 & {- 7L^{2}} & 0 & {- 35L} & 0 & 0 & 0 & {7L^{2}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array}} \right) $$
    (43)

    and

    $$ m^{T} = \frac{\rho AL}{{840\left({1 + \phi} \right)^{2}}} $$
    (44)
  2. 2.

    Rotational mass matrix \( {\mathbf{M}}_{R}^{e} \)

    $$ {\mathbf{M}}_{R}^{e} = {\mathbf{M}}_{R1}^{e} + \phi {\mathbf{M}}_{R2}^{e} + \phi^{2} {\mathbf{M}}_{R3}^{e} $$
    (45)

    Here,

    $$ {\mathbf{M}}_{R1}^{e} = m^{R} \left({\begin{array}{*{20}c} {36} & 0 & 0 & 0 & {3L} & 0 & {- 36} & 0 & 0 & 0 & {3L} & 0 \\ 0 & {36} & 0 & {- 3L} & 0 & 0 & 0 & {- 36} & 0 & {- 3L} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & {- 3L} & 0 & {4L^{2}} & 0 & 0 & 0 & {3L} & 0 & {- L^{2}} & 0 & 0 \\ {3L} & 0 & 0 & 0 & {4L^{2}} & 0 & {- 3L} & 0 & 0 & 0 & {- L^{2}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ {- 36} & 0 & 0 & 0 & {- 3L} & 0 & {36} & 0 & 0 & 0 & {- 3L} & 0 \\ 0 & {- 36} & 0 & {3L} & 0 & 0 & 0 & {36} & 0 & {3L} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & {- 3L} & 0 & {- L^{2}} & 0 & 0 & 0 & {3L} & 0 & {4L^{2}} & 0 & 0 \\ {3L} & 0 & 0 & 0 & {- L^{2}} & 0 & {- 3L} & 0 & 0 & 0 & {4L^{2}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array}} \right) $$
    (46)
    $$ {\mathbf{M}}_{R2}^{e} = m^{R} \left({\begin{array}{*{20}c} 0 & 0 & 0 & 0 & {- 15L} & 0 & 0 & 0 & 0 & 0 & {- 15L} & 0 \\ 0 & 0 & 0 & {15L} & 0 & 0 & 0 & 0 & 0 & {15L} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & {15L} & 0 & {5L^{2}} & 0 & 0 & 0 & {- 15L} & 0 & {- 5L^{2}} & 0 & 0 \\ {- 15L} & 0 & 0 & 0 & {5L^{2}} & 0 & {15L} & 0 & 0 & 0 & {- 5L^{2}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {15L} & 0 & 0 & 0 & 0 & 0 & {15L} & 0 \\ 0 & 0 & 0 & {- 15L} & 0 & 0 & 0 & 0 & 0 & {- 15L} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & {15L} & 0 & {- 5L^{2}} & 0 & 0 & 0 & {- 15L} & 0 & {5L^{2}} & 0 & 0 \\ {- 15L} & 0 & 0 & 0 & {- 5L^{2}} & 0 & {15L} & 0 & 0 & 0 & {5L^{2}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array}} \right) $$
    (47)
    $$ {\mathbf{M}}_{R3}^{e} = m^{R} \left({\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & {10L^{2}} & 0 & 0 & 0 & 0 & 0 & {5L^{2}} & 0 & 0 \\ 0 & 0 & 0 & 0 & {10L^{2}} & 0 & 0 & 0 & 0 & 0 & {5L^{2}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & {5L^{2}} & 0 & 0 & 0 & 0 & 0 & {10L^{2}} & 0 & 0 \\ 0 & 0 & 0 & 0 & {5L^{2}} & 0 & 0 & 0 & 0 & 0 & {10L^{2}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array}} \right) $$
    (48)

    where

    $$ m^{R} = \frac{{\rho I_{ds}}}{{30L\left({1 + \phi} \right)^{2}}} $$
    (49)
  3. 3.

