Skip to main content

Advertisement

Log in

Afforestation opportunities when stand productivity is driven by a high risk of natural disturbance: a review of the open lichen woodland in the eastern boreal forest of Canada

  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

Afforestation has the potential to offset the increased emission of atmospheric carbon dioxide and has therefore been proposed as a strategy to mitigate climate change. Here we review the opportunities for carbon (C) offsets through open lichen woodland afforestation in the boreal forest of eastern Canada as a case study, while considering the reversal risks (low productivity, fires, insect outbreaks, changes in land use and the effects of future climate on growth potential as well as on the disturbances regime). Our results suggest that : (1) relatively low growth rate may act as a limiting factor in afforestation projects in which the time available to increase C is driven by natural disturbances; (2) with ongoing climate change, a global increase in natural disturbance rates, mainly fire and spruce budworm outbreaks, may offset any increases in net primary production at the landscape level; (3) the reduction of the albedo versus increase in biomass may negatively affect the net climate forcing; (4) the impermanence of C stock linked to the reversal risks makes this scenario not necessarily cost attractive. More research, notably on the link between fire risk and site productivity, is needed before afforestation can be incorporated into forest management planning to assist climate change mitigation efforts. Therefore, we suggest that conceivable mitigation strategies in the boreal forest will likely have to be directed activities that can reduce emissions and can increase C sinks while minimizing the reversal impacts. Implementation of policies to reduce Greenhouse Gases (GHG) in the boreal forest should consider the biophysical interactions, the different spatial and temporal scales of their benefits, the costs (investment and benefits) and how all these factors are influenced by the site history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amiro BD, Barr AG, Barr JG et al (2010) Ecosystem carbon dioxide fluxes after disturbance in forests of North America. J Geophy Res 115:G00K02

    Google Scholar 

  • Angert A, Biraud S, Bonfils C et al (2005) Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proc Natl Acad Sci USA 102:10823–10827

    Article  Google Scholar 

  • Arseneault D, Payette S (1997) Landscape change following deforestation at the arctic tree line in Quebec, Canada. Ecology 78:693–706

    Google Scholar 

  • Asselin H, Payette S (2005) Late Holocene opening of the forest tundra landscape in northern Quebec, Canada. Global Ecol Biogeogr 14:307–313

    Article  Google Scholar 

  • Berg S, Karjalainen T (2003) Comparison of greenhouse gas emissions from forest operations in Finland and Sweden. Forestry 76:271–284

    Article  Google Scholar 

  • Bergeron Y, Cyr D, Girardin MP et al (2010) Will climate change drive 21st century burn rates in Canadian boreal forest outside of its natural variability: collating global climate model experiments with sedimentary charcoal data. Int J Wildland Fire 19:1127–1139

    Article  Google Scholar 

  • Bernier PY, Schöne D (2009) Adapting forests and their management to climate change: an overview. Unasylva 60:5–11

    Google Scholar 

  • Bernier PY, Desjardins RL, Karimi-Zindashty Y et al (2011) Boreal lichen woodlands: a possible negative feedback to climate change in eastern North America. Agric For Meteorol 151:521–528

    Article  Google Scholar 

  • Betts RA (2000) Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408:187–190

    Article  Google Scholar 

  • Betts AK, Desjardins RL, Worth D (2007) Impact of agriculture, forest and cloud feedback on the surface energy budget in BOREAS. Agric For Meteorol 142:156–169

    Article  Google Scholar 

  • Biggs J, Laaksonen-Craig S (2006) Viability of carbon offset-generating afforestation projects in boreal Ontario. For Chron 82:70–76

    Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  Google Scholar 

  • Bonan GB, Shugart HH (1989) Environmental factors and ecological processes in boreal forests. Annu Rev Ecol Syst 20:1–28

    Article  Google Scholar 

  • Boudewyn P, Song X, Magnussen S et al (2007) Model-based, volume-to-biomass conversion for forested and vegetated land in Canada. Natural Resources Canada. Canadian Forest Service, Pacific Forestry Centre. Victoria, British Columbia Information Report BC-X-411

  • Boyland M (2006) The economics of using forests to increase carbon storage. Can J For Res 36:2223–2234

