Skip to main content

Advertisement

Log in

Controlled microwave heating in modern organic synthesis: highlights from the 2004–2008 literature

  • Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Direct and rapid heating by microwave irradiation in combination with sealed vessel processing in many cases enables reactions to be carried out in a fraction of the time generally required using conventional conditions. This makes microwave chemistry an ideal tool for rapid reaction scouting and optimization of conditions, allowing very rapid progress through hypotheses–experiment–results iterations. The speed at which multiple variations of reaction conditions can be performed allows a morning discussion of “What should we try?” to become an after-lunch discussion of “What were the results” Not surprisingly, therefore, many scientists both in academia and industry have turned to microwave synthesis as a front-line methodology for their projects. In this review, more than 220 published examples of microwave-assisted synthetic organic transformations from the 2004 to 2008 literature are discussed. An additional ca. 500 reaction schemes are presented in the Electronic Supplementary Material, providing the reader with an overall number of ca. 930 references in this fast-moving and exciting field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gedye R, Smith F and Westaway K et al (1986). The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett 27: 279–282

    Article  CAS  Google Scholar 

  2. Giguere RJ, Bray TL, Duncan SM and Majetich G (1986). Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett 27: 4945–4958

    Article  CAS  Google Scholar 

  3. Loupy A (ed) (2002) Microwaves in organic synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  4. Loupy A (ed) (2002) Microwaves in organic synthesis, 2nd edn. Wiley--VCH, Weinheim

    Google Scholar 

  5. Hayes BL (2002). Microwave synthesis: chemistry at the speed of light. CEM, Matthews, NC

    Google Scholar 

  6. McGowan C and Leadbeater NE (2006). Clean, fast organic chemistry: microwave-assisted laboratory experiments. CEM, Matthews, NC

    Google Scholar 

  7. Bogdal D (2005). Microwave-assisted organic synthesis. One hundred reaction procedures. Elsevier, Oxford

    Google Scholar 

  8. Tierney JP, Lidström P (eds) (2005) Microwave assisted organic synthesis. Blackwell, Oxford

    Google Scholar 

  9. Larhed M, Olofsson K (eds) (2006) Microwave methods in organic synthesis. Springer, Berlin

    Google Scholar 

  10. Van der Eycken E, Kappe CO (eds) (2006) Microwave-assisted synthesis of heterocycles. Springer, Berlin

    Google Scholar 

  11. Kappe CO and Stadler A (2005). Microwaves in organic and medicinal chemistry. Wiley-VCH, Weinheim

    Book  Google Scholar 

  12. Kappe CO, Dallinger D and Murphree SS (2009). Practical microwave synthesis for organic chemists—strategies instruments and protocols. Wiley-VCH, Weinheim

    Google Scholar 

  13. Kappe CO (ed) (2003) Microwaves in combinatorial and highthroughput synthesis. Mol Divers 7:95-07

    Google Scholar 

  14. Van der Eycken E, Van der Eycken J (eds) (2004) Microwaves in combinatorial and high-throughput synthesis. QSAR Comb Sci 23:823-86

  15. Leadbeater NE (ed) (2006) Microwave-assisted synthesis. Tetrahedron 62:4623-732

    Google Scholar 

  16. de la Hoz A, Díaz-Ortiz A (eds) (2007) The use of microwaves in high throughput synthesis. Comb Chem High Throughput Screen 10:773-34

    Google Scholar 

  17. Stuerga D (2006) Microwave-material interactions and dielectric properties, key ingredients for mastery of chemical microwave processes. In: Loupy A (ed) Microwaves in organic synthesis, 2nd edn. Wiley-VCH, Weinheim, pp 1–61

    Google Scholar 

  18. Michael D and Mingos P (2005). Theoretical aspects of microwave dielectric heating. In: Tierney, JP and Lidström, P (eds) Microwave assisted organic synthesis, pp 1–22. Blackwell, Oxford

    Google Scholar 

  19. Stuerga D and Delmotte M (2002). Wave-material interactions, microwave technology and equipment. In: Loupy, A (eds) Microwaves in organic synthesis, pp 1–33. Wiley-VCH, Weinheim

    Chapter  Google Scholar 

  20. Gabriel C, Gabriel S and Grant EH et al (1998). Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev 27: 213–224

    Article  CAS  Google Scholar 

  21. Mingos DMP and Baghurst DR (1991). Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chem Soc Rev 20: 1–47

    Article  CAS  Google Scholar 

  22. Perreux L, Loupy A (2006) Nonthermal effects of microwaves in organic synthesis. In: Loupy A (ed) Microwaves in organic synthesis, 2nd edn. Wiley-VCH, Weinheim, pp 134–218

    Google Scholar 

  23. Loupy A and Varma RS (2006). Microwave effects in organic synthesis. Mechanistic and reaction medium considerations. Chim Oggi 24: 36–40

    CAS  Google Scholar 

  24. de La Hoz A, Díaz-Ortiz A and Moreno A (2006). Selectivity under the action of microwave irradiation. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 219–277. Wiley-VCH, Weinheim

    Google Scholar 

  25. de La Hoz A, Díaz-Ortiz A and Moreno A (2005). Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34: 164–178

    Article  PubMed  CAS  Google Scholar 

  26. de La Hoz A, Díaz-Ortiz A and Moreno A (2004). Selectivity in organic synthesis under microwave irradiation. Curr Org Chem 8: 903–918

    Article  CAS  Google Scholar 

  27. Panunzio M, Campana E and Martelli G et al (2004). Microwave in organic synthesis: myth or reality?. Mater Res Innov 8: 27–31

    CAS  Google Scholar 

  28. Perreux L and Loupy A (2002). Nonthermal effects of microwaves in organic synthesis. In: Loupy, A (eds) Microwaves in organic synthesis, pp 61–114. Wiley-VCH, Weinheim

    Chapter  Google Scholar 

  29. Kuhnert N (2002). Microwave-assisted reactions in organic synthesis—are there any nonthermal microwave effects?. Angew Chem Int Ed 41: 1863–1866

    Article  CAS  Google Scholar 

  30. Strauss CR (2002). Microwave-assisted reactions in organic synthesis—are there any nonthermal microwave effects?. Comments Angew Chem Int Ed 41: 3589–3591

    Article  CAS  Google Scholar 

  31. Perreux L and Loupy A (2001). A tentative rationalization of microwave effects in organic synthesis according to the reaction medium and mechanistic considerations. Tetrahedron 57: 9199–9223

    Article  CAS  Google Scholar 

  32. Loupy A, Perreux L and Liagre M et al (2001). Reactivity and selectivity under microwaves in organic chemistry. Relation with medium effects and reaction mechanisms. Pure Appl Chem 73: 161–166

    Article  CAS  Google Scholar 

  33. Ondruschka B, Bonrath W, Stuerga D (2006) Development and design of laboratory and pilot scale reactors for microwaveassisted chemistry. In: Loupy A (ed) Microwaves in organic synthesis, 2nd edn. Wiley-VCH, Weinheim, pp 62–107

    Google Scholar 

  34. Le Ngoc T, Roberts BA and Strauss CR (2006). Roles of pressurized microwave reactors in the development of microwave-assisted organic chemistry. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 108–133. Wiley-VCH, Weinheim

    Google Scholar 

  35. Strauss CR (2002). Microwave-assisted organic chemistry in pressurized reactors. In: Loupy, A (eds) Microwaves in organic synthesis, pp 35–60. Wiley-VCH, Weinheim

    Chapter  Google Scholar 

  36. Ondruschka B and Bonrath W (2006). Microwave-assisted chemistry—a stock taking. Chimia 60: 326–329

    Article  CAS  Google Scholar 

  37. Stankiewicz A (2006). Alternative sources and forms of energy for intensification of chemical and biochemical processes. Chem Eng Res Des 84: 511–521

    Article  CAS  Google Scholar 

  38. Nüchter M, Ondruschka B and Weiß D et al (2005). Contribution to the qualification of technical microwave systems and to the validation of microwave-assisted reactions and processes. Chem Eng Technol 28: 871–881

    Article  CAS  Google Scholar 

  39. Nüchter M, Ondruschka B and Bonrath W et al (2004). Microwave assisted synthesis—a critical technology overview. Green Chem 6: 128–141

    Article  CAS  Google Scholar 

  40. Nüchter M, Müller U and Ondruschka B et al (2003). Microwave-assisted chemical reactions. Chem Eng Technol 26: 1207–1216

    Article  CAS  Google Scholar 

  41. Kappe CO (2008). Microwave dielectric heating in synthetic organic chemistry. Chem Soc Rev 37: 1127–1139

    Article  CAS  Google Scholar 

  42. Kappe CO (2006). Microwave-assisted chemistry. In: Taylor, JB and Triggle, DJ (eds) Comprehensive medicinal chemistry II, pp 837–860. Elsevier, Oxford

    Google Scholar 

  43. Varma RS (2006). Microwave technology—chemical synthesis applications. In: Seidel, A (eds) Kirk-Othmer encyclopedia of chemical technology, 5th edn. pp 538–594. Wiley-VCH, Weinheim

    Google Scholar 

  44. Kappe CO (2006). The use of microwave irradiation in organic synthesis. From laboratory curiosity to standard practice in twenty years. Chimia 60: 308–312

    Article  CAS  Google Scholar 

  45. de La Hoz A, Díaz-Ortiz A and Moreno A (2005). Activation of organic reactions by microwaves. Adv Org Synth 1: 119–171

    Article  CAS  Google Scholar 

  46. Romanova NN, Gravis AG and Zyk NV (2005). Microwave irradiation in organic synthesis. Russ Chem Rev 74: 969–1013

    Article  CAS  Google Scholar 

  47. Kuznetsov DV, Raev VA and Kuranov GL et al (2005). Microwave activation in organic synthesis. Russ J Org Chem 41: 1719–1749

    Article  CAS  Google Scholar 

  48. Kappe CO (2004). Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43: 6250–6284

    Article  CAS  Google Scholar 

  49. Hayes BL (2004). Recent advances in microwave-assisted synthesis. Aldrichim Acta 37: 66–77

    CAS  Google Scholar 

  50. Gedye RN (2002). Organic synthesis using microwave in homogeneous media. In: Loupy, A (eds) Microwaves in organic synthesis, pp 115–146. Wiley-VCH, Weinheim

    Chapter  Google Scholar 

  51. Lidström P, Tierney J, Wathey B and Westman J (2001). Microwave assisted organic synthesis: a review. Tetrahedron 57: 9225–9283

    Article  Google Scholar 

  52. Krstenansky JL and Cotterill I (2000). Recent advances in microwave-assisted organic syntheses. Curr Opin Drug Discov Dev 4: 454–461

    Google Scholar 

  53. Bose AK, Banik BK and Lavlinskaia N et al (1997). MORE chemistry in a microwave. Chemtech 27: 18–24

    CAS  Google Scholar 

  54. Caddick S (1995). Microwave assisted organic reactions. Tetrahedron 51: 10403–10432

    Article  CAS  Google Scholar 

  55. Strauss CR and Trainor RW (1995). Developments in microwave-assisted organic chemistry. Aust J Chem 48: 1665–1692

    Article  CAS  Google Scholar 

  56. Abramovitch RA (1991). Applications of microwave energy in organic chemistry. A review. Org Prep Proced Int 23: 685–711

    Article  Google Scholar 

  57. Varma RS and Ju Y (2006). Organic synthesis using microwave and supported reagents. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 362–415. Wiley-VCH, Weinheim

    Google Scholar 

  58. Bougrin K, Loupy A and Soufiaoui M (2005). Microwave-assisted solvent-free heterocyclic synthesis. J Photochem Photobiol C 6: 139–167

    Article  CAS  Google Scholar 

  59. Loupy A (2004). Solvent-free microwave organic synthesis as an efficient procedure for green chemistry. C R Chim 7: 103–112

    CAS  Google Scholar 

  60. Varma RS (2002). Organic synthesis using microwaves and supported reagents. In: Loupy, A (eds) Microwaves in organic synthesis, pp 181–218. Wiley-VCH, Weinheim

    Chapter  Google Scholar 

  61. Varma RS (2002). Clay and clay-supported reagents in organic synthesis. Tetrahedron 58: 1235–1255

    Article  CAS  Google Scholar 

  62. Pillai UR, Sahle-Demessie E and Varma RS (2002). Environmentally friendlier organic transformations on mineral supports under non-traditional conditions. J Mater Chem 12: 3199–3207

    Article  CAS  Google Scholar 

  63. Varma RS (2001). Solvent-free accelerated organic syntheses using microwaves. Pure Appl Chem 73: 193–198

    Article  CAS  Google Scholar 

  64. Kidwai M (2001). Dry media reactions. Pure Appl Chem 73: 147–151

    Article  CAS  Google Scholar 

  65. Varma RS (1999). Solvent-free organic syntheses. Green Chem 1: 43–55

    Article  CAS  Google Scholar 

  66. Loupy A, Petit A, Hamelin J et al (1998) New solvent-free organic synthesis using focused microwaves. Synthesis: 1213-234

  67. Besson T, Thiéry V and Dubac J (2006). Microwave-assisted reactions on graphite. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 416–455. Wiley-VCH, Weinheim

    Google Scholar 

  68. Laporterie A, Marquié J and Dubac J (2002). Microwave-assisted reactions on graphite. In: Loupy, A (eds) Microwaves in organic synthesis, pp 219–252. Wiley-VCH, Weinheim

    Chapter  Google Scholar 

  69. Bogdal D and Loupy A (2008). Application of microwave irradiation to phase-transfer catalyzed reactions. Org Process Res Dev 12: 710–722

    Article  CAS  Google Scholar 

  70. Loupy A, Petit A and Bogdal D (2006). Microwaves and phase-transfer catalysis. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 278–326. Wiley-VCH, Weinheim

    Google Scholar 

  71. Loupy A, Petit A and Bogdal D (2002). Microwave and phase- transfer catalysis. In: Loupy, A (eds) Microwaves in organic synthesis, pp 147–180. Wiley-VCH, Weinheim

    Chapter  Google Scholar 

  72. Petricci E and Taddei M (2007). Microwave assisted reactions with gas reagents. Chim Oggi 25: 40–45

    CAS  Google Scholar 

  73. Polshettiwar V and Varma RS (2008). Microwave-assisted organic synthesis and transformations using benign reaction media. Acc Chem Res 41: 629–639

    Article  PubMed  CAS  Google Scholar 

  74. Polshettiwar V and Varma RS (2007). Greener and sustainable approaches to the synthesis of pharmaceutically active heterocycles. Curr Opin Drug Discov Dev 10: 723–737

    CAS  Google Scholar 

  75. Strauss CR and Varma RS (2006). Microwaves in green and sustainable chemistry. Top Curr Chem 266: 199–231

    Article  CAS  Google Scholar 

  76. Varma RS (2006). Greener organic syntheses under non-traditional conditions. Indian J Chem Sect B 45: 2305–2312

    Google Scholar 

  77. Lévêque JM and Cravotto G (2006). Microwaves, power ultrasound and ionic liquids. A new synergy in green organic synthesis. Chimia 60: 313–320

    Article  Google Scholar 

  78. Roberts BA and Strauss CR (2005). Toward rapid, “green” predictable microwave-assisted synthesis. Acc Chem Res 38: 653–661

    Article  PubMed  CAS  Google Scholar 

  79. Strauss CR (2005). Microwave technologies: synthesis and the “greening” of chemistry. Chem Aust 72: 9–11

    CAS  Google Scholar 

  80. Carrillo JR, Díaz-Ortiz A and de La Hoz A et al (2003). Application of microwave irradiation, solid supports and catalysts in environmentally benign heterocyclic chemistry. In: Attanasi, OA and Spinelli, D (eds) Targets in heterocyclic systems, pp 64–85. Springer, Berlin

    Google Scholar 

  81. Bose AK, Manhas MS, Ganguly SN et al (2002) MORE chemistry for less pollution: applications for process development. Synthesis: 1578-591

  82. Strauss CR (2002). Application of microwaves for environmentally benign organic chemistry. In: Clark, J and Macquarrie, D (eds) Handbook of green chemistry and technology, pp 397–415. Blackwell, Oxford

    Chapter  Google Scholar 

  83. Varma RS (2002). Advances in green chemistry: chemical syntheses using microwave irradiation. Kavitha, Bangalore

    Google Scholar 

  84. Strauss CR (1999). A combinatorial approach to the development of environmentally benign organic chemical preparations. Aust J Chem 52: 83–96

    Article  CAS  Google Scholar 

  85. Polshettiwar V and Varma RS (2008). Aqueous microwave chemistry. A clean and green synthetic tool for rapid drug discovery. Chem Soc Rev 37: 1546–1557

    Article  PubMed  CAS  Google Scholar 

  86. Dallinger D and Kappe CO (2007). Microwave-assisted synthesis in water as solvent. Chem Rev 107: 2563–2591

    Article  PubMed  CAS  Google Scholar 

  87. Leadbeater NE (2005). Fast, easy, clean chemistry by using water as a solvent and microwave heating: the Suzuki coupling as an illustration. Chem Commun 23: 2881–2902

    Article  CAS  Google Scholar 

  88. Lévêque JM, Estager J and Draye M et al (2007). Synthesis of ionic liquids using non conventional activation methods. An overview. Monatsh Chem 138: 1103–1113

    Article  CAS  Google Scholar 

  89. Leadbeater NE and Torenius HM (2006). Microwaves and ionic liquids. In: Loupy, A (eds) Microwaves in organic synthesis, pp 327–361. Wiley-VCH, Weinheim

    Chapter  Google Scholar 

  90. Habermann J, Ponzi S and Ley SV (2005). Organic chemistry in ionic liquids using non-thermal energy-transfer processes. Mini Rev Org Chem 2: 125–137

    Article  CAS  Google Scholar 

  91. Leadbeater NE, Torenius HM and Tye H (2004). Microwave-promoted organic synthesis using ionic liquids: a mini review. Comb Chem High Throughput Screen 7: 511–528

    CAS  Google Scholar 

  92. Alcázar J, Diels G and Schoentjes B (2007). Microwave assisted medicinal chemistry. Mini Rev Med Chem 7: 345–369

    Article  PubMed  Google Scholar 

  93. Chighine A, Sechi G and Bradley M (2007). Tools for efficient high-throughput synthesis. Drug Discov Today 12: 459–464

    Article  PubMed  CAS  Google Scholar 

  94. Mavandadi F and Pilotti A (2006). The impact of microwave-assisted organic synthesis in drug discovery. Drug Discov Today 11: 165–174

    Article  PubMed  CAS  Google Scholar 

  95. Kappe CO and Dallinger D (2006). The impact of microwave synthesis on drug discovery. Nat Rev Drug Discov 5: 51–64

    Article  PubMed  CAS  Google Scholar 

  96. Shipe WD, Wolkenberg SE and Lindsley CW (2005). Accelerating lead development by microwave-enhanced medicinal chemistry. Drug Discov Today Technol 2: 155–161

    Article  CAS  Google Scholar 

  97. Sarko CR (2005). Timesavings associated with microwave-assisted synthesis: a quantitative approach. In: Tierney, JP and Lidström, P (eds) Microwave assisted organic synthesis, pp 222–236. Blackwell, Oxford

    Chapter  Google Scholar 

  98. Ersmark K, Larhed M and Wannberg J (2004). Microwave-enhanced medicinal chemistry: a high-speed opportunity for convenient preparation of protease inhibitors. Curr Opin Drug Discov Dev 7: 417–427