    Torsional mass matrix \( {\mathbf{M}}_{R}^{e} \)

    $$ {\mathbf{M}}_{R}^{e} = \frac{{\rho I_{pe} l}}{6}\left({\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 2 \\ \end{array}} \right) $$
    (50)

1.2 Gyroscopic matrix \( {\mathbf{G}}^{e} \)

$$ \begin{aligned} G & = & \frac{1}{2}\int_{0}^{l} {\rho I_{ps} \dot{\theta}_{z} \left({\theta_{x} \dot{\theta}_{y} - \theta_{y} \dot{\theta}_{x}} \right)ds} + \frac{1}{2}\int_{0}^{l} {\rho I_{ps} \varOmega_{i} \left({\theta_{x} \dot{\theta}_{y} - \theta_{y} \dot{\theta}_{x}} \right)ds} \\ & = & \frac{1}{2}\rho I_{ps} \varOmega_{i} \int_{0}^{l} {\left({q^{T} N_{b1}^{T} N_{b2} \dot{q} - q^{T} N_{b2}^{T} N_{b1} \dot{q}} \right)ds} \\ \end{aligned} $$
(51)
$$ {\mathbf{G}}^{e} = {\mathbf{G}}_{1}^{e} + \phi {\mathbf{G}}_{2}^{e} + \phi^{2} {\mathbf{G}}_{3}^{e} $$
(52)
$$ {\mathbf{G}}_{1}^{e} = m^{R} \left({\begin{array}{*{20}c} 0 & {36} & 0 & {- 3L} & 0 & 0 & 0 & {- 36} & 0 & {- 3L} & 0 & 0 \\ {- 36} & 0 & 0 & 0 & {- 3L} & 0 & {36} & 0 & 0 & 0 & {- 3L} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ {3L} & 0 & 0 & 0 & {4L^{2}} & 0 & {- 3L} & 0 & 0 & 0 & {- L^{2}} & 0 \\ 0 & {3L} & 0 & {- 4L^{2}} & 0 & 0 & 0 & {- 3L} & 0 & {L^{2}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & {- 36} & 0 & {3L} & 0 & 0 & 0 & {36} & 0 & {3L} & 0 & 0 \\ {36} & 0 & 0 & 0 & {3L} & 0 & {- 36} & 0 & 0 & 0 & {3L} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ {3L} & 0 & 0 & 0 & {- L^{2}} & 0 & {- 3L} & 0 & 0 & 0 & {4{\mkern 1mu} L^{2}} & 0 \\ 0 & {3L} & 0 & {L^{2}} & 0 & 0 & 0 & {- 3L} & 0 & {- 4L^{2}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array}} \right) $$
(53)
$$ {\mathbf{G}}_{2}^{e} = m^{R} \left({\begin{array}{*{20}c} 0 & 0 & 0 & {15L} & 0 & 0 & 0 & 0 & 0 & {15L} & 0 & 0 \\ 0 & 0 & 0 & 0 & {15L} & 0 & 0 & 0 & 0 & 0 & {15L} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ {- 15L} & 0 & 0 & 0 & {5L^{2}} & 0 & {15L} & 0 & 0 & 0 & {- 5L^{2}} & 0 \\ 0 & {- 15L} & 0 & {- 5L^{2}} & 0 & 0 & 0 & {15L} & 0 & {5L^{2}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & {- 15L} & 0 & 0 & 0 & 0 & 0 & {- 15L} & 0 & 0 \\ 0 & 0 & 0 & 0 & {- 15L} & 0 & 0 & 0 & 0 & 0 & {- 15L} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ {- 15L} & 0 & 0 & 0 & {- 5L^{2}} & 0 & {15L} & 0 & 0 & 0 & {5L^{2}} & 0 \\ 0 & {- 15L} & 0 & {5L^{2}} & 0 & 0 & 0 & {15L} & 0 & {- 5L^{2}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array}} \right) $$
(54)
$$ {\mathbf{G}}_{3}^{e} = m^{R} \left({\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {10L^{2}} & 0 & 0 & 0 & 0 & 0 & {5L^{2}} & 0 \\ 0 & 0 & 0 & {- 10L^{2}} & 0 & 0 & 0 & 0 & 0 & {- 5L^{2}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {5L^{2}} & 0 & 0 & 0 & 0 & 0 & {10L^{2}} & 0 \\ 0 & 0 & 0 & {- 5L^{2}} & 0 & 0 & 0 & 0 & 0 & {- 10L^{2}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array}} \right) $$
(55)