    Article  Google Scholar 

  • Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320:1456–1457

    Article  Google Scholar 

  • Chapin FS, Randerson JT, McGuire AD et al (2008) Changing feedbacks in the climate–biosphere system. Fron Ecol Environ 6:313–320

    Article  Google Scholar 

  • Conard SG, Sukhinin AI, Stocks BJ et al (2002) Determining effects of area burned and fire severity on carbon cycling and emissions in Siberia. Clim Change 55:197–211

    Article  Google Scholar 

  • Cooley DM, Galik CS, Holmes TP et al (2012) Managing dependencies in forest offset projects: toward a more complete evaluation of reversal risk. Mitig Adapt Strat Glob Change 17:17–24

    Article  Google Scholar 

  • Côté D (2004) Mise en place d’une pessière à cladonie dans le domaine des forêts fermées d’épinette noire (Picea mariana) et potentiel pour la production forestière. Université du Québec à Chicoutimi, Mémoire de maîtrise

    Book  Google Scholar 

  • Desautels R, Després F, Dufresne F et al (2009) Voirie forestière. In: Ouvrage collectif (ed.) Ordre des Ingénieurs forestiers du Québec, Manuel de Foresterie. Éditions Multimondes, Québec, pp.1187-1244

  • Dixon RK, Solomon AM, Brown S et al (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190

    Article  Google Scholar 

  • Dominy SWJ, Gilsenan R, McKenney DW et al (2010) A retrospective and lessons learned from Natural Resources Canada’s Forest 2020 afforestation initiative. For Chron 86:339–347

    Google Scholar 

  • Dymond CC, Neilson ET, Stinson G et al (2010) Future spruce budworm outbreak may create a carbon source in eastern Canadian forests. Ecosystems 13:917–931

    Article  Google Scholar 

  • Erdle TA, MacLean DA (1999) Stand growth model calibration for use in forest pest impact assessment. For Chron 75:141–152

    Google Scholar 

  • Euskirchen ES, McGuire AD, Kicklighter DW et al (2006) Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Global Change Biol 12:731–750

    Article  Google Scholar 

  • Flannigan MD, Amiro BD, Logan KA et al (2005a) Forest fires and climate change in the 21st century. Mitig Adapt Strat Glob Change 11:847–859

    Article  Google Scholar 

  • Flannigan MD, Logan KA, Amiro BD et al (2005b) Future area burned in Canada. Clim Change 72:1–16

    Article  Google Scholar 

  • Fleming RA, Candau J-N, McAlpine RS (2002) Landscape-scale analysis of interactions between insect defoliation and forest fire in central Canada. Clim Change 55:251–272

    Article  Google Scholar 

  • French NHF, Goovaerts P and Kasischke ES (2004) Uncertainty in estimating carbon emissions from boreal forest fires. J Geophys Res 109:D14S08

    Google Scholar 

  • Gaboury S, Boucher J-F, Villeneuve C et al (2009) Estimating the net carbon balance of boreal open woodland afforestation: a case-study in Québec’s closed-crown boreal forest. For Ecol Manag 257:483–494

    Article  Google Scholar 

  • Galik CS, Jackson RB (2009) Risks to forest carbon offset projects in a changing climate. For Ecol Manag 257:2209–2216

    Article  Google Scholar 

  • Girard F, Payette S, Gagnon R (2008) Rapid expansion of lichen woodlands within the closed-crown boreal forest zone over the last 50 years caused by stand disturbances in eastern Canada. J Biogeogr 35:529–537

    Article  Google Scholar 

  • Girard F, Payette S, Gagnon R (2009) Origin of the lichen–spruce woodland in the closed-crown forest zone of eastern Canada. Global Ecol Biogeogr 18:291–303

    Article  Google Scholar 

  • Girardin MP, Wotton BM (2009) Summer moisture and wildfire risks across Canada. J Appl Meteorol Climatol 48:517–533

    Article  Google Scholar 

  • Girardin MP, Ali AA, Hély C (2010) Wildfires in boreal ecosystems: past, present and some emerging trends. Int J Wildland Fire 19:991–995

    Article  Google Scholar 

  • Gower ST, Krankina O, Olson RJ et al (2001) Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecol Appl 11:1395–1411