    CAS  Google Scholar 

  99. Mavandadi F and Lidström P (2004). Microwave-assisted chemistry in drug discovery. Curr Top Med Chem 4: 773–792

    Article  PubMed  CAS  Google Scholar 

  100. Alexandre FR, Domon L and Frère S et al (2003). Microwaves in drug discovery and multi-step synthesis. Mol Divers 7: 273–280

    Article  PubMed  CAS  Google Scholar 

  101. Wathey B, Tierney J and Lidström P et al (2002). The impact of microwave-assisted organic chemistry on drug discovery. Drug Discov Today 7: 373–380

    Article  PubMed  CAS  Google Scholar 

  102. Dzierba CD and Combs AP (2002). Microwave-assisted chemistry as a tool for drug discovery. Annu Rep Med Chem 37: 247–256

    Article  CAS  Google Scholar 

  103. Santagada V, Perissutti E and Caliendo G (2002). The application of microwave irradiation as new convenient synthetic procedure in drug discovery. Curr Med Chem 9: 1251–1283

    PubMed  CAS  Google Scholar 

  104. Wilson NS and Roth GP (2002). Recent trends in microwave-assisted synthesis. Curr Opin Drug Discov Dev 5: 620–629

    CAS  Google Scholar 

  105. Collins MJ (2001). Microwave-assisted organic synthesis for drug discovery. Am Gen Proteom Technol 1: 40–43

    CAS  Google Scholar 

  106. Larhed M and Hallberg A (2001). Microwave-assisted high-speed chemistry: a new technique in drug discovery. Drug Discov Today 6: 406–416

    Article  PubMed  CAS  Google Scholar 

  107. Matloobi M and Kappe CO (2007). Microwave synthesis in high-throughput environments. Chim Oggi 25: 26–31

    CAS  Google Scholar 

  108. Stadler A and Kappe CO (2006). Microwave-assisted combinatorial and high-throughtput sysnthesis. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 726–787. Wiley-VCH, Weinheim

    Google Scholar 

  109. Martínez-Palou R (2006). Advances in microwave-assisted combinatorial chemistry without polymer-supported reagents. Mol Divers 10: 435–462

    Article  PubMed  CAS  Google Scholar 

  110. Lange T and Lindell S (2005). Recent advances in microwave-assisted combinatorial synthesis and library generation. Comb Chem High Throughput Screen 8: 595–606

    Article  PubMed  CAS  Google Scholar 

  111. Santagada V, Frecentese F and Perissutti E et al (2004). The application of microwaves in combinatorial and high-throughput synthesis as new synthetic procedure in drug discovery. QSAR Comb Sci 23: 919–944

    Article  CAS  Google Scholar 

  112. Blackwell HE (2003). Out of the oil bath and into the oven—microwave-assisted combinatorial chemistry heats up. Org Biomol Chem 1: 1251–1255

    Article  PubMed  CAS  Google Scholar 

  113. Kappe CO and Stadler A (2002). Microwave-assisted combinatorial chemistry. In: Loupy, A (eds) Microwaves in organic synthesis, pp 405–433. Wiley-VCH, Weinheim

    Chapter  Google Scholar 

  114. Lidström P, Westman J and Lewis A (2002). Enhancement of combinatorial chemistry by microwave-assisted organic synthesis. Comb Chem High Throughput Screen 5: 441–458

    PubMed  Google Scholar 

  115. Kappe CO (2002). High-speed combinatorial synthesis utilizing microwave irradiation. Curr Opin Chem Biol 6: 314–320

    Article  PubMed  CAS  Google Scholar 

  116. Lew A, Krutzik PO and Hart ME et al (2002). Increasing rates of reaction: microwave-assisted organic synthesis for combinatorial chemistry. J Comb Chem 4: 95–105

    Article  PubMed  CAS  Google Scholar 

  117. Alcázar J, Diels G and Schoentjes B (2007). Applications of the combination of microwave and parallel synthesis in medicinal chemistry. Comb Chem High Throughput Screen 10: 918–932

    Article  PubMed  Google Scholar 

  118. Kappe CO and Matloobi M (2007). Parallel processing of microwave-assisted organic transformations. Comb Chem High Throughput Screen 10: 735–750

    Article  PubMed  CAS  Google Scholar 

  119. Nüchter M, Ondruschka B and Tied A et al (2002). Microwave fields and parallel synthesis. Chem Aust 69: 28–29

    Google Scholar 

  120. O’Neill JC and Blackwell HE (2007). Solid-phase and microwave-assisted syntheses of 2,5-diketopiperazines: small molecules with great potential. Comb Chem High Throughput Screen 10: 857–876

    Article  PubMed  Google Scholar 

  121. Dai WM and Shi J (2007). Diversity-oriented synthesis and solid-phase organic synthesis under controlled microwave heating. Comb Chem High Throughput Screen 10: 837–856

    Article  PubMed  CAS  Google Scholar 

  122. Erdélyi M (2006). Solid-phase methods for the microwave-assisted synthesis of heterocycles. Top Heterocycl Chem 1: 79–128

    Article  CAS  Google Scholar 

  123. Stadler A and Kappe CO (2005). Microwave-assisted solid-phase synthesis. In: Tierney, JP and Lidström, P (eds) Microwave assisted organic synthesis, pp 177–221. Blackwell, Oxford

    Chapter  Google Scholar 

  124. Al-Obeidi F, Austin RE and Okonya JF et al (2003). Microwave-assisted solid-phase synthesis (MASS): parallel and combinatorial chemical library synthesis. Mini Rev Med Chem 3: 449–460

    Article  PubMed  CAS  Google Scholar 

  125. Kappe CO (2001). Speeding up solid-phase chemistry by microwave irradiation: a tool for high throughput synthesis. Am Lab 33: 13–19

    CAS  Google Scholar 

  126. Baxendale IR, Lee AL and Ley SV (2005). Integrating microwave-assisted synthesis and solid-supported reagents. In: Tierney, JP and Lidström, P (eds) Microwave assisted organic synthesis, pp 133–176. Blackwell, Oxford

    Chapter  Google Scholar 

  127. Crosignani S and Linclau B (2006). Synthesis of heterocycles using polymer-supported reagents under microwave irradiation. Top Heterocycl Chem 1: 129–154

    Article  CAS  Google Scholar 

  128. Kirschning A, Solodenko W and Mennecke K (2006). Combining enabling techniques in organic synthesis: continuous flow processes with heterogenized catalysts. Chem Eur J 12: 5972–5990

    Article  CAS  Google Scholar 

  129. Bhattacharyya S (2005). Advances in organic synthesis using polymer-supported reagents and scavengers under microwave irradiation. Mol Divers 9: 253–257

    Article  PubMed  CAS  Google Scholar 

  130. Desai B and Kappe CO (2004). Microwave-assisted synthesis involving immobilized catalysts. Top Curr Chem 242: 177–208

    CAS  Google Scholar 

  131. Swamy KMK, Yeh WB and Lin MJ et al (2003). Microwave-assisted polymer-supported combinatorial synthesis. Curr Med Chem 10: 2403–2423

    Article  PubMed  CAS  Google Scholar 

  132. Zhang W (2007). Fluorous-enhanced multicomponent reactions for making drug-like library scaffolds. Comb Chem High Throughput Screen 10: 219–229

    Article  PubMed  CAS  Google Scholar 

  133. Zhang W (2006). Microwave-enhanced high-speed fluorous synthesis. Top Curr Chem 266: 145–166

    Article  PubMed  CAS  Google Scholar 

  134. Olofsson K and Larhed M (2004). Microwave-assisted fluorous chemistry. In: Gladysz, JA, Curran, DP and Horvath, IT (eds) Handbook of fluorous chemistry, pp 359–365. Wiley-VCH, Weinheim

    Chapter  Google Scholar 

  135. Collins JM and Collins MJ (2006). Microwave-enhanced solid-phase peptide synthesis. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 898–930. Wiley-VCH, Weinheim

    Google Scholar 

  136. Grieco P (2004). The use of microwave irradiation in peptide chemistry. Chim Oggi 22: 18–20

    CAS  Google Scholar 

  137. Collins JM and Leadbeater NE (2007). Microwave energy: a versatile tool for the biosciences. Org Biomol Chem 5: 1141–1150

    Article  PubMed  CAS  Google Scholar 

  138. Rejasse B, Lamare S and Legoy MD et al (2007). Influence of microwave irradiation on enzymatic properties: applications in enzyme chemistry. J Enzyme Inhib Med Chem 22: 518–526

    Article  PubMed  CAS  Google Scholar 

  139. Cioffi EA (2008). High-energy glycoconjugates: synthetic transformations of carbohydrates using microwave and ultrasonic energy. Curr Top Med Chem 8: 152–158

    Article  PubMed  CAS  Google Scholar 

  140. Corsaro A, Chiacchio U and Pistarà V et al (2006). Microwave-assisted chemistry of carbohydrates. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 579–14. Wiley-VCH, Weinheim

    Google Scholar 

  141. Das SK (2004) Application of microwave irradiation in the synthesis of carbohydrates. Synlett 915-32

  142. Corsaro A, Chiacchio U and Pistarà V et al (2004). Microwave-assisted chemistry of carbohydrates. Curr Org Chem 8: 511–538

    Article  CAS  Google Scholar 

  143. Appukkuttan P, Van der Eycken E (2008) Recent developments in microwave-assisted, transition-metal-catalysed C–C and C–N bond-forming reactions. Eur J Org Chem 1133-155

  144. Singh BK, Kaval N and Tomar S et al (2008). Transition metal- catalyzed carbon–carbon bond formation Suzuki, Heck, and Sonogashira reactions using microwave and microtechnology. Org Process Res Dev 12: 468–474

    Article  CAS  Google Scholar 

  145. Larhed M, Wannberg J and Hallberg A (2007). Controlled microwave heating as an enabling technology: expedient synthesis of protease inhibitors in perspective. QSAR Comb Sci 26: 51–68

    Article  CAS  Google Scholar 

  146. Olofsson K, Nilsson P and Larhed M (2006). Microwave-assisted transition metal-catalyzed coupling reactions. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 685–725. Wiley-VCH, Weinheim

    Google Scholar 

  147. Wannberg J, Ersmark K and Larhed M (2006). Microwave-accelerated synthesis of protease inhibitors. Top Curr Chem 266: 167–198

    Article  CAS  Google Scholar 

  148. Maes BUW (2006). Transition-metal-based carbon–carbon and carbon–heteroatom bond formation for the synthesis and decoration of heterocycles. Top Heterocycl Chem 1: 155–211

    Article  CAS  Google Scholar 

  149. Nilsson P, Olofsson K and Larhed M (2006). Microwave-assisted and metal-catalyzed coupling reactions. Top Curr Chem 266: 103–144

    Article  CAS  Google Scholar 

  150. Olofsson K and Larhed M (2005). Microwave-accelerated metal catalysis: organic transformations at warp speed. In: Tierney, JP and Lidström, P (eds) Microwave assisted organic synthesis, pp 23–43. Blackwell, Oxford

    Chapter  Google Scholar 

  151. Lee J and Hlasta DJ (2004). Applications of microwaves. In: Beller, M and Bolm, C (eds) Transition metals for organic synthesis, 2nd edn. pp 597–608. Wiley-VCH, Weinheim

    Google Scholar 

  152. Olofsson K, Hallberg A and Larhed M (2002). Transition metal catalysis and microwave flash heating in organic chemistry. In: Loupy, A (eds) Microwaves in organic synthesis, pp 379–403. Wiley-VCH, Weinheim

    Chapter  Google Scholar 

  153. Larhed M, Moberg C and Hallberg A (2002). Microwave-accelerated homogeneous catalysis in organic chemistry. Acc Chem Res 35: 717–727

    Article  PubMed  CAS  Google Scholar 

  154. Coquerel Y, Rodriguez J (2008) Microwave-assisted olefin metathesis. Eur J Org Chem 1125-132

  155. Aitken SG and Abell AD (2005). Olefin metathesis: catalyst development, microwave catalysis and domino applications. Aust J Chem 58: 3–13

    Article  Google Scholar 

  156. Bagley MC and Lubinu MC (2006). Microwave-assisted multicomponent reactions for the synthesis of heterocycles. Top Heterocycl Chem 1: 31–58

    Article  CAS  Google Scholar 

  157. de Boer T, Amore A and Orru RVA (2006). Multicomponent reactions under microwave irradiation conditions. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 788–819. Wiley-VCH, Weinheim

    Google Scholar 

  158. Westman J (2005). Speed and efficiency in the production of diverse structures: microwave-assisted multi-component reactions. In: Tierney, JP and Lidström, P (eds) Microwave assisted organic synthesis, pp 102–132. Blackwell, Oxford

    Chapter  Google Scholar 

  159. Polshettiwar V and Varma RS (2008). Greener and expeditious synthesis of bioactive heterocycles using microwave irradiation. Pure Appl Chem 80: 777–790

    Article  CAS  Google Scholar 

  160. de la Hoz A, Díaz-Ortiz A and Moreno A et al (2007). Microwave-assisted reactions in heterocyclic compounds with applications in medicinal and supramolecular chemistry. Comb Chem High Throughput Screen 10: 877–902

    Article  PubMed  CAS  Google Scholar 

  161. Besson T and Chosson E (2007). Microwave-assisted synthesis of bioactive quinazolines and quinazolinones. Comb Chem High Throughput Screen 10: 903–917

    Article  PubMed  CAS  Google Scholar 

  162. Bazureau JP, Hamelin J and Mongin F et al (2006). Microwaves in heterocylic chemistry. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 456–523. Wiley-VCH, Weinheim

    Google Scholar 

  163. Suna E and Mutule I (2006). Microwave-assisted heterocyclic chemistry. Top Curr Chem 266: 49–101

    Article  CAS  Google Scholar 

  164. Pemberton N, Chorell E and Almqvist F (2006). Microwave-assisted synthesis and functionalization of 2-pyridones, 2-quinolones and other ring-fused 2-pyridones. Top Heterocycl Chem 1: 1–30

    Article  CAS  Google Scholar 

  165. Besson T and Thiéry V (2006). Microwave-assisted synthesis of sulfur and nitrogen-containing heterocycles. Top Heterocycl Chem 1: 59–78

    Article  CAS  Google Scholar 

  166. Rodriguez M and Taddei M (2006). Synthesis of heterocycles via microwave-assisted cycloadditions and cyclocondensations. Top Heterocycl Chem 1: 213–266

    Article  CAS  Google Scholar 

  167. Kaval N, Appukkuttan P and Van der Eycken E (2006). The chemistry of 2-(1H)-pyrazinones in solution and on solid support. Top Heterocycl Chem 1: 267–304

    Article  CAS  Google Scholar 

  168. Shipe WD, Yang F and Zhao Z et al (2006). Convenient and general microwave-assisted protocols for the expedient synthesis of heterocycles. Heterocycles 70: 655–689

    Article  CAS  Google Scholar 

  169. Rakhmankulov DL, Shavshukova SY and Latypova FN (2005). Synthesis and transformations of heterocyclic compounds under the influence of microwave radiation. Chem Heterocycl Comp 41: 951–961

    Article  CAS  Google Scholar 

  170. Besson T and Brain CT (2005). Heterocyclic chemistry using microwave-assisted approaches. In: Tierney, JP and Lidström, P (eds) Microwave assisted organic synthesis, pp 44–74. Blackwell, Oxford

    Chapter  Google Scholar 

  171. Molteni V and Ellis DA (2005). Recent advances in microwave-assisted synthesis of heterocyclic compounds. Curr Org Synth 2: 333–375

    Article  CAS  Google Scholar 

  172. Xu Y and Guo QX (2004). Syntheses of heterocyclic compounds under microwave irradiation. Heterocycles 63: 903–974

    Article  CAS  Google Scholar 

  173. Katritzky AR, Singh SK (2003) Microwave-assisted heterocyclic synthesis. ARKIVOC xiii:68-6

  174. Hamelin J, Bazureau JP and Texier-Boullet F (2002). Microwaves in heterocyclic chemistry. In: Loupy, A (eds) Microwaves in organic synthesis, pp 253–293. Wiley-VCH, Weinheim

    Chapter  Google Scholar 

  175. Bougrin K, Soufiaoui M and Bashiardes G (2006). Microwaves in cycloadditions. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 524–578. Wiley-VCH, Weinheim

    Google Scholar 

  176. de la Hoz A, Díaz-Ortiz A and Langa F (2002). Microwaves in cycloadditions. In: Loupy, A (eds) Microwaves in organic synthesis, pp 295–343. Wiley-VCH, Weinheim

    Google Scholar 

  177. de la Hoz A, Díaz-Ortiz A, Moreno A et al (2000) Cycloadditions under microwave irradiation conditions: methods and applications. Eur J Org Chem 3659-673

  178. Liu JF (2007). Rapid syntheses of biologically active quinazolinone natural products using microwave technology. Curr Org Synth 4: 223–237

    Article  CAS  Google Scholar 

  179. Appukkuttan P and Van der Eycken E (2006). Microwave-assisted natural product chemistry. Top Curr Chem 266: 1–47

    Article  CAS  Google Scholar 

  180. Klán P and Církva V (2006). Microwaves in photochemistry. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 860–897. Wiley-VCH, Weinheim

    Google Scholar 

  181. Klán P and Církva V (2002). Microwave in photochemistry. In: Loupy, A (eds) Microwaves in organic synthesis, pp 463–486. Wiley-VCH, Weinheim

    Chapter  Google Scholar 

  182. Stone-Elander S, Elander N and Thorell JO et al (2007). Microwaving in F-18 chemistry: quirks and tweaks. Ernst Schering Res Found Workshop 64: 243–269

    Article  Google Scholar 

  183. Jones JR and Lu SY (2006). Microwave-enhanced radiochemistry. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 820–859. Wiley-VCH, Weinheim

    Google Scholar 

  184. Jones JR and Lu SY (2002). Microwave-enhanced radiochemistry. In: Loupy, A (eds) Microwaves in organic synthesis, pp 435–462. Wiley-VCH, Weinheim

    Chapter  Google Scholar 

  185. Stone-Elander S and Elander N (2002). Microwave applications in radiolabelling with short-lived positron-emitting radionuclides. J Label Comp Radiopharm 45: 715–746

    Article  CAS  Google Scholar 

  186. Elander N, Jones JR, Lu SY et al (2000) Microwave-enhanced radiochemistry. Chem Soc Rev: 239-50

  187. Cravotto G and Cintas P (2007). The combined use of microwaves and ultrasound: improved tools in process chemistry and organic synthesis. Chem Eur J 13: 1902–1909

    Article  CAS  Google Scholar 

  188. Langa F and de la Cruz P (2007). Microwave irradiation. An important tool to functionalize fullerenes and carbon nanotubes. Comb Chem High Throughput Screen 10: 766–782

    Article  PubMed  CAS  Google Scholar 

  189. Langa F and de la Cruz P (2006). Application of microwave irradiation in fullerene and carbon nanotube chemistry. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 931–958. Wiley-VCH, Weinheim

    Google Scholar 

  190. Vanetsev AS and Tretyakov YD (2007). Microwave-assisted synthesis of individual and multicomponent oxides. Russ Chem Rev 76: 397–413

    Article  CAS  Google Scholar 

  191. Millos CJ, Whittaker AG and Brechin EK (2007). Microwave heating—a new synthetic tool for cluster synthesis. Polyhedron 26: 1927–1933