1.3 Stiffness matrix

The stiffness matrix of the beam element is written as

$$ {\mathbf{K}}^{e} = {\mathbf{K}}_{0}^{e} + \phi {\mathbf{K}}_{1}^{e} + {\mathbf{K}}_{2}^{e}, $$
(56)

where

$$ {\mathbf{K}}_{0}^{e} = k_{s} \left({\begin{array}{*{20}c} {12} & 0 & 0 & 0 & {6L} & 0 & {- 12} & 0 & 0 & 0 & {6L} & 0 \\ 0 & {12} & 0 & {- 6L} & 0 & 0 & 0 & {- 12} & 0 & {- 6L} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & {- 6L} & 0 & {4L^{2}} & 0 & 0 & 0 & {6L} & 0 & {2L^{2}} & 0 & 0 \\ {6L} & 0 & 0 & 0 & {4L^{2}} & 0 & {- 6L} & 0 & 0 & 0 & {2L^{2}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ {- 12} & 0 & 0 & 0 & {- 6L} & 0 & {12} & 0 & 0 & 0 & {- 6L} & 0 \\ 0 & {- 12} & 0 & {6L} & 0 & 0 & 0 & {12} & 0 & {6L} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & {- 6L} & 0 & {2L^{2}} & 0 & 0 & 0 & {6L} & 0 & {4L^{2}} & 0 & 0 \\ {6L} & 0 & 0 & 0 & {2L^{2}} & 0 & {- 6L} & 0 & 0 & 0 & {4L^{2}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array}} \right), $$
(57)
$$ {\mathbf{K}}_{1}^{e} = k_{s} \left({\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & {L^{2}} & 0 & 0 & 0 & 0 & 0 & {- L^{2}} & 0 & 0 \\ 0 & 0 & 0 & 0 & {L^{2}} & 0 & 0 & 0 & 0 & 0 & {- L^{2}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & {- L^{2}} & 0 & 0 & 0 & 0 & 0 & {L^{2}} & 0 & 0 \\ 0 & 0 & 0 & 0 & {- L^{2}} & 0 & 0 & 0 & 0 & 0 & {L^{2}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array}} \right), $$
(58)

and

$$ k_{s} = \frac{EI}{{L^{3} \left({1 + \phi} \right)}} $$
(59)
$$ {\mathbf{K}}_{2}^{e} = \left({\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{EA}{L} & 0 & 0 & 0 & 0 & 0 & {- \frac{EA}{L}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & {\frac{{GI_{ps}}}{L}} & 0 & 0 & 0 & 0 & 0 & {- \frac{{GI_{ps}}}{L}} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & {- \frac{EA}{L}} & 0 & 0 & 0 & 0 & 0 & \frac{EA}{L} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & {- \frac{{GI_{ps}}}{L}} & 0 & 0 & 0 & 0 & 0 & {\frac{{GI_{ps}}}{L}} \\ \end{array}} \right), $$
(60)