    Article  Google Scholar 

  • Harden JW, Trumbore SE, Stocks BJ et al (2000) The role of fire in the boreal carbon budget. Global Change Biol 6:174–184

    Article  Google Scholar 

  • Hébert F, Boucher J-F, Bernier PY et al (2006) Growth response and water relations of 3-year-old planted black spruce and jack pine seedlings in site prepared lichen woodlands. For Ecol Manag 223:226–236

    Article  Google Scholar 

  • Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289–292

    Article  Google Scholar 

  • Hennigar CR, MacLean DA (2010) Spruce budworm and management effects on forest and wood product carbon for an intensively managed forest. Can J For Res 40:1736–1750

    Article  Google Scholar 

  • Hultman NE (2006) Geographic diversification of carbon risk-A methodology for assessing carbon investments using eddy correlation measurements. Global Environ Change 16:58–72

    Article  Google Scholar 

  • Hurteau MD, Koch GW, Hungate BA (2008) Carbon protection and fire risk reduction: toward a full accounting of forest carbon offsets. Front Ecol Environ 6:493–498

    Article  Google Scholar 

  • Hurteau MD, Hungate BA, Koch GW (2009) Accounting for risk in valuing forest carbon offsets. Carbon Balance Manag 4:1

    Article  Google Scholar 

  • IPCC (2003) Good Practice Guidance for Land Use, Land-Use Change and Forestry. http://www.ipcc-ggip.iges.or.jp/public/gpglulucf/gpglulucf.html.

  • IPCC (2007) Climate Change 2007: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. [Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds.)]. Cambridge University Press, Cambridge, United Kingdom.

  • Jackson RB, Randerson JT, Canadell JG et al (2008) Protecting climate with forests. Environ Res Lett 3:044006

    Article  Google Scholar 

  • Jasinski JPP, Payette S (2005) The creation of alternative stable state in the southern boreal forest, Quebec, Canada. Ecol Monogr 75:561–583

    Article  Google Scholar 

  • Johnson EA, Gutsell SL (1994) Fire frequency models, methods and interpretations. Adv Ecol Res 25:239–287

    Article  Google Scholar 

  • Johnson EA, Miyanishi K, Roger C et al (1999) Subarctic Lichen Woodlands Savannas, Barrens, and Rock Outcrop Plant Communities of North America. Cambridge University Press.

  • Johnson LR, Lippke B, Marshall JD et al (2005) Life-cycle impacts of forest resource activities in the Pacific Northwest and Southeast United States. Wood Fiber Sci 37:30–46

    Google Scholar 

  • Kang S, Kimball JS, Running SW (2006) Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration. Sci Total Environ 362:85–102

    Article  Google Scholar 

  • Karjalainen T, Asikainen A (1996) Greenhouse gas emissions from the use of primary energy in forest operations and long-distance transportation of timber in Finland. Forestry 69:215–228

    Article  Google Scholar 

  • Kasischke ES, Christensen NL, Stocks BJ (1995) Fire, global warming, and the carbon balance of boreal forests. Ecol Appl 5:437–451

    Article  Google Scholar 

  • Kasischke ES, Hewson JH, Stocks B et al (2003) The use of ATSR active fire counts for estimating relative patterns of biomass burning - a study from the boreal forest region. Geophys Res Lett 30:1969

    Article  Google Scholar 

  • Keeling HC, Phillips OL (2007) The global relationship between forest productivity and biomass. Global Ecol Biogeogr 16:618–631

    Article  Google Scholar 

  • Kurz WA, Dymond CC, Stinson G et al (2008a) Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990

    Article  Google Scholar 

  • Kurz WA, Stinson G, Rampley G (2008b) Could increased boreal forest ecosystem productivity offset carbon losses from increased disturbances? Philos Trans R Soc B: Biol Sci 363:2259–2268

    Article  Google Scholar 

  • Laganière J, Angers DA, Paré D (2010) Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Global Change Biol 16:439–453

    Article  Google Scholar 

  • Latifovic R, Zhi-Liang Z, Cihlar J et al (2004) Land cover mapping North and Central America-Global Land Cover 2000. Remote Sens Environ 89:116–127