    Article  CAS  Google Scholar 

  192. Hájek M (2006). Microwave catalysis in organic synthesis. In: Loupy, A (eds) Microwaves in organic synthesis, 2nd edn. pp 615–652. Wiley-VCH, Weinheim

    Google Scholar 

  193. Hájek M (2002). Microwave catalysis in organic synthesis. In: Loupy, A (eds) Microwaves in organic synthesis, pp 345–378. Wiley-VCH, Weinheim

    Chapter  Google Scholar 

  194. Gellis A, Rathelot P, Crozet MP et al (2002) Utility of microwaves as new methodology for electron transfer reactions. In: Vanelle P (ed) Electron transfer reactions in organic synthesis, research signpost, Trivandrum, pp 113-30

  195. Mavandadi F (2008). Microwave technology in process optimization. In: Gadamasetti, K (eds) Process chemistry in the pharmaceutical industry, pp 403–426. CRC, Danvers

    Google Scholar 

  196. Kremsner JM, Stadler A and Kappe CO (2006). The scale-up of microwave-assisted organic synthesis. Top Curr Chem 266: 233–278

    Article  CAS  Google Scholar 

  197. Lehmann H (2006) Scale-up in microwave-accelerated organic synthesis. In: Seeberger PH, Blume T (eds) Ernst Schering foundation symposium proceedings. Springer, Berlin, pp 133-49

  198. Roberts BA and Strauss CR (2005). Scale-up of microwave-assisted organic synthesis. In: Tierney, JP and Lidström, P (eds) Microwave assisted organic synthesis, pp 237–271. Blackwell, Oxford

    Chapter  Google Scholar 

  199. Wolkenberg SE, Shipe WD and Lindsley CW et al (2005). Applications of microwave-assisted organic synthesis on the multigram scale. Curr Opin Drug Discov Dev 8: 701–708

    CAS  Google Scholar 

  200. Baxendale IR, Hayward JJ and Ley SV (2007). Microwave reactions under continuous flow conditions. Comb Chem High Throughput Screen 10: 802–836

    Article  PubMed  CAS  Google Scholar 

  201. Glasnov TN and Kappe CO (2007). Microwave-assisted synthesis under continuous-flow conditions. Macromol Rapid Commun 28: 395–410

    Article  CAS  Google Scholar 

  202. Schwalbe T and Simons K (2006). Faster selective chemistry by microflow and continuous microwave synthesis. Chim Oggi 24: 56–61

    CAS  Google Scholar 

  203. Baxendale IR and Pitts MR (2006). Microwave flow chemistry: the next evolutionary step in synthetic chemistry?. Chim Oggi 24: 41–45

    CAS  Google Scholar 

  204. Razzaq T, Kremsner JM and Kappe CO (2008). Investigating the existence of nonthermal/specific microwave effects using silicon carbide heating elements as power modulators. J Org Chem 73: 6321–6329

    Article  PubMed  CAS  Google Scholar 

  205. Herrero MA, Kremsner JM and Kappe CO (2008). Nonthermal microwave effects revisited—on the importance of internal temperature monitoring and agitation in microwave chemistry. J Org Chem 73: 36–47

    Article  PubMed  CAS  Google Scholar 

  206. Kremsner JM, Kappe CO (2005) Microwave-assisted organic synthesis in near-critical water at 300 °C. A proof-of-concept study. Eur J Org Chem: 3672-679

  207. Kremsner JM and Kappe CO (2006). Silicon carbide passive heating elements in microwave-assisted organic synthesis. J Org Chem 71: 4651–4658

    Article  PubMed  CAS  Google Scholar 

  208. Bacsa B, Horváti K and Bősze S et al (2008). Solid-phase synthesis of difficult peptide sequences at elevated temperatures—a critical comparison of microwave and conventional heating technologies. J Org Chem 73: 7532–7542

    Article  PubMed  CAS  Google Scholar 

  209. Hosseini M, Stiasni N, Barbieri V and Kappe CO (2007). Microwave-assisted asymmetric organocatalysis. A probe for non-thermal microwave effects and the concept of simultaneous cooling. J Org Chem 72: 1417–1424

    Article  PubMed  CAS  Google Scholar 

  210. Razzaq T and Kappe CO (2008). On the energy efficiency of microwave-assisted organic reactions. ChemSusChem 1: 123–132

    Article  PubMed  CAS  Google Scholar 

  211. Katritzky AR, Cai C and Collins MD et al (2006). Incorporation of microwave synthesis into the undergraduate organic laboratory. J Chem Educ 83: 634–636

    Article  CAS  Google Scholar 

  212. Murphree SS and Kappe CO (2009). Microwave-assisted carbonyl chemistry for the undergraduate laboratory. J Chem Educ 86: 227–229

    Article  Google Scholar 

  213. Biotage Pathfinder Database (http://www.biotagepathfinder.com)

  214. Microwave-Assisted Organic Synthesis Database (http://www.mwchemdb.com)

  215. Microwave Chemistry Literature Highlights (http://www.organic-chemistry.org/Highlights/microwave.shtm)

  216. Websites on microwave synthesis. http://www.maos.net; http://microwavesynthesis.net

  217. Moseley JD, Lenden P, Thomson AD and Gilday JP (2007). The importance of agitation and fill volume in small scale scientific microwave reactors. Tetrahedron Lett 48: 6084–6087

    Article  CAS  Google Scholar 

  218. Kormos CM and Leadbeater NE (2008). Preparation of nonsymmetrically substituted stilbenes in a one-pot two-step Heck strategy using ethene as a reagent. J Org Chem 73: 3854–3858

    Article  PubMed  CAS  Google Scholar 

  219. Lachance N, April M, Joly MA (2005) Rapid and efficient microwave-assisted synthesis of 4-, 5-, 6- and 7-azaindoles. Synthesis: 2571-577

  220. Vasudevan A, Tseng PS and Djuric SW (2006). A post aza Baylis-Hillman/Heck coupling approach towards the synthesis of constrained scaffolds. Tetrahedron Lett 47: 8591–8593

    Article  CAS  Google Scholar 

  221. Kesavan S, Panek JS and Porco JA (2007). Preparation of alkylidene indane and related scaffolds and their further elaboration to novel chemotypes. Org Lett 9: 5203–5206

    Article  PubMed  CAS  Google Scholar 

  222. Donets PA and Van der Eycken E (2007). Efficient synthesis of the 3-benzazepine framework via intramolecular Heck reductive cyclization. Org Lett 9: 3017–3020

    Article  PubMed  CAS  Google Scholar 

  223. Fields WH, Khan AK and Sabat M et al (2008). One-pot tandem decarboxylative allylation-Heck cyclization of allyl diphenylglycinate imines: rapid access to polyfunctionalized 1-aminoindanes. Org Lett 10: 5131–5134

    Article  PubMed  CAS  Google Scholar 

  224. Svennebring A, Nilsson P and Larhed M (2007). Microwave-accelerated spiro-cyclizations of o-halobenzyl cyclohexenyl ethers by palladium(0) catalysis. J Org Chem 72: 5851–5854

    Article  PubMed  CAS  Google Scholar 

  225. Datta GK, Hallberg A and von Schenck H et al (2006). Selective terminal Heck arylation of vinyl ethers with aryl chlorides: a combined experimental-computational approach including synthesis of betaxolol. J Org Chem 71: 3896–3903

    Article  PubMed  CAS  Google Scholar 

  226. Datta GK, Nordeman P and Dackenberg J et al (2008). Enantiopure 2-aryl-2-methyl cyclopentanones by an asymmetric chelation-controlled Heck reaction using aryl bromides: increased preparative scope and effect of ring size on reactivity and selectivity. Tetrahedron Asymmetry 19: 1120–1126

    Article  CAS  Google Scholar 

  227. Arvela RK, Pasquini S and Larhed M (2007). Highly regioselective internal Heck arylation of hydroxyalkyl vinyl ethers by aryl halides in water. J Org Chem 72: 6390–6396

    Article  PubMed  CAS  Google Scholar 

  228. Dounay AB, Humphreys PG, Overman LE and Wrobleski AD (2008). Total synthesis of the strychnos alkaloid (+)-minfiensine: tandem enantioselective intramolecular Heck-iminium ion cyclization. J Am Chem Soc 130: 5368–5377

    Article  PubMed  CAS  Google Scholar 

  229. Yang J, Wu H and Shen L et al (2007). Total synthesis of (±)-communesin F. J Am Chem Soc 129: 13794–13795

    Article  PubMed  CAS  Google Scholar 

  230. Mata Y, Pàmies O and Diéguez M (2007). Screening of a modular sugar-based phosphite-oxazoline ligand library in asymmetric Pd-catalyzed Heck reactions. Chem Eur J 13: 3296–3304

    Article  CAS  Google Scholar 

  231. Kaukoranta P, Källström K and Andersson PG (2007). Microwave-assisted asymmetric intermolecular Heck reaction using phosphine-thiazole ligands. Adv Synth Catal 349: 2595–2602

    Article  CAS  Google Scholar 

  232. Andappan MMS, Nilsson P and von Schenck H et al (2004). Dioxygen-promoted regioselective oxidative Heck arylations of electron-rich olefins with arylboronic acids. J Org Chem 69: 5212–5218

    Article  PubMed  CAS  Google Scholar 

  233. Arvela RK and Leadbeater NE (2005). Microwave-promoted Heck coupling using ultralow metal catalyst concentrations. J Org Chem 70: 1786–1790

    Article  PubMed  CAS  Google Scholar 

  234. Püschl A, Rudbeck HC, Faldt A et al (2005) Versatile synthesis of 3-arylindan-1-ones by palladium-catalyzed intramolecular reductive cyclization of bromochalcones. Synthesis: 291-95

  235. Cheung WS, Patch RJ and Player MR (2005). A tandem Heck-carbocyclization/Suzuki-coupling approach to the stereoselective syntheses of asymmetric 3,3-(diarylmethylene)indolinones. J Org Chem 70: 3741–3744

    Article  PubMed  CAS  Google Scholar 

  236. Franck P, Hostyn S and Dajka-Halász B et al (2008). Pd-catalyzed intramolecular direct arylations at high temperature. Tetrahedron 64: 6030–6037

    Article  CAS  Google Scholar 

  237. Lacrouts P, Parsons P, Penkett C et al (2005) A palladium-assisted ring annulation for the synthesis of the batrachotoxin ring system. Synlett: 2767-768

  238. Declerck V, Martinez J, Lamaty F (2006) Microwave-assisted copper-catalyzed Heck reaction in PEG solvent. Synlett: 3029-032

  239. Leadbeater NE and Smith RJ (2006). Real-time monitoring of microwave-promoted Suzuki coupling reactions using in situ Raman spectroscopy. Org Lett 8: 4589–4591

    Article  PubMed  CAS  Google Scholar 

  240. Leadbeater NE, Williams VA and Barnard TM et al (2006). Open-vessel microwave-promoted Suzuki reactions using low levels of palladium catalyst: optimization and scale-up. Org Process Res Dev 10: 833–837

    Article  CAS  Google Scholar 

  241. Baxendale IR, Griffiths-Jones CM, Ley SV and Tranmer GK (2006). Microwave-assisted Suzuki coupling reactions with an encapsulated palladium catalyst for batch and continuous-flow transformations. Chem Eur J 12: 4407–4416

    Article  CAS  Google Scholar 

  242. Sharma AK, Gowdahalli K and Krzeminski J et al (2007). Microwave-assisted Suzuki cross-coupling reaction, a key step in the synthesis of polycyclic aromatic hydrocarbons and their metabolites. J Org Chem 72: 8987–8989

    Article  PubMed  CAS  Google Scholar 

  243. Antonow D, Cooper N and Howard PW et al (2007). Parallel synthesis of a novel C2-aryl pyrrolo[2,1-c][1,4]benzodiazepine (PBD) library. J Comb Chem 9: 437–445

    Article  PubMed  CAS  Google Scholar 

  244. Vickerstaffe E, Villard AL, Ladlow M et al (2007) Chromatography-free Suzuki reactions using a polymer-assisted solution-phase (PASP) approach. Synlett 1251-254

  245. Freundlich JS and Landis HE (2006). An expeditious aqueous Suzuki–Miyaura method for the arylation of bromophenols. Tetrahedron Lett 47: 4275–4279

    Article  CAS  Google Scholar 

  246. Navarro O, Kaur H, Mahjoor P and Nolan SP (2004). Cross-coupling and dehalogenation reactions catalyzed by (N-heterocyclic carbene)Pd(allyl)Cl complexes. J Org Chem 69: 3173–3180

    Article  PubMed  CAS  Google Scholar 

  247. Clarke ML, France MB and Fuentes JA et al (2007). A convenient catalyst system for microwave accelerated cross-coupling of a range of aryl boronic acids with aryl chlorides. Beilstein J Org Chem 3: 18–21

    Article  PubMed  CAS  Google Scholar 

  248. Poondra RP, Fischer PM and Turner NJ (2004). Efficient palladium-catalyzed cross-coupling of β-chloroalkylidene/arylidene malonates using microwave chemistry. J Org Chem 69: 6920–6922

    Article  PubMed  CAS  Google Scholar 

  249. Flegeau EF, Popkin ME and Greaney MF (2006). Suzuki coupling of oxazoles. Org Lett 8: 2495–2498

    Article  CAS  Google Scholar 

  250. Stanetty P, Schnürch M and Mihovilovic MD (2006). Halogenated 2′ chlorobithiazoles via Pd-catalyzed cross-coupling reactions. J Org Chem 71: 3754–3761

    Article  PubMed  CAS  Google Scholar 

  251. Savall BM and Fontimayor JR (2008). Synthesis of 2-arylbenzimidazoles via microwave Suzuki–Miyaura reaction of unprotected 2-chlorobenzimidazoles. Tetrahedron Lett 49: 6667–6669

    Article  CAS  Google Scholar 

  252. DiMauro EF and Vitullo JR (2006). Microwave-assisted preparation of fused bicyclic heteroaryl boronates: application in one-pot Suzuki couplings. J Org Chem 71: 3959–3962

    Article  PubMed  CAS  Google Scholar 

  253. Fitzmaurice RJ, Etheridge ZC, Jumel E et al (2006) Microwave enhanced palladium catalysed coupling reactions: a diversity- oriented synthesis approach to functionalised flavones. Chem Commun 4814-816

  254. Högermeier J and Reißig HU (2007). First comprehensive investigation of Suzuki couplings of alkenyl nonaflates with aryl and alkenyl boronic acid derivatives by using classical conditions and microwave heating. Chem Eur J 13: 2410–2420

    Article  CAS  Google Scholar 

  255. Bazin MA, Kihel LE and Lancelot JC et al (2007). Original one-pot microwave-promoted Hunsdiecker–Suzuki strategy: straightforward access to trans-1,2-diarylethenes from cinnamic acids. Tetrahedron Lett 48: 4347–4351

    Article  CAS  Google Scholar 

  256. Melucci M, Barbarella G and Zambianchi M et al (2004). Solution-phase microwave-assisted synthesis of unsubstituted and modified α-quinque- and sexithiophenes. J Org Chem 69: 4821–4828

    Article  PubMed  CAS  Google Scholar 

  257. Alesi S, Di Maria F and Melucci M et al (2008). Microwave-assisted synthesis of oligothiophene semiconductors in aqueous media using silica and chitosan supported Pd catalysts. Green Chem 10: 517–523

    Article  CAS  Google Scholar 

  258. De Borggraeve W, Appukkuttan P, Azzam R et al (2005) Synthesis of novel functionalised symmetric bi-2(1H)-pyrazinones. Synlett: 777-80

  259. Weber J and Thomas A (2008). Toward stable interfaces in conjugated polymers: microporous poly(p-phenylene) and poly(phenyleneethynylene) based on a spirobifluorene building block. J Am Chem Soc 130: 6334–6335

    Article  PubMed  CAS  Google Scholar 

  260. Kang YK, Deria P and Carroll PJ et al (2008). Synthesis of water-soluble poly(p-phenyleneethynylene) in neat water under aerobic conditions via Suzuki–Miyaura polycondensation using a diborylethyne synthon. Org Lett 10: 1341–1344

    Article  PubMed  CAS  Google Scholar 

  261. Perissutti E, Frecentese F and Lavecchia A et al (2007). Design and synthesis of potential β-sheet nucleators via Suzuki coupling reaction. Tetrahedron 63: 12779–12785

    Article  CAS  Google Scholar 

  262. Genov M, Almorín A and Espinet P (2007). Microwave assisted asymmetric Suzuki–Miyaura and Negishi cross-coupling reactions: synthesis of chiral binaphthalenes. Tetrahedron Asymmetry 18: 625–627

    Article  CAS  Google Scholar 

  263. Kim JK, Kim YH and Nam HT et al (2008). Total synthesis of aristolactams via a one-pot Suzuki–Miyaura coupling/aldol condensation cascade reaction. Org Lett 10: 3543–3546

    Article  PubMed  CAS  Google Scholar 

  264. Kim YH, Lee H and Kim YJ et al (2008). Direct one-pot synthesis of phenanthrenes via Suzuki–Miyaura coupling/aldol condensation cascade reaction. J Org Chem 73: 495–501

    Article  PubMed  CAS  Google Scholar 

  265. Li H-Y, Wang Y and McMillen WT et al (2007). A concise synthesis of quinazolinone TGF-β RI inhibitor through one-pot three- component Suzuki–Miyaura/etherification and imidate–amide rearrangement reactions. Tetrahedron 63: 11763–11770

    Article  CAS  Google Scholar 

  266. VanAlstine MA, Wentland MP and Cohen DJ et al (2007). Redefining the structure-activity relationships of 2,6-methano-3-benzazocines. 5. Opioid receptor binding properties of N-((4′-phenyl)-phenethyl) analogues of 8-CAC. Bioorg Med Chem Lett 17: 6516–6520

    Article  PubMed  CAS  Google Scholar 

  267. Wilson DP, Wan ZK and Xu WX et al (2007). Structure-based optimization of protein tyrosine phosphatase 1B inhibitors: from the active site to the second phosphotyrosine binding site. J Med Chem 50: 4681–4698

    Article  PubMed  CAS  Google Scholar 

  268. Duncton MAJ, Estiarte MA and Tan D et al (2008). Preparation of aryloxetanes and arylazetidines by use of an alkyl–aryl Suzuki coupling. Org Lett 10: 3259–3262

    Article  PubMed  CAS  Google Scholar 

  269. Tamayo N, Liao H and Stec MM et al (2008). Design and synthesis of peripherally restricted transient receptor potential vanilloid 1 (TRPV1) antagonists. J Med Chem 51: 2744–2757

    Article  PubMed  CAS  Google Scholar 

  270. Benakki H, Colacino E and André C et al (2008). Microwave-assisted multi-step synthesis of novel pyrrolo-[3,2-c]quinoline derivatives. Tetrahedron 64: 5949–5955

    Article  CAS  Google Scholar 

  271. Lépine R and Zhu J (2005). Microwave-assisted intramolecular Suzuki–Miyaura reaction to macrocycle, a concise asymmetric total synthesis of biphenomycin B. Org Lett 7: 2981–2984

    Article  PubMed  CAS  Google Scholar 

  272. Arvela RK, Leadbeater NE, Mack TL and Kormos CM (2006). Microwave-promoted Suzuki coupling reactions with organotrifluoroborates in water using ultra-low catalyst loadings. Tetrahedron Lett 47: 217–220