Appendix 2

2.1 Coefficients of mesh stiffness and damping

$$ K_{11}^{m} = \left({\begin{array}{*{20}c} {c_{b}^{2} {\mkern 1mu} s^{2}} & {c{\mkern 1mu} c_{b}^{2} {\mkern 1mu} s} & {- c_{b} {\mkern 1mu} s{\mkern 1mu} s_{b}} & {c_{b} {\mkern 1mu} r_{p} {\mkern 1mu} s^{2} {\mkern 1mu} s_{b}} & {c{\mkern 1mu} c_{b} {\mkern 1mu} r_{p} {\mkern 1mu} s{\mkern 1mu} s_{b}} & {c_{b}^{2} {\mkern 1mu} r_{p} {\mkern 1mu} s} \\ {c{\mkern 1mu} c_{b}^{2} {\mkern 1mu} s} & {c^{2} {\mkern 1mu} c_{b}^{2}} & {- c{\mkern 1mu} c_{b} {\mkern 1mu} s_{b}} & {c{\mkern 1mu} c_{b} {\mkern 1mu} r_{p} {\mkern 1mu} s{\mkern 1mu} s_{b}} & {c^{2} {\mkern 1mu} c_{b} {\mkern 1mu} r_{p} {\mkern 1mu} s_{b}} & {c{\mkern 1mu} c_{b}^{2} {\mkern 1mu} r_{p}} \\ {- c_{b} {\mkern 1mu} s{\mkern 1mu} s_{b}} & {- c{\mkern 1mu} c_{b} {\mkern 1mu} s_{b}} & {s_{b}^{2}} & {- r_{p} {\mkern 1mu} s{\mkern 1mu} s_{b}^{2}} & {- c{\mkern 1mu} r_{p} {\mkern 1mu} s_{b}^{2}} & {- c_{b} {\mkern 1mu} r_{p} {\mkern 1mu} s_{b}} \\ {c_{b} {\mkern 1mu} r_{p} {\mkern 1mu} s^{2} {\mkern 1mu} s_{b}} & {c{\mkern 1mu} c_{b} {\mkern 1mu} r_{p} {\mkern 1mu} s{\mkern 1mu} s_{b}} & {- r_{p} {\mkern 1mu} s{\mkern 1mu} s_{b}^{2}} & {r_{p}^{2} {\mkern 1mu} s^{2} {\mkern 1mu} s_{b}^{2}} & {c{\mkern 1mu} r_{p}^{2} {\mkern 1mu} s{\mkern 1mu} s_{b}^{2}} & {c_{b} {\mkern 1mu} r_{p}^{2} {\mkern 1mu} s{\mkern 1mu} s_{b}} \\ {c{\mkern 1mu} c_{b} {\mkern 1mu} r_{p} {\mkern 1mu} s{\mkern 1mu} s_{b}} & {c^{2} {\mkern 1mu} c_{b} {\mkern 1mu} r_{p} {\mkern 1mu} s_{b}} & {- c{\mkern 1mu} r_{p} {\mkern 1mu} s_{b}^{2}} & {c{\mkern 1mu} r_{p}^{2} {\mkern 1mu} s{\mkern 1mu} s_{b}^{2}} & {c^{2} {\mkern 1mu} r_{p}^{2} {\mkern 1mu} s_{b}^{2}} & {c{\mkern 1mu} c_{b} {\mkern 1mu} r_{p}^{2} {\mkern 1mu} s_{b}} \\ {c_{b}^{2} {\mkern 1mu} r_{p} {\mkern 1mu} s} & {c{\mkern 1mu} c_{b}^{2} {\mkern 1mu} r_{p}} & {- c_{b} {\mkern 1mu} r_{p} {\mkern 1mu} s_{b}} & {c_{b} {\mkern 1mu} r_{p}^{2} {\mkern 1mu} s{\mkern 1mu} s_{b}} & {c{\mkern 1mu} c_{b} {\mkern 1mu} r_{p}^{2} {\mkern 1mu} s_{b}} & {c_{b}^{2} {\mkern 1mu} r_{p}^{2}} \\ \end{array}} \right) $$