    Article  Google Scholar 

  • Laurikka H, Springer U (2003) Risk and return of project-based climate change mitigation: a portfolio approach. Global Environ Change 13:207–217

    Article  Google Scholar 

  • Le Goff H, Flannigan MD, Bergeron Y et al (2009) Management solutions to face climate change. In: Gauthier S (ed) Ecosytem Management in the Boreal Forest. Presses de l’Université du Québec, Québec, pp 103–129

    Google Scholar 

  • LeBel P, Thiffault N, Bradley RL (2008) Kalmia removal increases nutrient supply and growth of black spruce seedlings: an effect fertilizer cannot emulate. For Ecol Manag 256:1780–1784

    Article  Google Scholar 

  • Lemprière TC, Johnston M, Willcocks A et al (2002) Saskatchewan forest carbon sequestration project. For Chron 78:843–849

    Google Scholar 

  • Litton CM, Giardina CP (2008) Below-ground carbon flux and partitioning: global patterns and response to temperature. Funct Ecol 22:941–954

    Article  Google Scholar 

  • Litvak M, Miller S, Wofsy SC et al (2003) Effect of stand age on whole ecosystem CO2 exchange in the Canadian boreal forest. J Geophys Res 108:8225

    Article  Google Scholar 

  • Liu J, Chen JM, Cihlar J et al (2002) Net primary productivity mapped for Canada at 1-km resolution. Global Ecol Biogeogr 11:115–129

    Article  Google Scholar 

  • Longton RE (1992) The role of bryophytes and lichens in terrestrial ecosystems. In: Bates JW, Farmer AM (eds) Bryophytes and Lichens in a Changing Environment. Clarendon, Oxford, pp 32–76

    Google Scholar 

  • Lorenz K, Lal R (2010) Carbon Sequestration in Forest Ecosystems. Springer, New York

    Book  Google Scholar 

  • Luyssaert S, Inglima I, Jung M et al (2007) CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biol 13:2509–2537

    Article  Google Scholar 

  • Magnani F, Mencuccini M, Borghetti M et al (2007) The human footprint in the carbon cycle of temperate and boreal forests. Nature 447:849–851

    Article  Google Scholar 

  • Mallik AU (1994) Autecological response of Kalmia angustifolia to forest types and disturbance regimes. For Ecol Manag 65:231–249

    Article  Google Scholar 

  • Mansuy N, Gauthier S, Robitaille A et al (2010) The effects of surficial deposit–drainage combinations on spatial variations of fire cycles in the boreal forest of eastern Canada. Int J Wildland Fire 19:1083–1098

    Article  Google Scholar 

  • Marland G, Schlamadinger B (1997) Forests for carbon sequestration or fossil fuel substitution? A sensitivity analysis. Biomass Bioenergy 13:389–397

    Article  Google Scholar 

  • Melillo JM, McGuire AD, Kicklighter DW et al (1993) Global climate change and terrestrial net primary production. Nature 363:234–240

    Article  Google Scholar 

  • Metsaranta JM, Kurz WA, Neilson ET et al (2010) Implications of future disturbance regimes on the carbon balance of Canada’s managed forest (2010–2100). Tellus B 62:719–728

    Article  Google Scholar 

  • Miles L, Kapos V (2008) Reducing greenhouse gas emissions from deforestation and forest degradation: global land-use implications. Science 320:1454–1455

    Article  Google Scholar 

  • Moss M, Hermanutz L (2009) Postfire seedling recruitment at the southern limit of lichen woodland. Can J For Res 39:2299–2306

    Article  Google Scholar 

  • MRNFQ (2010) Valeurs des traitements sylvicoles admissibles à titre paiement des droits. Année financière 2010-2011.

  • Nabburs GJ, Masera OKA, Benitez-Ponce P, et al (2007) «Forestry», Climate change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

  • Natural Resources Canada (2008) Deforestation in Canada. What are the facts? http://cfs.nrcan.gc.ca/pubwarehouse/pdfs/28159.pdf. Cited 12 December 2011.