    Article  CAS  Google Scholar 

  273. Kabalka GW and Al-Masum M (2005). Microwave enhanced cross-coupling reactions involving potassium organotrifluoroborates. Tetrahedron Lett 46: 6329–6331

    Article  CAS  Google Scholar 

  274. Alacid E and Nájera C (2008). First cross-coupling reaction of potassium aryltrifluoroborates with organic chlorides in aqueous media catalyzed by an oxime-derived palladacycle. Org Lett 10: 5011–5014

    Article  PubMed  CAS  Google Scholar 

  275. Yan J, Zhu M, Zhou Z (2006) Rapid microwave-promoted catalyst- and base-free Suzuki-type coupling reaction in water. Eur J Org Chem: 2060-062

  276. Poláčková V, Toma S and Augustínová I (2006). Microwave-promoted cross-coupling of acid chlorides with arylboronic acids: a convenient method for preparing aromatic ketones. Tetrahedron 62: 11675–11678

    Article  CAS  Google Scholar 

  277. Ekoue-Kovi K, Xu H and Wolf C (2008). Palladium-phosphinous acid-catalyzed cross-coupling of aliphatic and aromatic acyl chlorides with boronic acids. Tetrahedron Lett 49: 5773–5776

    Article  CAS  Google Scholar 

  278. Wang HJ, Keilman J and Pabba C et al (2005). Microwave-assisted cross-coupling of 3-chloro-2-pyrazolines and 3-chloro-1-phenyl-1,4,5,6-tetrahydropyridazine with aryl boronic acids. Tetrahedron Lett 46: 2631–2634

    Article  CAS  Google Scholar 

  279. Ito F, Iwasaki M and Watanabe T et al (2005). The first total synthesis of kwakhurin, a characteristic component of a rejuvenating plant, “kwao keur” toward an efficient synthetic route to phytoestrogenic isoflavones. Org Biomol Chem 3: 674–681

    Article  PubMed  CAS  Google Scholar 

  280. Nehls BS, Galbrecht F and Bilge A et al (2005). Synthesis and spectroscopy of an oligophenyl based cruciform with remarkable π-π assisted folding. Org Biomol Chem 3: 3213–3219

    Article  PubMed  CAS  Google Scholar 

  281. Huang H, Liu H, Jiang H and Chen K (2008). Rapid and efficient Pd-catalyzed Sonogashira coupling of aryl chlorides. J Org Chem 73: 6037–6040

    Article  PubMed  CAS  Google Scholar 

  282. Zheng SL, Reid S and Lin N et al (2006). Microwave-assisted synthesis of ethynylarylboronates for the construction of boronic acid-based fluorescent sensors for carbohydrates. Tetrahedron Lett 47: 2331–2335

    Article  CAS  Google Scholar 

  283. Sørensen US and Pombo-Villar E (2005). Copper-free palladium- catalyzed Sonogashira-type coupling of aryl halides and 1-aryl-2-(trimethylsilyl)acetylenes. Tetrahedron 61: 2697–2703

    Article  CAS  Google Scholar 

  284. Kwan PH, MacLachlan MJ and Swager TM (2004). Rotaxanated conjugated sensory polymers. J Am Chem Soc 126: 8638–8639

    Article  PubMed  CAS  Google Scholar 

  285. Sanz R, Guilarte V, Castroviejo MP (2008) Simple indole synthesis by one-pot Sonogashira coupling-NaOH-mediated cyclization. Synlett: 3006-010

  286. Hopkins CR and Collar N (2004). An improved method for the synthesis of 6-substituted-5H-pyrrolo[2,3-b]pyrazines via palladium-catalyzed heteroannulation using microwave heating. Tetrahedron Lett 45: 8631–8633

    Article  CAS  Google Scholar 

  287. O’Mahony G, Ehrman E and Grøtli M (2008). Synthesis and photophysical properties of novel cyclonucleosides—substituent effects on fluorescence emission. Tetrahedron 64: 7151–7158

    Article  CAS  Google Scholar 

  288. Schramm OG and Müller TJJ (2006). Microwave-accelerated coupling-isomerization reaction (MACIR)—a general coupling-isomerization synthesis of 1,3-diarylprop-2-en-1-ones. Adv Synth Catal 348: 2565–2570

    Article  CAS  Google Scholar 

  289. Liao WW, Müller TJJ (2006) Sequential coupling-isomerization-coupling reactions—a novel three-component synthesis of aryl chalcones. Synlett: 3469-473

  290. Schramm OG, Müller TJJ (2006) Microwave-accelerated coupling-isomerization-enamine addition-aldol condensation sequences to 1-acetyl-2-amino-cyclohexa-1,3-dienes. Synlett: 1841-846

  291. Willy B, Rominger F, Müller TJJ (2008) Novel microwave-assisted one-pot synthesis of isoxazoles by a three-component coupling-cycloaddition sequence. Synthesis: 293-03

  292. Willy B, Müller TJJ (2008) Regioselective three-component synthesis of highly fluorescent 1,3,5-trisubstituted pyrazoles. Eur J Org Chem: 4157-168

  293. Willy B, Dallos T, Rominger F et al (2008) Three-component synthesis of cryofluorescent 2,4-disubstituted 3H-1,5-benzodiazepines—conformational control of emission properties. Eur J Org Chem: 4796-805

  294. Mehta VP, Sharma A and Van der Eycken E (2008). The first palladium-catalyzed desulfitative Sonogashira-type cross-coupling of (hetero)aryl thioethers with terminal alkynes. Org Lett 10: 1147–1150

    Article  PubMed  CAS  Google Scholar 

  295. Singh BK, Mehta VP and Parmar VS et al (2007). Palladium-catalyzed copper(I)-mediated cross-coupling of arylboronic acids and 2(1H)-pyrazinones facilitated by microwave irradiation with simultaneous cooling. Org Biomol Chem 5: 2962–2965

    Article  PubMed  CAS  Google Scholar 

  296. Singh BJ, Parmar VS, Van der Eycken E (2008) Rapid palladium-catalyzed C3-arylation of 2(1H)-pyrazinones: effect of simultaneous cooling on microwave-assisted reactions on solid support. Synlett: 3021-025

  297. Ermolat’ev D, Mehta VP, Van der Eycken E (2007) Ag +-mediated synthesis of substituted furo[2,3-b]pyrazines. Synlett: 3117-122

  298. Mehta VP, Sharma A and Van Hecke K et al (2008). A novel and versatile entry to asymmetrically substituted pyrazines. J Org Chem 73: 2382–2388

    Article  PubMed  CAS  Google Scholar 

  299. Silva S, Sylla B and Suzenet F et al (2008). Oxazolinethiones and oxazolidinethiones for the first copper-catalyzed desulfurative cross-coupling reaction and first Sonogashira applications. Org Lett 10: 853–856

    Article  PubMed  CAS  Google Scholar 

  300. Collings JC, Parsons AC, Porres L et al (2006) Optical properties of donor-acceptor phenylene-ethynylene systems containing the 6-methylpyran-2-one group as an acceptor. Chem Commun 2666-668

  301. Stuhr-Hansen N, Sørensen JK and Moth-Poulsen K et al (2005). Synthetic protocols and building blocks for molecular electronics. Tetrahedron 61: 12288–12295

    Article  CAS  Google Scholar 

  302. Togninelli A, Gevariya H and Alongi M et al (2007). An improved general method for palladium catalyzed alkenylations and alkynylations of aryl halides under microwave conditions. Tetrahedron Lett 48: 4801–4803

    Article  CAS  Google Scholar 

  303. de Souza R, Bittar M, Mendes L et al (2008) Copper-free Sonogashira reaction using gold nanoparticles supported on Ce 2 O 3, Nb 2 O 5 and SiO 2 under microwave irradiation. Synlett: 1777-780

  304. Nehls BS, Asawapirom U and Füldner S et al (2004). Semiconducting polymers via microwave-assisted Suzuki and Stille cross-coupling reactions. Adv Funct Mater 14: 352–356

    Article  CAS  Google Scholar 

  305. Usta H, Facchetti A and Marks TJ (2008). Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors based on the indenofluorenebis(dicyanovinylene) core. J Am Chem Soc 130: 8580–8581

    Article  PubMed  CAS  Google Scholar 

  306. Appukkuttan P, Husain M, Gupta R et al (2006) A chemoselective microwave-assisted one-pot cross-Stille reaction of benzylic halides with 2(1H)-pyrazinones using simultaneous cooling. Synlett: 1491-496

  307. Jeon SL, Kim JK and Son JB et al (2007). One pot synthesis of novel α, β-dichloro-β-trifluoromethylated enones and their application to the synthesis of trifluoromethylated heterocycles. J Fluor Chem 128: 153–157

    Article  CAS  Google Scholar 

  308. Hodgson DM, Chung YK and Nuzzo I et al (2007). Intramolecular cyclopropanation of unsaturated terminal epoxides and chlorohydrins. J Am Chem Soc 129: 4456–4462

    Article  PubMed  CAS  Google Scholar 

  309. Krascsenicsová K, Walla P, Kasák P et al (2004) Stereoconservative Negishi arylation and alkynylation as an efficient approach to enantiopure 2,2′ diarylated 1,1′ binaphthyls. Chem Commun: 2606-607

  310. Dankwardt JW (2005). Transition metal catalyzed cross-coupling of aryl Grignard reagents with aryl fluorides via Pd- or Ni-activation of the C-F bond: an efficient synthesis of unsymmetrical biaryls—application of microwave technology in ligand and catalyst screening. J Organomet Chem 690: 932–938

    Article  CAS  Google Scholar 

  311. Seganish MW and DeShong P (2004). Palladium-catalyzed cross-coupling of aryl triethylammonium bis(catechol) silicates with aryl bromides using microwave irradiation. Org Lett 6: 4379–4381

    Article  PubMed  CAS  Google Scholar 

  312. Clark ML (2005). First microwave-accelerated Hiyama coupling of aryl- and vinylsiloxane derivatives: clean cross-coupling of aryl chlorides within minutes. Adv Synth Catal 347: 303–307

    Article  CAS  Google Scholar 

  313. Alacid E and Nájera C (2006). Solvent-less and fluoride-free Hiyama reaction of arylsiloxanes with aryl bromides and chlorides promoted by sodium hydroxide: a useful protocol for palladium recycling and product isolation. Adv Synth Catal 348: 945–952

    Article  CAS  Google Scholar 

  314. Alacid E and Nájera C (2006). The first fluoride-free Hiyama reaction of vinylsiloxanes promoted by sodium hydroxide in water. Adv Synth Catal 348: 2085–2091

    Article  CAS  Google Scholar 

  315. Alacid E and Nájera C (2008). Aqueous sodium hydroxide promoted cross-coupling reactions of alkenyltrialkoxysilanes under ligand-free conditions. J Org Chem 73: 2315–2322

    Article  PubMed  CAS  Google Scholar 

  316. Wu X, Ekegren JK and Larhed M (2006). Microwave-promoted aminocarbonylation of aryl iodides, aryl bromides, and aryl chlorides in water. Organometallics 25: 1434–1439

    Article  CAS  Google Scholar 

  317. Appukkuttan P, Axelsson L and Van der Eycken E et al (2008). Microwave-assisted, Mo(CO)6-mediated, palladium-catalyzed amino-carbonylation of aryl halides using allylamine: from exploration to scale-up. Tetrahedron Lett 49: 5625–5628

    Article  CAS  Google Scholar 

  318. Lesma G, Sacchetti A, Silvani A (2006) Palladium-catalyzed hydroxycarbonylation of aryl and vinyl triflates by in situ generated carbon monoxide under microwave irradiation. Synthesis: 594-96

  319. Kormos C, Leadbeater N (2006) Microwave-promoted hydroxycarbonylation in water using gaseous carbon monoxide and pre-pressurized reaction vessels. Synlett: 1663-666

  320. Kormos CM and Leadbeater NE (2007). Alkoxycarbonylation of aryl iodides using gaseous carbon monoxide and pre-pressurized reaction vessels in conjunction with microwave heating. Org Biomol Chem 5: 65–68

    Article  PubMed  CAS  Google Scholar 

  321. Kormos C, Leadbeater N (2007) Alkoxycarbonylation reactions performed using near-stoichiometric quantities of CO. Synlett: 2006-010

  322. Wu X, Rönn R, Gossas T and Larhed M (2005). Easy-to-execute carbonylations: microwave synthesis of acyl sulfonamides using Mo(CO)6 as a solid carbon monoxide source. J Org Chem 70: 3094–3098

    Article  PubMed  CAS  Google Scholar 

  323. Wu X, Mahalingam AK, Wan Y and Alterman M (2004). Fast microwave promoted palladium-catalyzed synthesis of phthalides from bromobenzyl alcohols utilizing DMF and Mo(CO)6 as carbon monoxide sources. Tetrahedron Lett 45: 4635–4638

    Article  CAS  Google Scholar 

  324. Wu X, Nilsson P and Larhed M (2005). Microwave-enhanced carbonylative generation of indanones and 3-acylaminoindanones. J Org Chem 70: 346–349

    Article  PubMed  CAS  Google Scholar 

  325. Enquist PA, Nilsson P, Edin J and Larhed M (2005). Super fast cobalt carbonyl-mediated synthesis of ureas. Tetrahedron Lett 46: 3335–3339

    Article  CAS  Google Scholar 

  326. Petricci E, Mann A and Schoenfelder A et al (2006). Microwaves make hydroformylation a rapid and easy process. Org Lett 8: 3725–3727

    Article  PubMed  CAS  Google Scholar 

  327. Petricci E, Mann A, Salvadori J and Taddei M (2007). Microwave assisted hydroaminomethylation of alkenes. Tetrahedron Lett 48: 8501–8504

    Article  CAS  Google Scholar 

  328. Braga AL, Vargas F, Sehnem JA, Wessjohann LA (2006) Microwave-mediated palladium-catalyzed asymmetric allylic alkylation using chiral-seleno amides. Eur J Org Chem: 4993-997

  329. Yeager AR, Min GK, Schaus SE and Porco JA (2006). Exploring skeletal diversity via ring contraction of glycal-derived scaffolds. Org Lett 8: 5065–5068

    Article  PubMed  CAS  Google Scholar 

  330. Lipshutz BH, Frieman BA and Lee CT et al (2006). Microwave-assisted heterogeneous cross-coupling reactions catalyzed by nickel-in-charcoal (Ni/C). Chem Asian J 1: 417–429

    Article  PubMed  CAS  Google Scholar 

  331. Lipshutz BH, Butler T and Swift E (2008). C–C bond formation catalyzed heterogeneously by nickel-on-graphite (Ni/C g). Org Lett 10: 697-00

    Article  PubMed  CAS  Google Scholar 

  332. Lerebours R and Wolf C (2007). Palladium(II)-catalyzed conjugate addition of arylsiloxanes in water. Org Lett 9: 2737–2740

    Article  PubMed  CAS  Google Scholar 

  333. Frost CG, Penrose SD and Lambshead K et al (2007). Rhodium-catalyzed conjugate addition-enantioselective protonation: the synthesis of α, α′-dibenzyl esters. Org Lett 9: 2119–2122

    Article  PubMed  CAS  Google Scholar 

  334. Hargrave JD, Herbert J and Bish G et al (2006). Rhodium-catalysed addition of organotrialkoxysilanes to α-substituted acrylic esters. Org Biomol Chem 4: 3235–3241

    Article  PubMed  CAS  Google Scholar 

  335. Iyer PS, O’Malley MM and Lucas MC (2007). Microwave-enhanced rhodium-catalyzed conjugate-addition of aryl boronic acids to unprotected maleimides. Tetrahedron Lett 48: 4413–4418

    Article  CAS  Google Scholar 

  336. Navarro O, Marion N and Oonishi Y et al (2006). Suzuki–Miyaura, α-ketone arylation and dehalogenation reactions catalyzed by a versatile N-heterocyclic carbene-palladacycle complex. J Org Chem 71: 685–692

    Article  PubMed  CAS  Google Scholar 

  337. Malcolm SC, Ribe S and Wang F et al (2005). Efficient and scalable arylation of bicyclic lactones to form quaternary centers using conventional and microwave radiation. Tetrahedron Lett 46: 6871–6873

    Article  CAS  Google Scholar 

  338. Beeler AB, Su S, Singleton CA and Porco JA (2007). Discovery of chemical reactions through multidimensional screening. J Am Chem Soc 129: 1413–1419

    Article  PubMed  CAS  Google Scholar 

  339. Lautens M, Tayama E and Herse C (2005). Palladium-catalyzed intramolecular coupling between aryl iodides and allyl moieties via thermal and microwave-assisted conditions. J Am Chem Soc 127: 72–73

    Article  PubMed  CAS  Google Scholar 

  340. Alberico D, Lautens M (2006) Palladium-catalyzed alkylation-alkenylation reactions: rapid access to tricyclic mescaline analogues. Synlett: 2969-972

  341. Mariampillai B, Alberico D and Bidau V et al (2006). Synthesis of polycyclic benzonitriles via a one-pot aryl alkylation/cyanation reaction. J Am Chem Soc 128: 14436–14437

    Article  PubMed  CAS  Google Scholar 

  342. Alberico D, Lautens M (2006) Palladium-catalyzed alkylation–alkenylation reactions: rapid access to tricyclic mescaline analogues. Synlett: 2969-972

  343. Alberico D, Rudolph A and Lautens M (2007). Synthesis of tricyclic heterocycles via a tandem aryl alkylation/Heck coupling sequence. J Org Chem 72: 775–781

    Article  PubMed  CAS  Google Scholar 

  344. Mariampillai B, Alliot J and Li M et al (2007). A convergent synthesis of polysubstituted aromatic nitriles via palladium-catalyzed C–H functionalization. J Am Chem Soc 129: 15372–15379

    Article  PubMed  CAS  Google Scholar 

  345. Rudolph A, Rackelmann N and Marc-Olivier TS et al (2009). Application of secondary alkyl halides to a domino aryl alkylation reaction for the synthesis of aromatic heterocycles. J Org Chem 74: 289–297

    Article  PubMed  CAS  Google Scholar 

  346. Pitts MR, McCormack P and Whittall J (2006). Optimisation and scale-up of microwave assisted cyanation. Tetrahedron 62: 4705–4708

    Article  CAS  Google Scholar 

  347. Chen G, Weng J, Zheng Z et al (2008) Pd/C-catalyzed cyanation of aryl halides in aqueous PEG. Eur J Org Chem: 3524-3528

  348. Christoforou IC and Koutentis PA (2006). New regiospecific isothiazole C–C coupling chemistry. Org Biomol Chem 4: 3681–3693

    Article  PubMed  CAS  Google Scholar 

  349. Gao G, Brown N and Minatoya M et al (2008). N-Vinylpyridinium tetrafluoroborate salts as reagents for the stereoselective and regioselective synthesis of symmetrical (2E, 4E)-1, 6-dioxo-2, 4-dienes. Tetrahedron Lett 49: 6491–6494

    Article  CAS  Google Scholar 

  350. Fager-Jokela E, Kaasalainen E and Leppänen K et al (2008). Development of intermolecular additive free Pauson–Khand reactions for estrone E-ring extension using microwaves. Tetrahedron 64: 10381–10387

    Article  CAS  Google Scholar 

  351. Lee HW, Kwong FY, Chan A (2008) Rh-catalyzed aqueous Pauson-Khand-type cycloaddition in microwave-irradiated medium. Synlett: 1553-556

