Skip to main content
Log in

Nonlinear stability analysis of double-curved shallow fgm panels on elastic foundations in thermal environments

  • Published:
Mechanics of Composite Materials Aims and scope

An analytical investigation into the nonlinear response of thick functionally graded double-curved shallow panels resting on elastic foundations and subjected to thermal and thermomechanical loads is presented. Young’s modulus and Poisson’s ratio are both graded in the thickness direction according to a simple power-law distribution in terms of volume fractions of constituents. All formulations are based on the classical shell theory with account of geometrical nonlinearity and initial geometrical imperfection in the cases of Pasternak-type elastic foundations. By applying the Galerkin method, explicit relations for the thermal load–deflection curves of simply supported curved panels are found. The effects of material and geometrical properties and foundation stiffness on the buckling and postbuckling load-carrying capacity of the panels in thermal environments are analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12

Similar content being viewed by others

References

  1. R Javaheri and M. R. Eslami, “Thermal buckling of functionally graded plates,” AIAA, 40, No. 1, 162-169 (2002).

    Article  Google Scholar 

  2. R. Javaheri and M. R. Eslami, “Thermal buckling of functionally graded plates based on a higher-order theory,” J. Thermal Stress, 25, 603-625 (2002).

    Article  Google Scholar 

  3. B. A. Samsam Shariat and M. R. Eslami, “Buckling of thick functionally graded plates under mechanical and thermal loads,” Compos Struct., 78, 433-439 (2007).

    Article  Google Scholar 

  4. B. A. Samsam Shariat and M. R. Eslami, “Thermal buckling of imperfect functionally graded plates,” Int. J. Solids Struct., 43, 4082-4096 (2006).

    Article  Google Scholar 

  5. W. Lanhe, “Thermal buckling of a simply supported moderately thick rectangular FGM plate,” Compos. Struct., 64, 211-218 (2004).

    Article  Google Scholar 

  6. X. Zhao, Y. Y. Lee, and K. M. Liew, “Mechanical and thermal buckling analysis of functionally graded plates,” Compos. Struct., 90, 161-171 (2009).

    Article  Google Scholar 

  7. K. M. Liew, J. Yang, and S. Kitipornchai, “Postbuckling of piezoelectric FGM plates subject to thermo-electromechanical loading,” Int. J. Solids Struct., 40, 3869-3892 (2003).

    Article  Google Scholar 

  8. J. Yang, K. M. Liew, and S. Kitipornchai, “Imperfection sensitivity of the post-buckling behavior of higher-order shear deformable functionally graded plates,” Int. J. Solids Struct., 43, 5247-5266 (2006).

    Article  Google Scholar 

  9. 9, H.-S. Shen, “Postbuckling of FGM plates with piezoelectric actuators under thermo-electro-mechanical loadings,” Int. J. Solids Struct., 42, 6101-6121 (2005).

    Article  Google Scholar 

  10. H.-S. Shen, “Thermal postbuckling behavior of shear deformable FGM plates with temperature-dependent properties,” Int. J. Mech. Sci., 49, 466-478 (2007).

    Article  Google Scholar 

  11. Y. Y. Lee, X. Zhao, and J. N. Reddy, “Postbuckling analysis of functionally graded plates subject to compressive and thermal loads,” Computer Methods in Applied Mechanics and Engineering, 199, 1645-1653 (2010).

    Article  Google Scholar 

  12. H.-S. Shen, “Postbuckling analysis of axially loaded functionally graded cylindrical panels in thermal environments,” Int. J. Solids Struct., 39, 5991-6010 (2009).

    Article  Google Scholar 

  13. H.-S. Shen and N. Noda, “Postbuckling of FGM cylindrical shells under combined axial and radial mechanical loads in thermal environments,” Int. J. Solids and Struct., 42, 4641-4662 (2005).

    Article  Google Scholar 

  14. H.-S, Shen and K. M. Liew, “Postbuckling of axially loaded functionally graded cylindrical panels with piezoelectric actuators in thermal environments,” J. Engng. Mech. ASCE, 130, No. 8, 982-995 (2004).

    Article  Google Scholar 

  15. J. Yang, K. M. Liew, Y. F. Wu, and S. Kitipornchai, “Thermomechanical post-buckling of FGM cylindrical panels with temperature-dependent properties,” Int. J. Solids Struct., 43, 307-324 (2006).

    Article  Google Scholar 

  16. X. Zhao and K. M. Liew, “Geometrically nonlinear analysis of functionally graded shells,” Int. J. Mech. Sci., 51, 131-144 (2009).

    Article  Google Scholar 

  17. K. J. Sohn and J. H. Kim, “Structural stability of functionally graded panels subjected to aerothermal loads,” Compos. Struct., 82, 317-325 (2008).

    Article  Google Scholar 

  18. 18.Y. Yang, K. M. Liew, Y. F. Wu, and S. Kitipornchai, “Thermomechanical postbuckling of FGM cylindrical panels with temperature-dependent properties,” Int. J. Solids and Struct., 43, 307-324 (2006).

