Skip to main content
Log in

Two new hyperbolic shear displacement models for orthotropic laminated composite plates

  • Published:
Mechanics of Composite Materials Aims and scope

Two hyperbolic displacement models, HPSDT1 and HPSDT2, are developed for a bending analysis of orthotropic laminated composite plates. These models take into account the parabolic distribution of transverse shear stresses and satisfy the condition of zero shear stresses on the top and bottom surfaces of the plates. The accuracy of the analysis presented is demonstrated by comparing the results with solutions derived from other higher-order models and with data found in the literature. It is established that the HPSDT1 model is more accurate than some theories of laminates developed previously, and therefore the analysis can be expanded to laminated composite shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Reissner, “The effect of transverse shear deformation on the bending of elastic plates,” J. Appl. Mech., 12, 69-77 (1945).

    MathSciNet  Google Scholar 

  2. R. D. Mindlin, “Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates,” J. Appl. Mech., 18, 31-38 (1951).

    MATH  Google Scholar 

  3. E. Reissner, “On the theory of bending of elastic plates,” J. Math. Phys., 23, 184-191 (1944).

    MATH  MathSciNet  Google Scholar 

  4. Y. Nath and K. K. Shukla, “Non-linear transient analysis of moderately thick laminated composite plates,” J. Sound Vibrat., 247, No. 3, 509-526 (2001).

    Article  ADS  Google Scholar 

  5. S. Hui-Shen, “Nonlinear bending of simply supported rectangular Reissner–Mindlin plates under transverse and in-plane loads and resting on elastic foundations,” Eng. Struct., 22, 847-856 (2000).

    Article  Google Scholar 

  6. T. Kant and K. Swaminathan, “Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory,” Compos. Struct., 56, 329-344 (2002).

    Article  Google Scholar 

  7. L. H. Donnel, “A theory for thick plates,” in: Proc. Second U.S. Nat. Congr. Appl. Mech., ASME Publ. Univ. Michigan, Michigan (1955), pp. 369-373.

  8. E. Reissner, “On the derivation of boundary conditions for plate theory,” in: Proc. Roy. Soc. London, 276, Ser. A, No. 1364, 178-186 (1963).

  9. K. H. Lo, R. M. Christensen, and E. M. Wu, “A higher-order theory of plate deformation. Pt. 1: Homogeneous plates,” ASME J. Appl. Mech., 44, 663-668 (1977).

    MATH  Google Scholar 

  10. K. H. Lo, R. M. Christensen, and E. M. Wu, “A higher-order theory of plate deformation. Pt. 2: Laminated plates,” ASME J. Appl. Mech., 44, 669-676 (1977).

    MATH  Google Scholar 

  11. M. Levinson, “An accurate simple theory of the statics and dynamics of elastic plates,” Mech. Res. Commun., No. 7, 343-350 (1980).

    Article  MATH  Google Scholar 

  12. M. V. V. Murthy, An Improved Transverse Shear Deformation Theory for Laminated Anisotropic Plates, NASA Techn. Paper (1981), pp. 1-37.

  13. J. N. Reddy, “A simple higher order theory for laminated composite plates,” J. Appl. Mech., 51, 745-752 (1984).

    Article  MATH  Google Scholar 

  14. J. N. Reddy, “A refined nonlinear theory of plates with transverse shear deformation,” Int. J. Solids Struct., 20, No. 9, 881-896 (1984).

    Article  MATH  Google Scholar 

  15. M. Touratier, “An efficient standard plate theory,” Int. J. Eng. Sci., 29, No. 8, 901-916 (1991).

    Article  MATH  Google Scholar 

  16. K. P. Soldatos, “A transverse shear deformation theory for homogenous monoclinic plates,” Acta Mech., 94, Nos. 3-4, 1995-2200 (1992).

    Article  MathSciNet  Google Scholar 

  17. M. Karama, K. S. Afaq, and S. Mistou, “Mechanical behaviour of laminated composite beam by new multi-layered laminated composite structures model with transverse shear stress continuity,” Int. J. Solids Struct., 40, No. 6, 1525-1546 (2003).

    Article  MATH  Google Scholar 

  18. A. J. M. Ferreira, C. M. C. Roque, and R. M. N. Jorge, “Analysis of composite plates by trigonometric shear deformation theory and multiquadrics,” Comput. Struct., 83, 225-2237 (2005).

    Article  Google Scholar 

  19. A. Idlbi, M. Karama, and M. Touratier, “Comparison of various laminated plate theories,” Compos. Struct., 37, No. 2, 173-184 (1997).

    Article  Google Scholar 

  20. H. Altenbach, “Theories for laminated and sandwich plates,” Mech. Compos. Mater., 34, No. 3, 243-252 (1998).

    Article  Google Scholar 

  21. J. N. Reddy and C. M. Wang, “An overview of the relationships between solutions of the classical and shear deformation plate theories,” Compos. Sci. Technol., 60, 2327-2335 (2000).

    Article  Google Scholar 

  22. N. J. Pagano and S. J. Hatfield, “Elastic behaviour of multilayered bidirectional composites,” AIAA J. Techn. Notes, 10, No. 7, 931-933 (1972).

    Article  ADS  Google Scholar 

  23. N. J. Pagano, “Exact solutions for rectangular bidirectional composites and sandwich plates,” J. Compos. Mater., 4, 20-34 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Akavci.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 46, No. 2, pp. 311-326, March-April, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akavci, S.S. Two new hyperbolic shear displacement models for orthotropic laminated composite plates. Mech Compos Mater 46, 215–226 (2010). https://doi.org/10.1007/s11029-010-9140-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-010-9140-3

Keywords

Navigation