  352. Shanmugasundaram M, Garcia-Martinez I and Li Q et al (2005). Microwave-assisted solid-phase Dötz benzannulation reaction: a facile synthesis of 2, 3-disubstituted-1, 4-naphthoquinones. Tetrahedron Lett 46: 7545–7548

    Article  CAS  Google Scholar 

  353. Bour C, Suffert J (2006) 4-exo-dig Cyclocarbopalladation: a straightforward synthesis of cyclobutanediols from acyclic γ-bromopropargylic diols under microwave irradiation conditions. Eur J Org Chem: 1390-395

  354. Blond G, Bour C and Salem B et al (2008). A new Pd-catalyzed cascade reaction for the synthesis of strained aromatic polycycles. Org Lett 10: 1075–1078

    Article  PubMed  CAS  Google Scholar 

  355. Oi S, Funayama R and Hattori T et al (2008). Nitrogen-directed ortho-arylation and -heteroarylation of aromatic rings catalyzed by ruthenium complexes. Tetrahedron 64: 6051–6059

    Article  CAS  Google Scholar 

  356. Jiang W, Allan G and Fiordeliso JJ et al (2006). New progesterone receptor antagonists: phosphorus-containing 11β-aryl-substituted steroids. Bioorg Med Chem 14: 6726–6732

    Article  PubMed  CAS  Google Scholar 

  357. Iwasaki M, Hayashi S and Hirano K et al (2007). Microwave-assisted palladium-catalyzed allylation of aryl halides with homoallyl alcohols via retro-allylation. Tetrahedron 63: 5200–5203

    Article  CAS  Google Scholar 

  358. Tundel RE, Anderson KW and Buchwald SL (2006). Expedited palladium-catalyzed amination of aryl nonaflates through the use of microwave-irradiation and soluble organic amine bases. J Org Chem 71: 430–433

    Article  PubMed  CAS  Google Scholar 

  359. Jensen TA, Liang X, Tanner D and Skjaerbaek N (2004). Rapid and efficient microwave-assisted synthesis of aryl aminobenzophenones using Pd-catalyzed amination. J Org Chem 69: 4936–4947

    Article  PubMed  CAS  Google Scholar 

  360. Zhang HQ, Xia Z, Vasudevan A and Djuric SW (2006). Efficient Pd-catalyzed synthesis of 2-arylaminopyrimidines via microwave irradiation. Tetrahedron Lett 47: 4881–4884

    Article  CAS  Google Scholar 

  361. Smith JA, Jones RK, Booker GW and Pyke SM (2008). Sequential and selective Buchwald–Hartwig amination reactions for the controlled functionalization of 6-bromo-2-chloroquinoline: synthesis of ligands for the Tec Src homology 3 domain. J Org Chem 73: 8880–8892

    Article  PubMed  CAS  Google Scholar 

  362. Van Baelen G and Maes BUW (2008). Study of the microwave-assisted hydrolysis of nitriles and esters and the implementation of this system in rapid microwave-assisted Pd-catalyzed amination. Tetrahedron 64: 5604–5619

    Article  CAS  Google Scholar 

  363. Broggi J, Clavier H and Nolan SP (2008). N-Heterocyclic carbenes (NHCs) containing N-C-palladacycle complexes: synthesis and reactivity in aryl amination reactions. Organometallics 27: 5525–5531

    Article  CAS  Google Scholar 

  364. Harmata H, Hong X and Ghosh SK (2004). Microwave-assisted N-arylation of a sulfoximine with aryl chlorides. Tetrahedron Lett 45: 5233–5236

    Article  CAS  Google Scholar 

  365. Tietze M, Iglesias A and Merisor E et al (2005). Efficient methods for the synthesis of 2-hydroxyphenazine based on the Pd-catalyzed N-arylation of aryl bromides. Org Lett 7: 1549–1552

    Article  PubMed  CAS  Google Scholar 

  366. Poondra RR and Turner NJ (2005). Microwave-assisted sequential amide bond formation and intramolecular amidation: a rapid entry to functionalized oxindoles. Org Lett 7: 863–866

    Article  PubMed  CAS  Google Scholar 

  367. Bonnaterre F, Bois-Choussy M and Zhu J (2006). Rapid access to oxindoles by the combined use of an Ugi four-component reaction and a microwave-assisted intramolecular Buchwald–Hartwig amidation reaction. Org Lett 8: 4351–4354

    Article  PubMed  CAS  Google Scholar 

  368. Alen J, Robeyns K and De Borggraeve WM et al (2008). Synthesis of pyrazino[1,2-a]benzimidazol-1(2H)ones via a microwave assisted Buchwald-Hartwig type reaction. Tetrahedron 64: 8128–8133

    Article  CAS  Google Scholar 

  369. Guo D, Huang H and Xu J et al (2008). Efficient iron-catalyzed N-arylation of aryl halides with amines. Org Lett 10: 4513–4516

    Article  PubMed  CAS  Google Scholar 

  370. Yeh VSC and Wiedeman PE (2006). Practical Cu-catalyzed amination of functionalized heteroaryl halides. Tetrahedron Lett 47: 6011–6016

    Article  CAS  Google Scholar 

  371. Rottger S, Sjoberg PJR and Larhed M (2007). Microwave-enhanced copper-catalyzed N-arylation of free and protected amino acids in water. J Comb Chem 9: 204–209

    Article  PubMed  CAS  Google Scholar 

  372. Hafner T, Kunz D (2007) Synthesis of symmetrically and unsymmetrically substituted N, N′ diarylimidazolin-2-ones by copper-catalyzed arylamidation under microwave-assisted and conventional conditions. Synthesis: 1403-411

  373. Chen S, Huang H and Liu X et al (2008). Microwave-assisted efficient copper-promoted N-arylation of amines with arylboronic acids. J Comb Chem 10: 358–360

    Article  PubMed  CAS  Google Scholar 

  374. Singh BK, Appukkuttan P and Claerhout S et al (2006). Copper(II)-mediated cross-coupling of arylboronic acids and 2(1H)-pyrazinones facilitated by microwave irradiation with simultaneous cooling. Org Lett 8: 1863–1866

    Article  PubMed  CAS  Google Scholar 

  375. Pabba C, Wang HJ and Mulligan SR et al (2005). Microwave-assisted synthesis of 1-aryl-1H-indazoles via one-pot two-step Cu-catalyzed intramolecular N-arylation of arylhydrazones. Tetrahedron Lett 46: 7553–7557

    Article  CAS  Google Scholar 

  376. Yadav LD, Yadav BS, Rai VK (2006) Active-copper-promoted expeditious N-arylations in aqueous media under microwave irradiation. Synthesis: 1868-872

  377. Zhu X, Ma Y, Su L et al (2006) Bis(cyclohexanone) oxalyldihydrazone/copper(II) oxide—a novel and efficient catalytic system for Ullmann-type C–N coupling in pure water. Synthesis: 3955-962

  378. Lipshutz BH, Unger JB and Taft BR (2007). Copper-in-charcoal (Cu/C) promoted diaryl ether formation. Org Lett 9: 1089–1092

    Article  PubMed  CAS  Google Scholar 

  379. Lipshutz BH, Nihan DM and Vinogradova E et al (2008). Copper + nickel-in-charcoal (Cu-Ni/C): a bimetallic, heterogeneous catalyst for cross-couplings. Org Lett 10: 4279–4282

    Article  PubMed  CAS  Google Scholar 

  380. Manbeck GF, Lipman AJ and Stockland RA et al (2005). Organosoluble copper clusters as precatalysts for carbon–heteroelement bond-forming reactions: microwave and conventional heating. J Org Chem 70: 244–250

    Article  PubMed  CAS  Google Scholar 

  381. D’Angelo ND, Peterson JJ and Booker SK et al (2006). Effect of microwave heating on Ullmann-type heterocycle-aryl ether synthesis using chloro-heterocycles. Tetrahedron Lett 47: 5045–5048

    Article  CAS  Google Scholar 

  382. Rudolph J, Esler WP and O’Connor S et al (2007). Quinazolinone derivatives as orally available ghrelin receptor antagonists for the treatment of diabetes and obesity. J Med Chem 50: 5202–5216

    Article  PubMed  CAS  Google Scholar 

  383. Zhu XH, Chen G and Ma Y et al (2007). A general, highly efficient Ullmann C–O coupling reaction under microwave irradiation and the effects of water. Chin J Chem 25: 546–552

    Article  CAS  Google Scholar 

  384. Kormos CM and Leadbeater NE (2006). Direct conversion of aryl halides to phenols using high-temperature or near-critical water and microwave heating. Tetrahedron 62: 4728–4732

    Article  CAS  Google Scholar 

  385. Raders SM and Verkade JG (2008). P(i-BuNCH2CH2)3N: an efficient promoter for the microwave synthesis of diaryl ethers. Tetrahedron Lett 49: 3507–3511

    Article  CAS  Google Scholar 

  386. Viirre RD, Evindar G and Batey RA (2008). Copper-catalyzed domino annulation approaches to the synthesis of benzoxazoles under microwave-accelerated and conventional thermal conditions. J Org Chem 73: 3452–3459

    Article  PubMed  CAS  Google Scholar 

  387. Thasana N, Worayuthakarn R and Kradanrat P et al (2007). Copper(I)-mediated and microwave-assisted Caryl-Ocarboxylic coupling: synthesis of benzopyranones and isolamellarin alkaloids. J Org Chem 72: 9379–9382

    Article  PubMed  CAS  Google Scholar 

  388. Li Z, Sun H and Jiang H et al (2008). Copper-catalyzed intramolecular cyclization to N-substituted 1,3-dihydrobenzimidazol-2-ones. Org Lett 10: 3263–3266

    Article  PubMed  CAS  Google Scholar 

  389. Ranu BD, Saha A and Jana R (2007). Microwave-assisted simple and efficient ligand free copper nanoparticle catalyzed aryl–sulfur bond formation. Adv Synth Catal 349: 2690–2696

    Article  CAS  Google Scholar 

  390. Andersen J, Madsen U, Björkling F, Liang X (2005) Rapid synthesis of aryl azides from aryl halides under mild conditions. Synlett: 2209-213

  391. Liu XY, Li CH and Che CM (2006). Phosphine gold(I)-catalyzed hydroamination of alkenes under thermal and microwave-assisted conditions. Org Lett 8: 2707–2710

    Article  PubMed  CAS  Google Scholar 

  392. Balan D and Adolfsson H (2004). Efficient microwave-assisted formation of functionalized 2,5-dihydropyrroles using ruthenium-catalyzed ring-closing metathesis. Tetrahedron Lett 45: 3089–3092

    Article  CAS  Google Scholar 

  393. Appukkuttan P, Dehaen W and Van der Eycken E (2005). Microwave-enhanced synthesis of N-shifted buflavine analogues via a Suzuki-ring-closing metathesis protocol. Org Lett 7: 2723–2726

    Article  PubMed  CAS  Google Scholar 

  394. Appukkuttan P, Dehaen W and Van der Eycken E (2007). Microwave-assisted transition-metal-catalyzed synthesis of N-shifted and ring-expanded buflavine analogues. Chem Eur J 13: 6452–6460

    Article  CAS  Google Scholar 

  395. Sunderhaus JD, Dockendorff C and Martin SF (2007). Applications of multicomponent reactions for the synthesis of diverse heterocyclic scaffolds. Org Lett 9: 4223–4226

    Article  PubMed  CAS  Google Scholar 

  396. Nosse B, Schall A, Jeong WB and Reiser O (2005). Optimization of ring-closing metathesis: inert gas sparging and microwave irradiation. Adv Synth Catal 347: 1869–1874

    Article  CAS  Google Scholar 

  397. Chapman RN and Arora PS (2006). Optimized synthesis of hydrogen-bond surrogate helices: surprising effects of microwave heating on the activity of Grubbs catalysts. Org Lett 8: 5825–5828

    Article  PubMed  CAS  Google Scholar 

  398. Robinson AJ, Elaridi J and Van Lierop BJ et al (2007). Microwave-assisted RCM for the synthesis of carbocyclic peptides. J Pept Sci 13: 280–285

    Article  PubMed  CAS  Google Scholar 

  399. Collins SK, Grandbois A and Vachon MP et al (2006). Preparation of helicenes through olefin metathesis. Angew Chem Int Ed 45: 2923–2926

    Article  CAS  Google Scholar 

  400. Collins SK (2006). Preparation of cyclic molecules bearing “strained” olefins using olefin metathesis. J Organomet Chem 691: 5122–5128

    Article  CAS  Google Scholar 

  401. Perez-Balado C, Nebbioso A and Rodriguez-Grana P et al (2007). Bispyridinium dienes: histone deacetylase inhibitors with selective activities. J Med Chem 50: 2497–2505

    Article  PubMed  CAS  Google Scholar 

  402. Spandl RJ, Rudyk H, Spring DR (2008) Exploiting domino enyne metathesis mechanisms for skeletal diversity generation. Chem Commun 3001-003

  403. Bargiggia FC and Murray WV (2005). Cross-metathesis assisted by microwave irradiation. J Org Chem 70: 9636–9639

    Article  PubMed  CAS  Google Scholar 

  404. Morris T, Sandham D and Caddick S (2007). A microwave enhanced cross-metathesis approach to peptidomimetics. Org Biomol Chem 5: 1025–1027

    Article  PubMed  CAS  Google Scholar 

  405. Elaridi J, Patel J and Jackson WR et al (2006). Controlled synthesis of (S,S)-2,7-diaminosuberic acid: a method for regioselective construction of dicarba analogues of multicystine-containing peptides. J Org Chem 71: 7538–7545

    Article  PubMed  CAS  Google Scholar 

  406. Castagnolo D, Renzulli ML and Galletti E et al (2005). Microwave-assisted ethylene–alkyne cross-metathesis: synthesis of chiral 2-(N-1-acetyl-1-arylmethyl)-1,3-butadienes. Tetrahedron Asymmetry 16: 2893–2896

    Article  CAS  Google Scholar 

  407. Castagnolo D, Giorgi G, Spinosa R et al (2007) Practical syntheses of enantiomerically pure N-acetylbenzhydrylamines. Eur J Org Chem: 3676-686

  408. Fustero S, Jiménez D, Sánchez-Roselló M and del Pozo C (2007). Microwave-assisted tandem cross metathesis intramolecular aza-Michael reaction: an easy entry to cyclic β-amino carbonyl derivatives. J Am Chem Soc 129: 6700–6701

    Article  PubMed  CAS  Google Scholar 

  409. Kirschning A, Harmrolfs K and Mennecke K et al (2008). Homo- and heterogeneous Ru-based metathesis catalysts in cross-metathesis of 15-allylestrone—towards 17β-hydroxysteroid dehydrogenase type 1 inhibitors. Tetrahedron Lett 49: 3019–3022

    Article  CAS  Google Scholar 

  410. Lumini M, Cordero FM, Pisaneschi F et al (2008) Straightforward synthesis of α-substituted prolines by cross-metathesis. Eur J Org Chem: 2817-824

  411. Wang L, Maddess ML and Lautens M (2007). Convenient access to functionalized vinylcyclopentenols from alkynyloxiranes. J Org Chem 72: 1822–1825

    Article  PubMed  CAS  Google Scholar 

  412. Comer E, Rohan E and Deng L et al (2007). An approach to skeletal diversity using functional group pairing of multifunctional scaffolds. Org Lett 9: 2123–2126

    Article  PubMed  CAS  Google Scholar 

  413. Debleds O and Campagne JM (2008). 1,5-Enyne metathesis. J Am Chem Soc 130: 1562–1563

    Article  PubMed  CAS  Google Scholar 

  414. Lewis JC, Wu JY, Bergman RG and Ellman JA (2006). Microwave-promoted rhodium-catalyzed arylation of heterocycles through C–H bond activation. Angew Chem Int Ed 45: 1589–1591

    Article  CAS  Google Scholar 

  415. Lewis JC, Berman AM, Bergman RG and Ellman JA (2008). Rh(I)-catalyzed arylation of heterocycles via C–H bond activation: expanded scope through mechanistic insight. J Am Chem Soc 130: 2493–2500

    Article  PubMed  CAS  Google Scholar 

  416. Yanagisawa S, Sudo T and Noyori R et al (2006). Direct C–H arylation of (hetero)arenes with aryl iodides via rhodium catalysis. J Am Chem Soc 128: 11748–11749

    Article  PubMed  CAS  Google Scholar 

  417. Yanagisawa S, Sudo T and Noyori R et al (2008). Direct coupling of arenes and iodoarenes catalyzed by a rhodium complex with a strongly π-accepting phosphite ligand. Tetrahedron 64: 6073–6081

    Article  CAS  Google Scholar 

  418. Yanagisawa S, Ueda K and Taniguchi T et al (2008). Potassium t-butoxide alone can promote the biaryl coupling of electron- deficient nitrogen heterocycles and haloarenes. Org Lett 10: 4673–4676

    Article  PubMed  CAS  Google Scholar 

  419. Sahnoun S, Messaoudi S and Peyrat JF et al (2008). Microwave-assisted Pd(OH)2-catalyzed direct C–H arylation of free-(NH2) adenines with aryl halides. Tetrahedron Lett 49: 7279–7283

    Article  CAS  Google Scholar 

  420. Ermolat’ev DS, Gimenez VN and Babaev EV et al (2006). Efficient Pd(0)-mediated microwave-assisted arylation of 2-substituted imidazo[1,2-a]pyrimidines. J Comb Chem 8: 659–663

    Article  PubMed  CAS  Google Scholar 

  421. Besselièvre F, Mahuteau-Betzer F, Grierson DS and Piguel S (2008). Ligandless microwave-assisted Pd/Cu-catalyzed direct arylation of oxazoles. J Org Chem 73: 3278–3280

    Article  PubMed  CAS  Google Scholar 

  422. Iwasaki M, Yorimitsu H and Oshima K (2007). Microwave-assisted palladium-catalyzed direct arylation of 1,4-disubstituted 1,2,3-triazoles with aryl chlorides. Chem Asian J 2: 1430–1435

    Article  PubMed  CAS  Google Scholar 

  423. Hull KL, Anani WQ and Sanford MS (2006). Palladium-catalyzed fluorination of carbon–hydrogen bonds. J Am Chem Soc 128: 7134–7135

    Article  PubMed  CAS  Google Scholar 

  424. Bedford RB and Betham M (2006). N–H carbazole synthesis from 2-chloroanilines via consecutive amination and C–H activation. J Org Chem 71: 9403–9410

    Article  PubMed  CAS  Google Scholar 

  425. Bedford RB, Betham M and Charmant JPH et al (2008). Intramolecular direct arylation in the synthesis of fluorinated carbazoles. Tetrahedron 64: 6038–6050

    Article  CAS  Google Scholar 

  426. Hostyn S, Van Baelen G and Lemière GLF et al (2008). Synthesis of α-carbolines starting from 2,3-dichloropyridines and substituted anilines. Adv Synth Catal 350: 2653–2660

    Article  CAS  Google Scholar 

  427. Campeau LC, Schipper DJ and Fagnou K (2008). Site-selective sp2 and benzylic sp3 palladium-catalyzed direct arylation. J Am Chem Soc 130: 3266–3267

    Article  PubMed  CAS  Google Scholar 

  428. Khanetskyy B, Dallinger D and Kappe CO (2004). Combining Biginelli multicomponent and click chemistry: generation of 6-(1,2,3-triazol-1-yl)-dihydropyrimidone libraries. J Comb Chem 6: 884–892