    Article  Google Scholar 

  19. X. Zhao and K. M. Liew, “Geometrically nonlinear analysis of functionally graded shells,” Int. J. Mech. Sci., 51, 131-144 (2009).

    Article  Google Scholar 

  20. N. D. Duc and H. V. Tung, “Nonlinear analysis of stability for functionally graded cylindrical panels under axial compression,” Comput. Mater. Sci., 49, 313-316 (2010).

    Article  Google Scholar 

  21. N. D. Duc and H. V. Tung, “Nonlinear response of pressure-loaded functionally graded cylindrical panels with temperature effects,” Compos. Struct., 92, 1664-1672 (2010).

    Article  Google Scholar 

  22. N. D. Duc and H. V. Tung, “Mechanical and thermal posbuckling of higher-order shear-deformable fuctionally graded plates on elastic foundations,” Compos. Struct., 93, 2874-2881 (2011).

    Article  Google Scholar 

  23. N. D. Duc and H. V. Tung, “Mechanical and thermal postbuckling of shear-deformable FGM plates with temperaturadependent properties.” Mechanics of Composite Materials, 46, 461-476 (2010).

    Article  Google Scholar 

  24. H. Huang and Q. Han, Buckling of imperfect functionally graded cylindrical shells under axial compression,” Europ. J. Mech. A/Solids, 27, 1026-1036 (2008).

    Article  Google Scholar 

  25. H. Huang and Q. Han, “Research on nonlinear postbuckling of functionally graded cylindrical shells under radial loads,” Compos. Struct., 92, 1352-1357 (2010).

    Article  Google Scholar 

  26. H. Huang and Q. Han, “Nonlinear buckling of torsion-loaded functionally graded cylindrical shells in thermal environment,” Europ. J. Mech. A/Solids, 29, 42-48 (2010).

    Article  Google Scholar 

  27. L. Librescu and M. Y. Chang, “Imperfection sensitivity and postbuckling behavior of shear-deformable composite double-curved shallow panels,” Int. J. Solids Struct., 29, No. 9, 1065-1083 (1992).

    Article  Google Scholar 

  28. M. Y. Chang and L. Librescu, “Postbuckling of shear-deformable flat and curved panels under combined loading conditions,” Int. J. Mech. Sci., 37, No. 2, 121-143 (1995).

    Article  Google Scholar 

  29. L. Librescu, M. P. Nemeth, J. H. Starnes Jr, and W. Lin, “Nonlinear response of flat and curved panels subjected to thermomechanical loads,” J. Thermal Stress, 23, 549-582 (2000).

    Article  Google Scholar 

  30. L. Librescu and W. Lin, “Postbuckling and vibration of shear deformable flat and curved panels on a non-linear elastic foundation,” Int. J. Non.-Lin. Mech., 32, No. 2, 211-225 (1997).

    Article  Google Scholar 

  31. W. Lin and L. Librescu, “Thermomechanical postbuckling of geometrically imperfect shear-deformable flat and curved panels on a nonlinear foundation,” Int. J. Engng. Sci., 36, No. 2, 189-206 (1998).

    Article  CAS  Google Scholar 

  32. Z. Y. Huang, C. F. Lu, and W. Q. Chen, “Benchmark solutions for functionally graded thick plates resting on Winkler-Pasternak elastic foundations,” Compos. Struct., 85, 95-104 (2008).

    Article  Google Scholar 

  33. A. M. Zenkour, “Hygro-thermo-mechanical effects on FGM plates resting on elastic foundations,” Compos. Struct., 93, 234-238 (2010).

    Article  Google Scholar 

  34. H.-S. Shen and Z.-X. Wang, “Nonlinear bending of FGM plates subjected to combined loading and resting on elastic foundations,” Compos. Struct., 92, 2517-2524 (2010).

    Article  Google Scholar 

  35. H.-S. Shen, “Postbuckling of shear deformable FGM cylindrical shells surrounded by an elastic medium,” Int. J. Mech. Sci., 51, 372-383 (2009).

    Article  Google Scholar 

  36. H.-S. Shen, J. Yang, and S. Kitipornchai, “Postbuckling of internal pressure loaded FGM cylindrical shells surrounded by an elastic medium,” Europ. J. Mech., A/Solids, 29, 448-460 (2010).

    Google Scholar 

  37. J. N. Reddy and C. F. Liu, “A higher-order shear deformation theory of laminated elastic shells,” Int. J. Engng. Sci., 23. No. 3, 319-330 (1985).

    Google Scholar 

Download references

Acknowledgment.

This work was supported by the Project in Mechanics of the National Foundation for Science and Technology Development of Vietnam — NAFOSTED. The authors are grateful for this financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Dinh Duc.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 48, No. 4, pp. 635-652 , July-August, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duc, N.D., Quan, T.Q. Nonlinear stability analysis of double-curved shallow fgm panels on elastic foundations in thermal environments. Mech Compos Mater 48, 435–448 (2012). https://doi.org/10.1007/s11029-012-9289-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-012-9289-z

Keywords

Navigation