  • Paillé G, Bergeron F, Jean Bernier Y et al (2007) Analyse du rapport du Forestier en chef sur la possibilité forestière 2008-2013. Bureau de l’Ordre des ingénieurs forestiers du Québec. http://www.oifq.com/pdf/publications/rapportpaille.pdf. Cited 12 December 2011.

  • Payette S, Delwaide A (2003) Shift of conifer boreal forest to lichen–heath parkland caused by successive stand disturbances. Ecosystems 6:540–550

    Article  Google Scholar 

  • Payette S, Herman H, Shugart RL et al (1992) Fire as a controlling process in the North American boreal forest. In: A Systems Analysis of the Global Boreal Forest. Cambridge University Press.

  • Payette S, Bhiry N, Delwaide A et al (2000) Origin of the lichen woodland at its southern range limit in eastern Canada: the catastrophic impact of insect defoliators and fire on the spruce-moss forest. Can J For Res 30:288–305

    Article  Google Scholar 

  • Plummer DA, Caya D, Frigon A et al (2006) Climate and climate change over North America as simulated by the Canadian RCM. J Clim 19:3112–3132

    Article  Google Scholar 

  • Pothier D, Savard F (1998) Actualisation des tables de production pour les principales espèces forestières du Québec. Gouvernement du Québec. Ministère des Ressources naturelles, Québec

    Google Scholar 

  • Randerson JT, Liu H, Flanner MG et al (2006) The impact of boreal forest fire on climate warming. Science 314:1130–1132

    Article  Google Scholar 

  • Raulier F, Le Goff H, Gauthier S et al (submitted) Assessing the exposure of low productive forest to different fire risks with two indicators of vulnerability: an example from the eastern Canadian boreal forest. Ecolo Indic

  • Richards KR, Stokes C (2004) A review of forest carbon sequestration cost studies: a dozen years of research. Clim Change 63:1–48

    Article  Google Scholar 

  • Rowe JS (1972) Forest regions of Canada. Canadian Forestry Service Publication 1300. Department of the Environment, Ottawa.

  • Rustad LE, Campbell JL, Marion GM et al (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562

    Article  Google Scholar 

  • Savage DW, Martell DL, Wotton BM (2010) Evaluation of two risk mitigation strategies for dealing with fire-related uncertainty in timber supply modelling. Can J For Res 40:1136–1154

    Article  Google Scholar 

  • Schlamadinger B, Marland G (1996) The role of forest and bioenergy strategies in the global carbon cycle. Biomass Bioenergy 10:275–300

    Article  Google Scholar 

  • Schwaiger HP, Bird DN (2010) Integration of albedo effects caused by land use change into the climate balance: Should we still account in greenhouse gas units? For Ecol Manag 260:278–286

    Article  Google Scholar 

  • Simard M, Payette S (2001) Black spruce decline triggered by spruce budworm at the southern limit of lichen woodland in eastern Canada. Can J For Res 31:2160–2172

    Article  Google Scholar 

  • Simard M, Payette S (2005) Reduction of black spruce seed bank by spruce budworm infestation compromises postfire stand regeneration. Can J For Res 35:1686–1696

    Article  Google Scholar 

  • Sirois L, Payette S (1991) Reduced postfire tree regeneration along a boreal forest-forest-tundra transect in northern Québec. Ecology 72:619–627

    Article  Google Scholar 

  • Slaney GL, Lantz VA, MacLean DA (2009) The economics of carbon sequestration through pest management: application to forested landbases in New Brunswick and Saskatchewan, Canada. For Policy Econ 11:525–534

    Article  Google Scholar 

  • Smith P, Smith J, Wattenbach M et al (2006) Projected changes in mineral soil carbon of European forests, 1990–2100. Can J Soil Sci 86:159–169

    Article  Google Scholar 

  • Stinson G, Kurz WA, Smyth CE et al (2011) An inventory-based analysis of Canada’s managed forest carbon dynamics, 1990 to 2008. Global Change Biol 17:2227–2244

    Article  Google Scholar 

  • Stocks BJ (1991) The extent and impact of forest fire frequency in northern circumpolar countries. In: Global biomass burning: Atmospheric, climatic, and biospheric implications. JS Levine MIT Press, Cambridge, MA, pp 197–202