    Article  PubMed  CAS  Google Scholar 

  429. Appukkuttan P, Dehaen W, Fokin VV and Van der Eycken E (2004). A microwave-assisted click chemistry synthesis of 1,4-disubstituted 1,2,3-triazoles via a copper(I)-catalyzed three-component reaction. Org Lett 6: 4223–4225

    Article  PubMed  CAS  Google Scholar 

  430. Beckmann HSG and Wittmann V (2007). One-pot procedure for diazo transfer and azide–alkyne cycloaddition: triazole linkages from amines. Org Lett 9: 1–4

    Article  PubMed  CAS  Google Scholar 

  431. Moorhouse A, Moses JE (2008) Microwave enhancement of a ‘one-pot’ tandem azidation-‘click’ cycloaddition of anilines. Synlett: 2089-092

  432. Lipshutz BH and Taft BR (2006). Heterogeneous copper-in-charcoal-catalyzed click chemistry. Angew Chem Int Ed 45: 8235–8238

    Article  CAS  Google Scholar 

  433. Rasmussen LK, Boren BC and Fokin VV (2007). Ruthenium-catalyzed cycloaddition of aryl azides and alkynes. Org Lett 9: 5337–5339

    Article  PubMed  CAS  Google Scholar 

  434. Pradere U, Roy V and McBrayer TR et al (2008). Preparation of ribavirin analogues by copper- and ruthenium-catalyzed azide–alkyne 1,3-dipolar cycloaddition. Tetrahedron 64: 9044–9051

    Article  CAS  Google Scholar 

  435. Horneff T, Chuprakov S and Chernyak N et al (2008). Rhodium-catalyzed transannulation of 1,2,3-triazoles with nitriles. J Am Chem Soc 130: 14972–14974

    Article  PubMed  CAS  Google Scholar 

  436. Pietrzik N, Schips C, Ziegler T (2008) Efficient synthesis of glycosylated asparaginic acid building blocks via click chemistry. Synthesis: 519-26

  437. Broggi J, Díez-González S, Petersen J et al (2008) Study of copper(I) catalysts for the synthesis of carbanucleosides via azide–alkyne 1,3-dipolar cycloaddition. Synthesis: 141-48

  438. Joosten JAF, Tholen NTH, El Maate FA et al (2005) High-yielding microwave-assisted synthesis of triazole-linked glycodendrimers by copper-catalyzed [3+2] cycloaddition. Eur J Org Chem: 3182-185

  439. Song Y, Kohlmeir EK and Meade TJ (2008). Synthesis of multimeric MR contrast agents for cellular imaging. J Am Chem Soc 130: 6662–6663

    Article  PubMed  CAS  Google Scholar 

  440. Ortega-Muñoz M, Morales-Sanfrutos J and Perez-Balderas F et al (2007). Click multivalent neoglycoconjugates as synthetic activators in cell adhesion and stimulation of monocyte/machrophage cell lines. Org Biomol Chem: 5: 2291–2301

    Article  CAS  Google Scholar 

  441. Fazio MA, Lee OP and Schuster DI (2008). First triazole-linked porphyrin-fullerene dyads. Org Lett 10: 4979–4982

    Article  PubMed  CAS  Google Scholar 

  442. Géci I, Vyacheslav FV and Pedersen EB (2007). Stabilization of parallel triplexes by twisted intercalating nucleic acids (TINAs) incorporating 1,2,3-triazole units and prepared by microwave-accelerated click chemistry. Chem Eur J 13: 6379–6386

    Article  CAS  Google Scholar 

  443. Angelo NG and Arora PS (2007). Solution- and solid-phase synthesis of triazole oligomers that display protein-like functionality. J Org Chem 72: 7963–7967

    Article  PubMed  CAS  Google Scholar 

  444. Castagnolo D, Dessì F and Radi M et al (2007). Synthesis of enantiomerically pure α-[4-(1-substituted)-1,2,3-triazol-4-yl]-benzylacetamides via microwave-assisted click chemistry: towards new potential antimicrobial agents. Tetrahedron Asymmetry 18: 1345–1350

    Article  CAS  Google Scholar 

  445. Nieto-Oberhuber C, Pérez-Galán P and Herrero-Gómez E et al (2008). Gold(I)-catalyzed intramolecular [4+2] cycloadditions of arylalkynes or 1,3-enynes with alkenes: scope and mechanism. J Am Chem Soc 130: 269–279

    Article  PubMed  CAS  Google Scholar 

  446. Marion N, Gealageas R and Nolan SP (2007). [(NHC)AuI]-catalyzed rearrangement of allylic acetates. Org Lett 9: 2653–2656

    Article  PubMed  CAS  Google Scholar 

  447. Labonne A, Zani L, Hintermann L and Bolm C (2007). Redox- neutral synthesis of β-amino aldehydes from imines by an alkynylation/hydration sequence. J Org Chem 72: 5704–5708

    Article  PubMed  CAS  Google Scholar 

  448. Stockland JRA, Lipman AJ and Bawiec JA et al (2006). Remarkable tolerance of ethynyl steroids to air and water in microwave-assisted hydrophosphinylation: reaction scope and limitations. J Organomet Chem 691: 4042–4053

    Article  CAS  Google Scholar 

  449. Liu XY, Ding P, Huang JS and Che CM (2007). Synthesis of substituted 1,2-dihydroquinolines and quinolines from aromatic amines and alkynes by gold(I)-catalyzed tandem hydroamination–hydroarylation under microwave-assisted conditions. Org Lett 9: 2645–2648

    Article  PubMed  CAS  Google Scholar 

  450. Liu XY, Li CH and Che CM (2006). Phosphine gold(I)-catalyzed hydroamination of alkenes under thermal and microwave-assisted conditions. Org Lett 8: 2707–2710

    Article  PubMed  CAS  Google Scholar 

  451. Wang MZ, Wong MK and Che CM (2008). Gold(I)-catalyzed intermolecular hydroarylation of alkenes with indoles under thermal and microwave-assisted conditions. Chem Eur J 14: 8353–8364

    Article  CAS  Google Scholar 

  452. Prior AM and Robinson RS (2008). An assessment of late transition metals as hydroamination catalysts in the cyclization of C-propargyl vinylogous amides into pyrroles. Tetrahedron Lett 49: 411–414

    Article  CAS  Google Scholar 

  453. Ishibashi K, Takahashi M and Yokota Y et al (2005). Ruthenium-catalyzed isomerization of alkenol into alkanone in water under irradiation of microwaves. Chem Lett 34: 664–665

    Article  CAS  Google Scholar 

  454. Fairlamb IJS, McGlacken GP, Weissberger F (2006) Ruthenium(II)-catalysed cycloisomerisation of 1,6-dienes by focused microwave dielectric heating: improved rates and selectivities leading to exo-methylenecyclopentanes. Chem Commun: 988-90

  455. Takacs JM, Venkataraman S and Andrews RN et al (2005). N-Heterocyclic carbene-palladium catalysts for the bisdiene cyclization-trapping reaction with sulfonamides under thermal and microwave conditions. J Organomet Chem 690: 6205–6209

    Article  CAS  Google Scholar 

  456. Lee YT, Choi SY and Chung YK (2007). Microwave-assisted palladium-catalyzed regioselective cyanothiolation of alkynes with thiocyanates. Tetrahedron Lett 48: 5673–5677

    Article  CAS  Google Scholar 

  457. Sherman ES, Fuller PH and Kasi D et al (2007). Pyrrolidine and piperidine formation via copper(II) carboxylate-promoted intramolecular carboamination of unactivated olefins: diastereoselectivity and mechanism. J Org Chem 72: 3896–3905

    Article  PubMed  CAS  Google Scholar 

  458. Rodríguez B and Bolm C (2006). Thermal effects in the organocatalytic asymmetric Mannich reaction. J Org Chem 71: 2888–2891

    Article  PubMed  CAS  Google Scholar 

  459. Mossé S and Alexakis A (2006). Organocatalyzed asymmetric reactions via microwave activation. Org Lett 8: 3577–3580

    Article  PubMed  CAS  Google Scholar 

  460. Baumann T, Bächle M, Hartmann C, Bräse S (2008) Thermal effects in the organocatalytic asymmetric α-amination of disubstituted aldehydes with azodicarboxylates: a high-temperature organocatalysis. Eur J Org Chem: 2207-212

  461. Westermann B and Neuhaus C (2005). Dihydroxyacetone in amino acid catalyzed Mannich-type reactions. Angew Chem Int Ed 44: 4077–4079

    Article  CAS  Google Scholar 

  462. Massi A, Nuzzi A and Dondoni A (2007). Microwave-assisted organocatalytic anomerization of α-C-glycosylmethyl aldehydes and ketones. J Org Chem 72: 10279–10282

    Article  PubMed  CAS  Google Scholar 

  463. Trost BM and Zhang T (2006). Asymmetric synthesis of α-substituted aldehydes by Pd-catalyzed asymmetric allylic alkylation-alkene isomerization-Claisen rearrangement. Org Lett 8: 6007–6010

    Article  PubMed  CAS  Google Scholar 

  464. Craig D, Gavin DH (2006) Total synthesis of the cytotoxic guaipyridine sesquiterpene alkaloid (+)-cananodine. Eur J Org Chem: 3558-561

  465. Lin YL, Cheng JY and Chu YH (2007). Microwave-accelerated Claisen rearrangement in bicyclic imidazolium [b-3C-im][NTf2] ionic liquid. Tetrahedron 63: 10949–10957

    Article  CAS  Google Scholar 

  466. Gonda J, Martinková M and Zadrosová A et al (2007). Microwave accelerated aza-Claisen rearrangements. Tetrahedron Lett 48: 6912–6915

    Article  CAS  Google Scholar 

  467. McIntosh CE, Martínez I, Ovaska TV (2004) Microwave enhanced tandem 5-exo cyclization/Claisen rearrangement reactions: a convenient route to cycloheptanoid ring systems. Synlett: 2579-581

  468. Ovaska TV and Kyne RE (2008). Intramolecular thermal allenyne [2+2] cycloadditions: facile construction of the 5-6-4 ring core of sterpurene. Tetrahedron Lett 49: 376–378

    Article  PubMed  CAS  Google Scholar 

  469. Nicolaou KC, Lister T, Denton RM and Gelin CF (2007). Cascade reactions involving formal [2+2] thermal cycloadditions: total synthesis of artochamins F, H, I, and J. Angew Chem Int Ed 46: 7501–7505

    Article  CAS  Google Scholar 

  470. Pelc MJ and Zakarian A (2006). Synthesis of the A,G-spiroimine of pinnatoxins by a microwave-assisted tandem Claisen–Mislow–Evans rearrangement. Tetrahedron Lett 47: 7519–7523

    Article  CAS  Google Scholar 

  471. Jacob AM and Moody CJ (2005). Microwave-assisted combined Mitsunobu reaction-Claisen rearrangement and microwave-assisted phenol oxidation: rapid synthesis of 2,6-disubstituted-1,4-benzoquinone natural products. Tetrahedron Lett 46: 8823–8825

    Article  CAS  Google Scholar 

  472. McErlean CSP and Moody CJ (2007). First synthesis of N-(3-carboxylpropyl)-5-amino-2-hydroxy-3-tridecyl-1,4-benzoquinone, an unusual quinone isolated from Embelia ribes. J Org Chem 72: 10298–10301

    Article  PubMed  CAS  Google Scholar 

  473. Quesada E, Taylor R (2005) Tandem Horner–Wadsworth–Emmons olefination/Claisen rearrangement/hydrolysis sequence: remarkable acceleration in water with microwave irradiation. Synthesis: 3193-195

  474. Bremner WS and Organ MG (2008). Formation of substituted pyrroles via an imine condensation/aza-Claisen rearrangement/imine-allene cyclization process by MAOS. J Comb Chem 10: 142–147

    Article  PubMed  CAS  Google Scholar 

  475. Baran PS, O’Malley DP and Zografos AL (2004). Sceptrin as a potential biosynthetic precursor to complex pyrrole-imidazole alkaloids: the total synthesis of ageliferin. Angew Chem Int Ed 43: 2674–2677

    Article  CAS  Google Scholar 

  476. Steinhardt SE, Silverston JS and Vanderwal CD (2008). Stereocontrolled synthesis of Z-dienes via an unexpected pericyclic cascade rearrangement of 5-amino-2,4-pentadienals. J Am Chem Soc 130: 7560–7561

    Article  PubMed  CAS  Google Scholar 

  477. Trost BM and Gutierrez AC (2007). Ruthenium-catalyzed cycloisomerization-6π-cyclization: a novel route to pyridines. Org Lett 9: 1473–1476

    Article  PubMed  CAS  Google Scholar 

  478. Métro TX, Pardo DG and Cossy J (2007). Highly enantioselective synthesis of β-amino alcohols: a catalytic version. J Org Chem 72: 6556–6561

    Article  PubMed  CAS  Google Scholar 

  479. Métro TX, Pardo GD, Cossy J (2007) Stereospecific rearrangement of β-amino alcohols catalyzed by H 2 SO 4. Synlett: 2888-890

  480. Moseley JD, Sankey RF, Tang ON and Gilday JP (2006). The Newman–Kwart rearrangement re-evaluated by microwave synthesis. Tetrahedron 62: 4685–4689

    Article  CAS  Google Scholar 

  481. Constant S, Tortoioli S and Müller J et al (2007). Air- and microwave-stable (C 5 H 5)Ru catalysts for improved regio- and enantioselective Carroll rearrangements. Angew Chem Int Ed 46: 8979–8982

    Article  CAS  Google Scholar 

  482. Pouwer RH, Schill H, Williams CM et al (2007) Investigating direct access to 2-oxospiro[4.5]decanones via 6π-electrocyclisation. Eur J Org Chem: 4699-705

  483. Douelle F, Tal L, Greaney MF (2005) Reagent-free Nazarov cyclisations. Chem Commun: 660-62

  484. Yin W, Ma Y and Xu J et al (2006). Microwave-assisted one-pot synthesis of 1-indanones from arenes and α,β-unsaturated acyl chlorides. J Org Chem 71: 4312–4315

    Article  PubMed  CAS  Google Scholar 

  485. Närhi K, Franzén J and Bäckvall J-E (2006). An unexpectedly mild thermal Alder-ene-type cyclization of enallenes. J Org Chem 71: 2914–2917

    Article  PubMed  CAS  Google Scholar 

  486. Dieltiens N and Stevens CV (2007). Metal-free entry to phosphonylated isoindoles by a cascade of 5-exo-dig cyclization, a [1,3]-alkyl shift and aromatization under microwave heating. Org Lett 9: 465–468

    Article  PubMed  CAS  Google Scholar 

  487. Csutorás C, Berényi S and Neumeyer JL (2008). Microwave- promoted acid-catalyzed rearrangement of morphinans—a high-yield synthesis of R(-)-apomorphine. Synth Commun: 38: 866–872

    Article  CAS  Google Scholar 

  488. Frankowski KJ, Hirt EE and Zeng Y et al (2007). Synthesis of N-alkyl-octahydroisoquinolin-1- one-8-carboxamide libraries using a tandem Diels–Alder/acylation sequence. J Comb Chem 9: 1188–1192

    Article  PubMed  CAS  Google Scholar 

  489. Hughes RA, Thompson SP, Alcaraz L, Moody CJ (2004) Total synthesis of the thiopeptide amythiamicin D. Chem Commun: 946-48

  490. Cook SP, Polara A and Danishefsky SJ (2006). The total synthesis of (±)-11-O-debenzoyltashironin. J Am Chem Soc 128: 16440–16441

    Article  PubMed  CAS  Google Scholar 

  491. Delgado JL, de la Cruz P, Langa F et al (2004) Microwave-assisted sidewall functionalization of single-wall carbon nanotubes by Diels–Alder cycloaddition. Chem Commun: 1734-735

  492. Li J and Grennberg H (2006). Microwave-assisted covalent sidewall functionalization of multiwalled carbon nanotubes. Chem Eur J 12: 3869–3875

    Article  CAS  Google Scholar 

  493. Brunetti FG, Herrero MA and Munoz JM et al (2007). Reversible microwave-assisted cycloaddition of aziridines to carbon nanotubes. J Am Chem Soc 129: 14580–14581

    Article  PubMed  CAS  Google Scholar 

  494. Fuentes A, Martínez-Palou R and Jiménez-Vázquez HA et al (2005). Diels–Alder reactions of 2-oxazolidinone dienes in polar solvents using catalysis or non-conventional energy sources. Monatsh Chem 136: 177–192

    Article  CAS  Google Scholar 

  495. Pinto DCGA, Silva AMS, Brito CM et al (2005) Reactivity of 3-styrylchromones as dienes in Diels–Alder reactions under microwave irradiation: a new synthesis of xanthones. Eur J Org Chem: 2973-986

  496. Mance AD and Jakopčić K (2005). Microwave assisted IMDAF reaction: microwave irradiation applied with success to cycloaddition reaction of N-propargyl-N-p-tolyl-N-2-furfurylamines. Mol Divers 9: 229–231

    Article  PubMed  CAS  Google Scholar 

  497. Wu J, Yu H and Wang Y et al (2007). Unexpected epimerization and stereochemistry revision of IMDA adducts from sorbate-related 1,3,8-nonatrienes. Tetrahedron Lett 48: 6543–6547

    Article  CAS  Google Scholar 

  498. Panunzio M, Bandini E, D’Aurizio A et al (2007) EuFOD-catalyzed hetero-Diels-Alder (HDA) reaction under microwave heating. Synthesis: 2060-062

  499. Xing X, Wu J and Dai WM (2006). Acid-mediated three-component aza-Diels-Alder reactions of 2-aminophenols under controlled microwave heating for synthesis of highly functionalized tetrahydroquinolines. Part 9: chemistry of aminophenols. Tetrahedron 62: 11200–11206

    Article  CAS  Google Scholar 

  500. Wu J, Sun L and Dai WM (2006). Microwave-assisted tandem Wittig-intramolecular Diels-Alder cycloaddition. Product distribution and stereochemical assignment. Tetrahedron 62: 8360–8372

    Article  CAS  Google Scholar 

  501. Jiménez-Alonso S, Estévez-Braun A and Ravelo ÁG et al (2007). Double domino Knoevenagel hetero Diels–Alder strategy towards bis-pyrano-1,4-benzoquinones. Tetrahedron 63: 3066–3074

    Article  CAS  Google Scholar 

  502. Kranjc K and Kočevar M (2006). Intensification of a reaction by addition of a minor amount of solvent: Diels–Alder reation of 2H-pyran-2-ones with alkynes. Collect Czech Chem Commun 71: 667–678

    Article  CAS  Google Scholar 

  503. Sarotti AM, Joullie MM and Spanevello RA et al (2006). Microwave-assisted regioselective cycloaddition reactions between 9-substituted anthracenes and levoglucosenone. Org Lett 8: 5561–5564

    Article  PubMed  CAS  Google Scholar 

  504. Gudipati IR, Sadasivam DV and Birney DM (2008). Microwave generation and trapping of acetylketene. Green Chem 10: 275–277

    Article  CAS  Google Scholar 

  505. Saaby S, Baxendale IR and Ley SV (2005). Non-metal-catalysed intramolecular alkyne cyclotrimerization reactions promoted by focussed microwave heating in batch and flow modes. Org Biomol Chem 3: 3365–3368