(61)
$$ K_{12}^{m} = \left({\begin{array}{*{20}c} {- c_{b}^{2} {\mkern 1mu} s^{2}} & {- c{\mkern 1mu} c_{b}^{2} {\mkern 1mu} s} & {c_{b} {\mkern 1mu} s{\mkern 1mu} s_{b}} & {c_{b} {\mkern 1mu} r_{g} {\mkern 1mu} s^{2} {\mkern 1mu} s_{b}} & {c{\mkern 1mu} c_{b} {\mkern 1mu} r_{g} {\mkern 1mu} s{\mkern 1mu} s_{b}} & {c_{b}^{2} {\mkern 1mu} r_{g} {\mkern 1mu} s} \\ {- c{\mkern 1mu} c_{b}^{2} {\mkern 1mu} s} & {- c^{2} {\mkern 1mu} c_{b}^{2}} & {c{\mkern 1mu} c_{b} {\mkern 1mu} s_{b}} & {c{\mkern 1mu} c_{b} {\mkern 1mu} r_{g} {\mkern 1mu} s{\mkern 1mu} s_{b}} & {c^{2} {\mkern 1mu} c_{b} {\mkern 1mu} r_{g} {\mkern 1mu} s_{b}} & {c{\mkern 1mu} c_{b}^{2} {\mkern 1mu} r_{g}} \\ {c_{b} {\mkern 1mu} s{\mkern 1mu} s_{b}} & {c{\mkern 1mu} c_{b} {\mkern 1mu} s_{b}} & {- s_{b}^{2}} & {- r_{g} {\mkern 1mu} s{\mkern 1mu} s_{b}^{2}} & {- c{\mkern 1mu} r_{g} {\mkern 1mu} s_{b}^{2}} & {- c_{b} {\mkern 1mu} r_{g} {\mkern 1mu} s_{b}} \\ {- c_{b} {\mkern 1mu} r_{p} {\mkern 1mu} s^{2} {\mkern 1mu} s_{b}} & {- cc_{b} r_{p} ss_{b}} & {r_{p} {\mkern 1mu} s{\mkern 1mu} s_{b}^{2}} & {r_{g} {\mkern 1mu} r_{p} {\mkern 1mu} s^{2} {\mkern 1mu} s_{b}^{2}} & {cr_{g} r_{p} ss_{b}^{2}} & {c_{b} {\mkern 1mu} r_{g} {\mkern 1mu} r_{p} {\mkern 1mu} s{\mkern 1mu} s_{b}} \\ {- cc_{b} r_{p} ss_{b}} & {- c^{2} {\mkern 1mu} c_{b} {\mkern 1mu} r_{p} {\mkern 1mu} s_{b}} & {c{\mkern 1mu} r_{p} {\mkern 1mu} s_{b}^{2}} & {cr_{g} r_{p} ss_{b}^{2}} & {c^{2} {\mkern 1mu} r_{g} {\mkern 1mu} r_{p} {\mkern 1mu} s_{b}^{2}} & {c{\mkern 1mu} c_{b} {\mkern 1mu} r_{g} {\mkern 1mu} r_{p} {\mkern 1mu} s_{b}} \\ {- c_{b}^{2} {\mkern 1mu} r_{p} {\mkern 1mu} s} & {- c{\mkern 1mu} c_{b}^{2} {\mkern 1mu} r_{p}} & {c_{b} {\mkern 1mu} r_{p} {\mkern 1mu} s_{b}} & {c_{b} {\mkern 1mu} r_{g} {\mkern 1mu} r_{p} {\mkern 1mu} s{\mkern 1mu} s_{b}} & {c{\mkern 1mu} c_{b} {\mkern 1mu} r_{g} {\mkern 1mu} r_{p} {\mkern 1mu} s_{b}} & {c_{b}^{2} {\mkern 1mu} r_{g} {\mkern 1mu} r_{p}} \\ \end{array}} \right) $$
(62)