    Google Scholar 

  • Taggart RE, Cross AT (2009) Global greenhouse to icehouse and back again: the origin and future of the Boreal Forest biome. Global Planet Change 65:115–121

    Article  Google Scholar 

  • Thiffault N, Jobidon R (2006) How to shift unproductive Kalmia angustifolia-Rhododendron groenlandicum heath to productive conifer plantation. Can J For Res 36:2364–2376

    Article  Google Scholar 

  • Thiffault N, Titus BD, Munson AD (2004) Black spruce seedlings in a Kalmia-Vaccinium association: microsite manipulation to explore interactions in the field. Can J For Res 34:1657–1668

    Article  Google Scholar 

  • Thornley JHM, Cannell MGR (2004) Long-term effects of fire frequency on carbon storage and productivity of boreal forests: a modeling study. Tree Physiol 24:765–773

    Article  Google Scholar 

  • Tilman D, Reich P, Phillips H et al (2000) Fire suppression and ecosystem carbon storage. Ecology 81:2680–2685

    Article  Google Scholar 

  • Tremblay S, Perié C, Ouimet R (2006) Changes in organic carbon storage in a 50 year white spruce plantation chronosequence established on fallow land in Quebec. Can J For Res 36:2713–2723

    Article  Google Scholar 

  • Trumbore S (2006) Carbon respired by terrestrial ecosystems – recent progress and challenges. Global Change Biol 12:141–153

    Article  Google Scholar 

  • Van Kooten GC, Binkley CS, Delcourt G (1995) Effect of carbon taxes and subsidies on optimal forest rotation age and supply of carbon services. Am J Agric Econ 77:365–374

    Article  Google Scholar 

  • Van Kooten GC, Krcmar-Nozic E, Stennes B et al (1999) Economics of fossil fuel substitution and wood product sinks when trees are planted to sequester carbon on agricultural lands in western Canada. Can J For Res 29:1669–1678

    Article  Google Scholar 

  • Van Kooten GC, Eagle AJ, Manley J et al (2004) How costly are carbon offsets? A meta-analysis of carbon forest sinks. Environ Sci Policy 7:239–251

    Article  Google Scholar 

  • Volney WJA, Fleming RA (2000) Climate change and impacts of boreal forest insects. Agric Ecosyst Environ 82:283–294

    Article  Google Scholar 

  • Way DA, Sage RF (2008) Elevated growth temperatures reduce the carbon gain of black spruce [Picea mariana (Mill.) B.S.P.]. Global Change Biol 14:624–636

    Article  Google Scholar 

  • Weber MG, Flannigan MD (1997) Canadian boreal forest ecosystem structure and function in a changing climate: impact on fire regimes. Environ Rev 5:145–166

    Article  Google Scholar 

  • Xu D (1995) The potential for reducing atmospheric carbon by large-scale afforestation in China and related cost/benefit analysis. Biomass Bioenerg 8:337–344

    Article  Google Scholar 

  • Yamasaki SH, Fyles JW, Egger KN et al (1998) The effect of Kalmia angustifolia on the growth, nutrition, and ectomycorrhizal symbiont community of black spruce. For Ecol Manag 105:197–207

    Article  Google Scholar 

  • Yemshanov D, McKenney DW, Hatton T et al (2005) Investment attractiveness of afforestation in Canada inclusive of carbon sequestration benefits. Can J Agric Econ 53:307–323

    Article  Google Scholar 

Download references

Acknowledgements

This research was made possible thanks to the financial and logistical support provided by the Université du Québec à Montréal and the Canadian Forest Service. We acknowledge the contribution of Pamela Cheers who carefully edited the text. We thank the Centre for Forest Research for their logistical support. We also thank Pierre Bernier and Jerôme Laganière for their helpful suggestions and revision of a previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Mansuy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansuy, N., Gauthier, S. & Bergeron, Y. Afforestation opportunities when stand productivity is driven by a high risk of natural disturbance: a review of the open lichen woodland in the eastern boreal forest of Canada. Mitig Adapt Strateg Glob Change 18, 245–264 (2013). https://doi.org/10.1007/s11027-012-9362-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11027-012-9362-x

Keywords

Navigation