    Article  PubMed  CAS  Google Scholar 

  506. Young DD and Deiters A (2007). A general approach to chemo- and regioselective cyclotrimerization reactions. Angew Chem Int Ed 46: 5187–5190

    Article  CAS  Google Scholar 

  507. Young DD, Sripada L and Deiters A (2007). Microwave-assisted solid-supported alkyne cyclotrimerization reactions for combinatorial chemistry. J Comb Chem 9: 735–738

    Article  PubMed  CAS  Google Scholar 

  508. Sripada L, Teske JA and Deiters A (2008). Phenanthridine synthesis via [2+2+2] cyclotrimerization reactions. Org Biomol Chem 6: 263–265

    Article  PubMed  CAS  Google Scholar 

  509. McIver A, Young DD, Deiters A (2008) A general approach to triphenylenes and azatriphenylenes: total synthesis of dehydrotylophorine and tylophorine. Chem Commun: 4750-752

  510. Teske JA and Deiters A (2008). Microwave-mediated nickel-catalyzed cyclotrimerization reactions: total synthesis of illudinine. J Org Chem 73: 342–345

    Article  PubMed  CAS  Google Scholar 

  511. Shanmugasundaram M, Aguirre AL and Leyva M et al (2007). Microwave-assisted iridium-catalyzed [2+2+2] cycloaddition of resin-bound dipropargylamine with alkynes. Tetrahedron Lett 48: 7698–7701

    Article  CAS  Google Scholar 

  512. Novák P, Cíhalová S and Otmar M et al (2008). Co- and homocyclotrimerization reactions of protected 1-alkynyl-2-deoxyribofuranose. Synthesis of C-nucleosides, C-di- and C-trisaccharide analogues. Tetrahedron 64: 5200–5207

    Article  CAS  Google Scholar 

  513. Park KH, Choi SY, Kim SY et al (2006) Selectivity in cobalt carbonyl mediated cycloaddition of dienynes. Synlett: 527-32

  514. Hrdina R, Kadlčíková A and Valterová I et al (2006). An easy route to atropoisomeric bipyridine N,N′-dioxides and allylation of aldehydes. Tetrahedron Asymmetry 17: 3185–3191

    Article  CAS  Google Scholar 

  515. Zhou Y, Porco JA and Snyder JK (2007). Synthesis of 5,6,7,8-tetrahydro-1,6-naphthyridines and related heterocycles by cobalt- catalyzed [2+2+2] cyclizations. Org Lett 9: 393–396

    Article  PubMed  CAS  Google Scholar 

  516. Arrieta A, Otaegui D and Zubia A et al (2007). Solvent-free thermal and microwave-assisted [3+2] cycloadditions between stabilized azomethine ylides and nitrostyrenes. An experimental and theoretical study. J Org Chem 72: 4313–4322

    Article  PubMed  CAS  Google Scholar 

  517. Bergner I and Opatz T (2007). Modular one-pot synthesis of tetrasubstituted pyrroles from α-(alkylideneamino)nitriles. J Org Chem 72: 7083–7090

    Article  PubMed  CAS  Google Scholar 

  518. Meng L, Fettinger JC and Kurth MJ (2007). Intramolecular cycloaddition of azomethine ylides in the preparation of pyrrolidino[2′3′3,4]pyrrolidino[1,2-a] benzimidazoles. Org Lett 9: 5055–5058

    Article  PubMed  CAS  Google Scholar 

  519. Hong BC, Liu KL and Tsai CW et al (2008). Proline-mediated dimerization of cinnamaldehydes via 1,3-dipolar cycloaddition reaction with azomethine ylides. A rapid access to highly functionalized hexahydro-1H-pyrrolizine. Tetrahedron Lett 49: 5480–5483

    Article  CAS  Google Scholar 

  520. Beryozkina T, Appukkuttan P and Mont N et al (2006). Microwave-enhanced synthesis of new (-)-steganacin and (-)-steganone aza analogues. Org Lett 8: 487–490

    Article  PubMed  CAS  Google Scholar 

  521. Katritzky AR, Singh SK, Meher NK et al (2006) Triazole-oligomers by 1,3-dipolar cycloaddition. ARKIVOC V:43-2

  522. Perissutti E, Frecentese F and Fiorino F et al (2007). Microwave solvent free regioselective 1,3 dipolar cycloaddition in the sythesis of 1,4 substituted [1,2,3]-triazoles as amide bond isosteres. J Heterocycl Chem 44: 815–819

    Article  CAS  Google Scholar 

  523. Morrison AJ, Paton RM and Sharp RD (2005). Microwave-assisted generation and reactions of nitrile sulfides. Synth Commun 35: 807–813

    Article  CAS  Google Scholar 

  524. McMillan KG, Tackett MN and Dawson A et al (2006). Synthesis, structure and reactivity of 5-pyranosyl-1,3,4-oxathiazol-2-ones. Carbohydr Res 341: 41–48

    Article  PubMed  CAS  Google Scholar 

  525. Brummond KM and Chen D (2005). Microwave-assisted intramolecular [2+2] allenic cycloaddition reaction for the rapid assembly of bicyclo[4.2.0]octa-1,6-dienes and bicyclo[5.2.0]nona-1,7-dienes. Org Lett 7: 3473–3475

    Article  PubMed  CAS  Google Scholar 

  526. Piras L, Genesio E, Ghiron C, Taddei M (2008) Microwave-assisted hydrogenation of pyridines. Synlett: 1125-128

  527. Vanier G (2007) Simple and efficient microwave-assisted hydrogenation reactions at moderate temperature and pressure. Synlett: 131-35

  528. Toom L, Grennberg H, Gogoll A (2006) Microwave-assisted Raney nickel reduction of bispidinone thioketals to N,N′-dialkylbispidines. Synthesis: 2064-068

  529. Breschi MC, Calderone V and Martelli A et al (2006). New benzopyran-based openers of the mitochondrial ATP-sensitive potassium channel with potent anti-ischemic properties. J Med Chem 49: 7600–7602

    Article  PubMed  CAS  Google Scholar 

  530. Olivares-Romero JL and Juaristi E (2008). Synthesis of three novel chiral diamines derived from (S)-proline and their evaluation as precursors of diazaborolidines for the catalytic borane-mediated enantioselective reduction of prochiral ketones. Tetrahedron 64: 9992–9998

    Article  CAS  Google Scholar 

  531. Spencer J, Anjum N, Patel H et al (2007) Molybdenum hexacarbonyl and DBU reduction of nitro compounds under microwave irradiation. Synlett: 2557-558

  532. Wu X, Mahalingam AK and Alterman M (2005). Rapid Mo(CO)6 catalysed one-pot deoxygenation of heterocyclic halo-benzyl alcohols with Lawesson’s reagent. Tetrahedron Lett 46: 1501–1504

    Article  CAS  Google Scholar 

  533. Hu Y, Green N and Gavrin LK et al (2006). Inhibition of Tpl2 kinase and TNFα production with quinoline-3-carbonitriles for the treatment of rheumatoid arthritis. Bioorg Med Chem Lett 16: 6067–6072

    Article  PubMed  CAS  Google Scholar 

  534. Ekström J, Wettergren J and Adolfsson H (2007). A simple and efficient catalytic method for the reduction of ketones. Adv Synth Catal 349: 1609–1613

    Article  CAS  Google Scholar 

  535. Leijondahl K, Fransson ABL and Bäckvall J-E (2006). Efficient ruthenium-catalyzed transfer hydrogenation/hydrogenation of 1,3-cycloalkanediones to 1,3-cycloalkanediols using microwave heating. J Org Chem 71: 8622–8625

    Article  PubMed  CAS  Google Scholar 

  536. Lipshutz BH and Frieman BA (2005). CuH in a bottle: a convenient reagent for asymmetric hydrosilylations. Angew Chem Int Ed 44: 6345–6348

    Article  CAS  Google Scholar 

  537. Baker BA, Boskovic ZV and Lipshutz BH (2008). (BDP)CuH: a “hot” Stryker’s reagent for use in achiral conjugate reductions. Org Lett 10: 289–292

    Article  PubMed  CAS  Google Scholar 

  538. Gustafsson T, Hedenström M and Kihlberg J (2006). Synthesis of a C-glycoside analogue of β-D-galactosyl hydroxylysine and incorporation in a glycopeptide from type II collagen. J Org Chem 71: 1911–1919

    Article  PubMed  CAS  Google Scholar 

  539. Rakowitz D, Maccari R and Ottanà R et al (2006). In vitro aldose reductase inhibitory activity of 5-benzyl-2,4-thiazolidinediones. Bioorg Med Chem 14: 567–574

    Article  PubMed  CAS  Google Scholar 

  540. Bartoli G, Di Antonio G and Giovannini R et al (2008). Efficient transformation of azides to primary amines using the mild and easily accessible CeCl3.7H2O/NaI system. J Org Chem 73: 1919–1924

    Article  PubMed  CAS  Google Scholar 

  541. Li J, Ye D and Liu H et al (2008). Microwave-assisted dehalogenation of α-haloketones by zinc and ammonium chloride in alcohol. Synth Commun 38: 567–575

    Article  CAS  Google Scholar 

  542. Ghassemi S and Fuchs K (2005). Alternative method of Boc-removal from sulfamide using silica-phenyl sulfonic acid in conjunction with microwave heating. Mol Divers 9: 295–299

    Article  PubMed  CAS  Google Scholar 

  543. Larsen K, Worm-Leonhard K and Olsen P et al (2005). Reconsidering glycosylations at high temperature: precise microwave heating. Org Biomol Chem 3: 3966–3970

    Article  PubMed  CAS  Google Scholar 

  544. Du W, Kulkarni SS, Gervay-Hague J (2007) Efficient, one-pot syntheses of biologically active α-linked glycolipids. Chem Commun: 2336-338

  545. Bookser BC and Raffaele NB (2007). High-throughput five minute microwave accelerated glycosylation approach to the synthesis of nucleoside libraries. J Org Chem 72: 173–179

    Article  PubMed  CAS  Google Scholar 

  546. Lohman GJS and Seeberger PH (2004). A stereochemical surprise at the late stage of the synthesis of fully N-differentiated heparin oligosaccharides containing amino, acetamido and N-sulfonate groups. J Org Chem 69: 4081–4093

    Article  PubMed  CAS  Google Scholar 

  547. Bejugam M and Flitsch SL (2004). An efficient synthetic route to glycoamino acid building blocks for glycopeptide synthesis. Org Lett 6: 4001–4004

    Article  PubMed  CAS  Google Scholar 

  548. Ko KS, Zea CJ and Pohl NL (2004). Surprising bacterial nucleotidyltransferase selectivity in the conversion of carbaglucose-1- phosphate. J Am Chem Soc 126: 13188–13189

    Article  PubMed  CAS  Google Scholar 

  549. Dondoni A, Massi A and Aldhoun M (2007). Hantzsch-type three-component approach to a new family of carbon-linked glycosyl amino acids. Synthesis of C-glycosylmethyl pyridylalanines. J Org Chem 72: 7677–7687

    Article  PubMed  CAS  Google Scholar 

  550. Li X and Danishefsky SJ (2008). New chemistry with old functional groups: on the reaction of isonitriles with carboxylic acids—a route to various amide types. J Am Chem Soc 130: 5446–5448

    Article  PubMed  CAS  Google Scholar 

  551. Seibel J, Hillringhaus L and Moraru R (2005). Microwave-assisted glycosylation for the synthesis of glycopeptides. Carbohydr Res 340: 507–511

    Article  PubMed  CAS  Google Scholar 

  552. Rat S, Mathiron D and Michaud P et al (2007). Efficient glycosydation and/or esterification of D-glucuronic acid and its 6,1-lactone under solvent-free microwave irradiation. Tetrahedron 63: 12424–12428

    Article  CAS  Google Scholar 

  553. Lin HC, Chang CC and Chen JY et al (2005). Stereoselective glycosylation of exo-glycals by microwave-assisted Ferrier rearrangement. Tetrahedron Asymmetry 16: 297–301

    Article  CAS  Google Scholar 

  554. Bornaghi LF and Poulsen SA (2005). Microwave-accelerated Fischer glycosylation. Tetrahedron Lett 46: 3485–3488

    Article  CAS  Google Scholar 

  555. Christensen H, Christiansen MS and Petersen J et al (2008). Direct formation of β-glycosides of N-acetyl glycosamines mediated by rare earth metal triflates. Org Biomol Chem 6: 3276–3283

    Article  PubMed  CAS  Google Scholar 

  556. Yoshimura Y, Shimizu H and Hinou H et al (2005). A novel glycosylation concept; microwave-assisted acetal-exchange type glycosylations from methyl glycosides as donors. Tetrahedron Lett 46: 4701–4705

    Article  CAS  Google Scholar 

  557. Follmann M, Graul F, Schäfer T et al (2005) Petasis boronic Mannich reactions of electron-poor aromatic amines under microwave conditions. Synlett: 1009-011

  558. Hübner S, Neumann H, Michalik D et al (2007) Three-component reactions of α- and β-bromo aldehydes with amides and dienophiles—an easy way to versatile 1-amido-2-cyclohexenes. Synlett: 1085-090

  559. Strübing D, Neumann H and Jacobi von Wangelin A et al (2006). An easy and general protocol for multicomponent coupling reactions of aldehydes, amides, and dienophiles. Tetrahedron 62: 10962–10967

    Article  CAS  Google Scholar 

  560. Schwerkoske J, Masquelin T, Perun T and Hulme C (2005). New multi-component reaction accessing 3-aminoimidazo[1,2-a]pyridines. Tetrahedron Lett 46: 8355–8357

    Article  CAS  Google Scholar 

  561. Masquelin T, Bui H and Brickley B et al (2006). Sequential Ugi/Strecker reactions via microwave assisted organic synthesis: novel 3-center-4-component and 3-center-5-component multi-component reactions. Tetrahedron Lett 47: 2989–2991

    Article  CAS  Google Scholar 

  562. DiMauro EF and Kennedy JM (2007). Rapid synthesis of 3-amino-imidazopyridines by a microwave-assisted four-component coupling in one pot. J Org Chem 72: 1013–1016

    Article  PubMed  CAS  Google Scholar 

  563. Wu J (2006). General microwave-assisted protocols for the expedient synthesis of furo[3,2-c]chromen-4-ones. Chem Lett 35: 118–119

    Article  CAS  Google Scholar 

  564. Xing X, Wu J, Luo J, Dai WM (2006) C–N bond-linked conjugates of dibenz[b,f][1,4]oxazepines with 2-oxindole. Synlett: 2099-103

  565. Oble J, El Kaïm L, Gizzi M and Grimaud L (2007). Ugi-Smiles access to quinoxaline derivatives. Heterocyles 73: 503–517

    Article  CAS  Google Scholar 

  566. Bohn Rhoden CR, Westermann B, Wessjohann L (2008) One-pot multicomponent synthesis of N-substituted tryptophan-derived diketopiperazines. Synthesis: 2077-082

  567. De Silva RA, Santra S and Andreana PR (2008). A tandem one-pot, microwave-assisted synthesis of regiochemically differentiated 1,2,4,5-tetrahydro-1,4-benzodiazepin-3-ones. Org Lett 10: 4541–4544

    Article  PubMed  CAS  Google Scholar 

  568. Santra S and Andreana PR (2007). A one-pot, microwave-influenced synthesis of diverse small molecules by multicomponent reaction cascades. Org Lett 9: 5035–5038

    Article  PubMed  CAS  Google Scholar 

  569. Gududuru V, Nguyen V, Dalton JT, Miller DD (2004) Efficient microwave enhanced synthesis of 4-thiazolidinon. Synlett: 2357-358

  570. Risitano F, Grassi G, Foti F, Moraci S (2005) A novel efficient three-component one-pot synthesis of 1,3-diazabicyclo [3.1.0]hex-3-ene system under microwave irradiation. Synlett: 1633-635

  571. Tu S, Zhu X and Zhang J et al (2006). New potential biologically active compounds: design and an efficient synthesis of N-substituted 4-aryl-4,6,7,8-tetrahydroquinoline-2,5(1H,3H)-diones under microwave irradiation. Bioorg Med Chem Lett 16: 2925–2928

    Article  PubMed  CAS  Google Scholar 

  572. Tu S, Zhu X and Shi F et al (2007). An efficient microwave-assisted synthesis of 3,5-unsubstituted 4-substituted-6-aryl-3,4-dihydropyridin-2(1H)-ones derivatives. J Heterocycl Chem 44: 837–844

    Article  CAS  Google Scholar 

  573. Tu SJ, Jiang B and Jia RH et al (2006). An efficient one-pot, three-component synthesis of indeno[1,2-b]quinoline-9,11(6H,10H)-dione, acridine-1,8(2H,5H)-dione and quinoline-3-carbonitrile derivatives from enaminones. Org Biomol Chem 4: 3664–3668

    Article  PubMed  CAS  Google Scholar 

  574. Tu SJ, Jiang B and Zhang JY et al (2006). Efficient and direct synthesis of poly-substituted indeno[1,2-b]quinolines assisted by p-toluene sulfonic acid using high-temperature water and microwave heating via one-pot, three-component reaction. Org Biomol Chem 4: 3980–3985

    Article  PubMed  CAS  Google Scholar 

  575. Tu S, Zhang Y and Jia R et al (2006). A multi-component reaction for the synthesis of N-substituted furo[3,4-b]quinoline derivatives under microwave irradiation. Tetrahedron Lett 47: 6521–6525

    Article  CAS  Google Scholar 

  576. Tu S, Li C and Li G et al (2007). Microwave-assisted combinatorial synthesis of polysubstituent imidazo[1,2-a]quinoline, pyrimido[1,2-a]quinoline and quinolino[1,2-a]quinazoline derivatives. J Comb Chem 9: 1144–1148

    Article  PubMed  CAS  Google Scholar 

  577. Tu S, Jiang B and Jiang H et al (2007). A novel three-component reaction for the synthesis of new 4-azafluorenone derivatives. Tetrahedron 63: 5406–5414

    Article  CAS  Google Scholar 

  578. Tu SJ, Hong YZ, Jiang JB et al (2007) A simple synthesis of furo [3′4′5,6] pyrido [2,3-d] pyrimidine derivatives through multicomponent reactions in water. Eur J Org Chem: 1522-528

  579. Tu S, Jiang B and Zhang Y et al et al (2007). An efficient and chemoselective synthesis of N-substituted 2-aminopyridines via a microwave-assisted multicomponent reaction. Org Biomol Chem 5: 355–359

    Article  PubMed  CAS  Google Scholar 

  580. Bremner WS and Organ MG (2006). Multicomponent reactions to form heterocycles by microwave-assisted continuous flow organic synthesis. J Comb Chem 9: 14–16

    Article  CAS  Google Scholar 

  581. Chebanov VA, Sakhno YI and Desenko SM et al (2007). Cyclocondensation reactions of 5-aminopyrazoles, pyruvic acids and aldehydes. Multicomponent approaches to pyrazolopyridines and related products. Tetrahedron 63: 1229–1242

    Article  CAS  Google Scholar 

  582. Chebanov VA, Muravyova EA and Desenko SM et al (2006). Microwave-assisted three-component synthesis of 7-aryl-2-alkylthio-4, 7-dihydro-1,2,4-triazolo [1,5-a]-pyrimidine-6-carboxamides and their selective reduction. J Comb Chem 8: 427–434

    Article  PubMed  CAS  Google Scholar 

  583. Zhu SL, Ji SJ and Zhao K et al (2008). Multicomponent reactions for the synthesis of new 3′ indolyl substituted heterocycles under microwave irradiation. Tetrahedron Lett 49: 2578–2582