$$ K_{21}^{m} = \left({\begin{array}{*{20}c} {- c_{b}^{2} {\mkern 1mu} s^{2}} & {- c{\mkern 1mu} c_{b}^{2} {\mkern 1mu} s} & {c_{b} {\mkern 1mu} s{\mkern 1mu} s_{b}} & {- c_{b} {\mkern 1mu} r_{p} {\mkern 1mu} s^{2} {\mkern 1mu} s_{b}} & {- c{\mkern 1mu} c_{b} {\mkern 1mu} r_{p} {\mkern 1mu} s{\mkern 1mu} s_{b}} & {- c_{b}^{2} {\mkern 1mu} r_{p} {\mkern 1mu} s} \\ {- c{\mkern 1mu} c_{b}^{2} {\mkern 1mu} s} & {- c^{2} {\mkern 1mu} c_{b}^{2}} & {c{\mkern 1mu} c_{b} {\mkern 1mu} s_{b}} & {- c{\mkern 1mu} c_{b} {\mkern 1mu} r_{p} {\mkern 1mu} s{\mkern 1mu} s_{b}} & {- c^{2} {\mkern 1mu} c_{b} {\mkern 1mu} r_{p} {\mkern 1mu} s_{b}} & {- c{\mkern 1mu} c_{b}^{2} {\mkern 1mu} r_{p}} \\ {c_{b} {\mkern 1mu} s{\mkern 1mu} s_{b}} & {c{\mkern 1mu} c_{b} {\mkern 1mu} s_{b}} & {- s_{b}^{2}} & {r_{p} {\mkern 1mu} s{\mkern 1mu} s_{b}^{2}} & {c{\mkern 1mu} r_{p} {\mkern 1mu} s_{b}^{2}} & {c_{b} {\mkern 1mu} r_{p} {\mkern 1mu} s_{b}} \\ {c_{b} {\mkern 1mu} r_{g} {\mkern 1mu} s^{2} {\mkern 1mu} s_{b}} & {c{\mkern 1mu} c_{b} {\mkern 1mu} r_{g} {\mkern 1mu} s{\mkern 1mu} s_{b}} & {- r_{g} {\mkern 1mu} s{\mkern 1mu} s_{b}^{2}} & {r_{g} {\mkern 1mu} r_{p} {\mkern 1mu} s^{2} {\mkern 1mu} s_{b}^{2}} & {c{\mkern 1mu} r_{g} {\mkern 1mu} r_{p} {\mkern 1mu} s{\mkern 1mu} s_{b}^{2}} & {c_{b} {\mkern 1mu} r_{g} {\mkern 1mu} r_{p} {\mkern 1mu} s{\mkern 1mu} s_{b}} \\ {c{\mkern 1mu} c_{b} {\mkern 1mu} r_{g} {\mkern 1mu} s{\mkern 1mu} s_{b}} & {c^{2} {\mkern 1mu} c_{b} {\mkern 1mu} r_{g} {\mkern 1mu} s_{b}} & {- c{\mkern 1mu} r_{g} {\mkern 1mu} s_{b}^{2}} & {c{\mkern 1mu} r_{g} {\mkern 1mu} r_{p} {\mkern 1mu} s{\mkern 1mu} s_{b}^{2}} & {c^{2} {\mkern 1mu} r_{g} {\mkern 1mu} r_{p} {\mkern 1mu} s_{b}^{2}} & {c{\mkern 1mu} c_{b} {\mkern 1mu} r_{g} {\mkern 1mu} r_{p} {\mkern 1mu} s_{b}} \\ {c_{b}^{2} {\mkern 1mu} r_{g} {\mkern 1mu} s} & {c{\mkern 1mu} c_{b}^{2} {\mkern 1mu} r_{g}} & {- c_{b} {\mkern 1mu} r_{g} {\mkern 1mu} s_{b}} & {c_{b} {\mkern 1mu} r_{g} {\mkern 1mu} r_{p} {\mkern 1mu} s{\mkern 1mu} s_{b}} & {c{\mkern 1mu} c_{b} {\mkern 1mu} r_{g} {\mkern 1mu} r_{p} {\mkern 1mu} s_{b}} & {c_{b}^{2} {\mkern 1mu} r_{g} {\mkern 1mu} r_{p}} \\ \end{array}} \right) $$
(63)
$$ K_{22}^{m} = \left({\begin{array}{*{20}c} {c_{b}^{2} {\mkern 1mu} s^{2}} & {c{\mkern 1mu} c_{b}^{2} {\mkern 1mu} s} & {- c_{b} {\mkern 1mu} s{\mkern 1mu} s_{b}} & {- c_{b} r_{g} s^{2} s_{b}} & {- cc_{b} r_{g} ss_{b}} & {- c_{b}^{2} {\mkern 1mu} r_{g} {\mkern 1mu} s} \\ {c{\mkern 1mu} c_{b}^{2} {\mkern 1mu} s} & {c^{2} {\mkern 1mu} c_{b}^{2}} & {- c{\mkern 1mu} c_{b} {\mkern 1mu} s_{b}} & {- cc_{b} r_{g} ss_{b}} & {- c^{2} c_{b} r_{g} s_{b}} & {- c{\mkern 1mu} c_{b}^{2} {\mkern 1mu} r_{g}} \\ {- c_{b} {\mkern 1mu} s{\mkern 1mu} s_{b}} & {- c{\mkern 1mu} c_{b} {\mkern 1mu} s_{b}} & {s_{b}^{2}} & {r_{g} {\mkern 1mu} s{\mkern 1mu} s_{b}^{2}} & {c{\mkern 1mu} r_{g} {\mkern 1mu} s_{b}^{2}} & {c_{b} {\mkern 1mu} r_{g} {\mkern 1mu} s_{b}} \\ {- c_{b} r_{g} s^{2} s_{b}} & {- cc_{b} r_{g} ss_{b}} & {r_{g} {\mkern 1mu} s{\mkern 1mu} s_{b}^{2}} & {r_{g}^{2} {\mkern 1mu} s^{2} {\mkern 1mu} s_{b}^{2}} & {cr_{g}^{2} ss_{b}^{2}} & {c_{b} {\mkern 1mu} r_{g}^{2} {\mkern 1mu} s{\mkern 1mu} s_{b}} \\ {- cc_{b} r_{g} ss_{b}} & {- c^{2} c_{b} r_{g} s_{b}} & {c{\mkern 1mu} r_{g} {\mkern 1mu} s_{b}^{2}} & {cr_{g}^{2} ss_{b}^{2}} & {c^{2} {\mkern 1mu} r_{g}^{2} {\mkern 1mu} s_{b}^{2}} & {c{\mkern 1mu} c_{b} {\mkern 1mu} r_{g}^{2} {\mkern 1mu} s_{b}} \\ {- c_{b}^{2} {\mkern 1mu} r_{g} {\mkern 1mu} s} & {- c{\mkern 1mu} c_{b}^{2} {\mkern 1mu} r_{g}} & {c_{b} {\mkern 1mu} r_{g} {\mkern 1mu} s_{b}} & {c_{b} {\mkern 1mu} r_{g}^{2} {\mkern 1mu} s{\mkern 1mu} s_{b}} & {c{\mkern 1mu} c_{b} {\mkern 1mu} r_{g}^{2} {\mkern 1mu} s_{b}} & {c_{b}^{2} {\mkern 1mu} r_{g}^{2}} \\ \end{array}} \right) $$
(64)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Tang, J., Li, Y. et al. Rotordynamics analysis of a double-helical gear transmission system. Meccanica 51, 251–268 (2016). https://doi.org/10.1007/s11012-015-0194-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0194-0

Keywords

Navigation