    Article  CAS  Google Scholar 

  584. Ostras KS, Gorobets NY, Desenko SM and Musatov VI (2006). An easy access to 2-amino-5,6-dihydro-3H-pyrimidin-4-one building blocks: the reaction under conventional and microwave conditions. Mol Divers 10: 483–489

    Article  PubMed  CAS  Google Scholar 

  585. Yadav LDS, Awasthi C, Rai VK and Rai A (2007). Biorenewable and mercaptoacetylating building blocks in the Biginelli reaction: synthesis of thiosugar-annulated dihydropyrimidines. Tetrahedron Lett 48: 4899–4902

    Article  CAS  Google Scholar 

  586. Yan CG, Cai XM and Wang QF et al (2007). Microwave-assisted four-component, one-pot condensation reaction: an efficient synthesis of annulated pyridines. Org Biomol Chem 5: 945–951

    Article  PubMed  CAS  Google Scholar 

  587. Nguyen RV, Li CJ (2008) Efficient synthesis of dihydrobenzofurans via a multicomponent coupling of salicylaldehydes, amines, and alkynes. Synlett: 1897-901

  588. Xiao F, Chen Y and Liu Y et al (2008). Sequential catalytic process: synthesis of quinoline derivatives by AuCl3/CuBr-catalyzed three-component reaction of aldehydes, amines, and alkynes. Tetrahedron 64: 2755–2761

    Article  CAS  Google Scholar 

  589. Ohta Y, Chiba H and Oishi S et al (2008). Concise synthesis of indole-fused 1,4-diazepines through copper(I)-catalyzed domino three-component coupling-cyclization-N-arylation under microwave irradiation. Org Lett 10: 3535–3538

    Article  PubMed  CAS  Google Scholar 

  590. Guo K, Thompson MJ and Reddy TRK et al (2007). Mechanistic studies leading to a new procedure for rapid, microwave assisted generation of pyridine-3,5-dicarbonitrile libraries. Tetrahedron 63: 5300–5311

    Article  CAS  Google Scholar 

  591. Li M, Zuo Z and Wen L et al (2008). Microwave-assisted combinatorial synthesis of hexa-substituted 1,4-dihydropyridines scaffolds using one-pot two-step multicomponent reaction followed by a S-alkylation. J Comb Chem 10: 436–441

    Article  PubMed  CAS  Google Scholar 

  592. Ravikumar Naik TR and Bhojya Naik HS (2008). An efficient Bi(NO3)3 ·  5H2O catalyzed multi component one-pot synthesis of novel naphthyridines. Mol Divers 12: 139–142

    Article  PubMed  CAS  Google Scholar 

  593. Zanobini A, Brandi A, de Meijere A (2006) A new three-component cascade reaction to yield 3-spirocyclopropanated β-lactams. Eur J Org Chem: 1251-255

  594. Ye P, Sargent K and Stewart E et al (2006). Novel and expeditious microwave-assisted three-component reactions for the synthesis of spiroimidazolin-4-ones. J Org Chem 71: 3137–3140

    Article  PubMed  CAS  Google Scholar 

  595. Yang S, Gao X-W and Diao C-L et al (2006). Synthesis and antifungal activity of novel chiral α-aminophosphonates containing fluorine moiety. Chin J Chem 24: 1581–1588

    Article  CAS  Google Scholar 

  596. Régnier T, Berrée F and Lavastre O et al (2007). Solvent-free one-pot four-component synthesis of 2-aminomorpholines. Access to related diaminoalcohols. Green Chem 9: 125–126

    Article  CAS  Google Scholar 

  597. Sridhar M, Rao RM and Baba NHK et al (2007). Microwave accelerated Gewald reaction: synthesis of 2-aminothiophenes. Tetrahedron Lett 48: 3171–3172

    Article  CAS  Google Scholar 

  598. Zuo H, Li ZB and Ren FK et al (2008). Microwave-assisted one-pot synthesis of benzo[b][1,4]thiazin-3(4H)-ones via Smiles rearrangement. Tetrahedron 64: 9669–9674

    Article  CAS  Google Scholar 

  599. Ollevier T, Li Z (2007) Bismuth triflate catalyzed allylation of aldehydes with allylstannane under microwave assistance. Eur J Org Chem: 5665-668

  600. Doi T, Fuse S and Miyamoto S et al (2006). A formal total synthesis of taxol aided by an automated synthesizer. Chem Asian J 1: 370–383

    Article  PubMed  CAS  Google Scholar 

  601. Handlon A, Guo Y (2005) Lanthanide(III) triflate-catalyzed thermal- and microwave-assisted synthesis of benzyl ethers from benzyl alcohols. Synlett: 111-14

  602. Lofberg C, Grigg R, Keep A et al (2006) Sequential one-pot bimetallic Ir(III)/Pd(0) catalysed mono-/bis-alkylation and spirocyclisation processes of 1,3-dimethylbarbituric acid and allenes. Chem Commun: 5000-002

  603. Ranu BC, Banerjee S and Jana R (2007). Ionic liquid as catalyst and solvent: the remarkable effect of a basic ionic liquid, [bmIm]OH on Michael addition and alkylation of active methylene compounds. Tetrahedron 63: 776–782

    Article  CAS  Google Scholar 

  604. Keglevich G, Majrik K and Vida L et al (2008). Microwave irradiation as a green alternative to phase transfer catalysis: solid–liquid phase alkylation of active methylene containing substrates under solvent-free conditions. Lett Org Chem 5: 224–228

    Article  CAS  Google Scholar 

  605. Moloney M, Yaqoob M (2008) Microwave-enhanced α-functionalisation of tetramates. Synlett: 2107-110

  606. Kainmuller EK, Olle EP, Bannwarth W (2006) Synthesis of a new pair of fluorescence resonance energy transfer donor and acceptor dyes and its use in a protease assay. Chem Commun: 5459-461

  607. Manetti F, Este JA and Clotet-Codina I et al (2005). Parallel solution-phase and microwave-assisted synthesis of new S-DABO derivatives endowed with subnanomolar anti-HIV-1 activity. J Med Chem 48: 8000–8008

    Article  PubMed  CAS  Google Scholar 

  608. Mugnaini C, Alongi M and Togninelli A et al (2007). Dihydro-alkylthio-benzyl-oxopyrimidines as inhibitors of reverse transcriptase: synthesis and rationalization of the biological data on both wild-type enzyme and relevant clinical mutants. J Med Chem 50: 6580–6595

    Article  PubMed  CAS  Google Scholar 

  609. Bica K, Gmeiner G, Reichel C et al (2007) Microwave-assisted synthesis of camphor-derived chiral imidazolium ionic liquids and their application in diastereoselective Diels–Alder reaction. Synthesis: 1333-338

  610. Bon RS, de Kanter FJJ and Lutz M et al (2007). Multicomponent synthesis of N-heterocyclic carbene complexes. Organometallics 26: 3639–3650

    Article  CAS  Google Scholar 

  611. Takvorian AG and Combs AP (2004). Microwave-assisted organic synthesis using minivials to optimize and expedite the synthesis of diverse purine libraries. J Comb Chem 6: 171–174

    Article  PubMed  CAS  Google Scholar 

  612. Huang H, Liu H, Chen K and Jiang H (2007). Microwave-assisted rapid synthesis of 2,6,9-substituted purines. J Comb Chem 9: 197–199

    Article  PubMed  CAS  Google Scholar 

  613. Baqi Y and Müller CE (2007). Catalyst-free microwave-assisted amination of 2-chloro-5-nitrobenzoic acid. J Org Chem 72: 5908–5911

    Article  PubMed  CAS  Google Scholar 

  614. Fang WP, Cheng YT and Cheng YR et al (2005). Synthesis of substituted uracils by the reactions of halouracils with selenium, sulfur, oxygen and nitrogen nucleophiles under focused microwave irradiation. Tetrahedron 61: 3107–3113

    Article  CAS  Google Scholar 

  615. Sandford G, Slater R and Yufit DS et al (2005). Tetrahydropyrido[3,4-b]pyrazine scaffolds from pentafluoropyridine. J Org Chem 70: 7208–7216

    Article  PubMed  CAS  Google Scholar 

  616. Samaroo D, Soll CE and Todaro LJ et al (2006). Efficient microwave-assisted synthesis of amine-substituted tetrakis(pentafluorophenyl)porphyrin. Org Lett 8: 4985–4988

    Article  PubMed  CAS  Google Scholar 

  617. Larsson A, Spjut S, Kihlberg J et al (2005) An improved procedure for the synthesis of enaminones—dimer building blocks in β-strand mimetics. Synthesis: 2590-596

  618. Cao P, Qu J and Burton G et al (2008). Facile synthesis of 6-aryl 5-N-substituted pyridazinones: microwave-assisted Suzuki-Miyaura cross coupling of 6-chloropyridazinones. J Org Chem 73: 7204–7208

    Article  PubMed  CAS  Google Scholar 

  619. Gemma S, Kukreja G and Fattorusso C et al (2006). Synthesis of N1-arylidene-N2-quinolyl- and N2-acrydinylhydrazones as potent antimalarial agents active against CQ-resistant P. falciparum strains. Bioorg Med Chem Lett 16: 5384–5388

    Article  PubMed  CAS  Google Scholar 

  620. Qu GR, Zhao L and Wang DC et al (2008). Microwave-promoted efficient synthesis of C6-cyclo secondary amine substituted purine analogues in neat water. Green Chem 10: 287–289

    Article  CAS  Google Scholar 

  621. Caldwell JJ, Davies TG and Donald A et al (2008). Identification of 4-(4-aminopiperidin-1-yl)-7H-pyrrolo[2,3-d]pyrimidines as selective inhibitors of protein kinase B through fragment elaboration. J Med Chem 51: 2147–2157

    Article  PubMed  CAS  Google Scholar 

  622. St. Jean DJ, Poon SF and Schwarzbach JL (2007). A tandem cross-coupling/SNAr approach to functionalized carbazoles. Org Lett 9: 4893–4896

    Article  PubMed  CAS  Google Scholar 

  623. Schirok H (2006). Microwave-assisted flexible synthesis of 7-azaindoles. J Org Chem 71: 5538–5545

    Article  PubMed  CAS  Google Scholar 

  624. Rodríguez-Escrich S, Popa D and Jimeno C et al (2005). (S)-2-[(R)-Fluoro(phenyl)methyl]oxirane: a general reagent for determining the ee of α-chiral amines. Org Lett 7: 3829–3832

    Article  PubMed  CAS  Google Scholar 

  625. Cattoen X and Pericas MA (2007). Suzuki cross-coupling on enantiomerically pure epoxides: efficient synthesis of diverse, modular amino alcohols from single enantiopure precursors. J Org Chem 72: 3253–3258

    Article  PubMed  CAS  Google Scholar 

  626. Robin A, Brown F and Bahamontes-Rosa N et al (2007). Microwave-assisted ring opening of epoxides: a general route to the synthesis of 1-aminopropan-2-ols with anti malaria parasite activities. J Med Chem 50: 4243–4249

    Article  PubMed  CAS  Google Scholar 

  627. Desai H, D’Souza B, Foether D et al (2007) Regioselectivity in a highly efficient, microwave-assisted epoxide aminolysis. Synthesis: 902-10

  628. Pironti V and Colonna S (2005). Microwave-promoted synthesis of β-hydroxy sulfides and β-hydroxy sulfoxides in water. Green Chem 7: 43–45

    Article  CAS  Google Scholar 

  629. Xue F and Seto CT (2006). Structure-activity studies of cyclic ketone inhibitors of the serine protease plasmin: design, synthesis and biological activity. Bioorg Med Chem 14: 8467–8487

    Article  PubMed  CAS  Google Scholar 

  630. Grundt P, Prevatt KM and Cao J et al (2007). Heterocyclic analogues of N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)arylcarboxamides with functionalized linking chains as novel dopamine D3 receptor ligands: potential substance abuse therapeutic agents. J Med Chem 50: 4135–4146

    Article  PubMed  CAS  Google Scholar 

  631. Johansen M, Leduc A, Kerr M (2007) Concise biomimetic total syntheses of both antipodes of balasubramide. Synlett: 2593-595

  632. Pei Y, Brule E and Moberg C (2006). Modular multidentate phosphine ligands: application to palladium-catalyzed allylic alkylations. Org Biomol Chem 4: 544–550

    Article  PubMed  CAS  Google Scholar 

  633. Kurz T and Widyan K (2005). Microwave-assisted conversion of N-substituted oxazolidin-2,4-diones into α-hydroxyamides. Tetrahedron 61: 7247–7251

    Article  CAS  Google Scholar 

  634. Qin HL, Lowe JT and Panek JS (2007). Mild reductive opening of aryl pyranosides promoted by scandium(III) triflate. J Am Chem Soc 129: 38–39

    Article  PubMed  CAS  Google Scholar 

  635. Diaz-Sanchez BR, Iglesias-Arteaga MA and Melgar-Fernandez R et al (2007). Synthesis of 2-substituted-5-halo-2,3-dihydro-4 (H)-pyrimidin-4-ones and their derivatization utilizing the Sonogashira coupling reaction in the enantioselective synthesis of α-substituted β-amino acids. J Org Chem 72: 4822–4825

    Article  PubMed  CAS  Google Scholar 

  636. Zare A, Hasaninejad A, Khalafi-Nezhad A et al (2007) A green solventless protocol for Michael addition of phthalimide and saccharin to acrylic acid esters in the presence of zinc oxide as a heterogeneous and reusable catalyst. ARKIVOC I:58-9

  637. Vasudevan A, Verzal MK (2003) Neutral, metal-free hydration of alkynes using microwave irradiation in superheated water. Synlett: 631-34

  638. Wipf P, Janjic J and Stephenson JCR (2004). Microwave-assisted synthesis of allylic amines: considerable rate acceleration in the hydrozirconation–transmetalation–aldimine addition sequence. Org Biomol Chem 2: 443–445

    Article  PubMed  CAS  Google Scholar 

  639. Stevens BD, Bungard CJ and Nelson SG (2006). Strategies for expanding structural diversity available from olefin isomerization-Claisen rearrangement reactions. J Org Chem 71: 6397–6402

    Article  PubMed  CAS  Google Scholar 

  640. Kazmaier U, Wesquet A (2005) Stannylated allylsulfones as versatile new building blocks. Synlett: 1271-274

  641. Wesquet A, Dörrenbächer S, Kazmaier U (2006) Improved protocols for the molybdenum-catalyzed hydrostannation of alkynes. Synlett: 1105-109

  642. Kazmaier U, Dörrenbächer S, Wesquet A et al (2007) Molybdenum-catalyzed synthesis of stannylated allylic alcohol derivatives and their synthetic applications. Synthesis: 320-26

  643. Join B, Delacroix O, Gaumont AC (2005) Mild and simple preparation of ketophosphine-boranes through uncatalysed hydrophosphination of enones. Synlett: 1881-884

  644. Crawley ML, McLaughlin E and Zhu W et al (2005). Concise approach to novel isothiazolidinone phosphotyrosine mimetics: microwave-assisted addition of bisulfite to activated olefins. Org Lett 7: 5067–5069

    Article  PubMed  CAS  Google Scholar 

  645. Herrera R, Jiménez-Vázquez HA, Tamariz J (2005) A new diastereoselective approach to the synthesis of α-hydroxy-β-amino acids based on the frame of captodative olefins. ARKIVOC VI:233-49

  646. Bagley MC, Chapaneri K, Glover C, Merritt EA (2004) Simple microwave-assisted method for the synthesis of primary thioamides from nitriles. Synlett: 2615-617

  647. Hammerland LG, Johansson M and Malmström J et al (2006). Structure-activity relationship of thiopyrimidines as mGluR5 antagonists. Bioorg Med Chem Lett 16: 2467–2469

    Article  PubMed  CAS  Google Scholar 

  648. Porcheddu A, Giacomelli G and Salaris M (2005). Microwave-assisted synthesis of isonitriles: a general simple methodology. J Org Chem 70: 2361–2363

    Article  PubMed  CAS  Google Scholar 

  649. Tanuwidjaja J, Peltier H, Lewis J et al (2007) One-pot microwave-promoted synthesis of nitriles from adehydes via tert-butanesulfinyl imines. Synthesis: 3385-389

  650. Ju Y and Varma RS (2005). An efficient and simple aqueous N-heterocyclization of aniline derivatives: microwave-assisted synthesis of N-aryl azacycloalkanes. Org Lett 7: 2409–2411

    Article  PubMed  CAS  Google Scholar 

  651. Ju Y and Varma RS (2005). Microwave-assisted cyclocondensation of hydrazine derivatives with alkyl dihalides or ditosylates in aqueous media: syntheses of pyrazole, pyrazolidine and phthalazine derivatives. Tetrahedron Lett 46: 6011–6014

    Article  CAS  Google Scholar 

  652. Ju Y, Kumar D and Varma RS (2006). Revisiting nucleophilic substitution reactions: microwave-assisted synthesis of azides, thiocyanates, and sulfones in an aqueous medium. J Org Chem 71: 6697–6700

    Article  PubMed  CAS  Google Scholar 

  653. Campiglia P, Aquino C and Bertamino A et al (2008). Novel route in the synthesis of ψ[CH2NH] amide bond surrogate. Tetrahedron Lett 49: 731–734

    Article  CAS  Google Scholar 

  654. Xiao J-C and Shreeve JM (2005). Microwave-assisted rapid electrophilic fluorination of 1,3-dicarbonyl derivatives with SelectfluorcircledR. J Fluor Chem 126: 473–76

    Article  Google Scholar 

  655. Nomoto T, Fukuhara T, Hara S (2006) Synthesis of (fluoroalkyl)amines by deoxyfluorination of amino alcohols. Synlett: 1744–746

  656. Fujimoto Y, Iwata M and Imakita N et al (2007). Synthesis of immunoregulatory Helicobacter pylori lipopolysaccharide partial structures. Tetrahedron Lett 48: 6577–6581

    Article  CAS  Google Scholar 

  657. Le HP and Müller CE (2006). Rapid microwave-assisted fluorination yielding novel 5′-deoxy-5′-fluorouridine derivatives. Bioorg Med Chem Lett 16: 6139–6142

    Article  PubMed  CAS  Google Scholar 

  658. Akiyama Y, Hiramatsu C and Fukuhara T et al (2006). Selective introduction of a fluorine atom into carbohydrates and a nucleoside by ring-opening fluorination reaction of epoxides. J Fluor Chem 127: 920–923

    Article  CAS  Google Scholar 

  659. Curti C, Zanardi F and Battistini L et al (2006). Streamlined, asymmetric synthesis of 8,4′-oxyneolignans. J Org Chem 71: 8552–8558

    Article  PubMed  CAS  Google Scholar 

  660. Conejo-García A, Núñez MC and Marchal JA et al (2008). Regiospecific microwave-assisted synthesis and cytotoxic activity against human breast cancer cells of (RS)-6-substituted-7- or 9-(2,3-dihydro-5H-1,4-benzodioxepin-3-yl)-7H- or -9H-purines. Eur J Med Chem 43: 1742–1748

    Article  PubMed  CAS  Google Scholar 

  661. Morini G, Comini M and Rivara M et al (2006). Dibasic non-imidazole histamine H3 receptor antagonists with a rigid biphenyl scaffold. Bioorg Med Chem Lett 16: 4063–4067

    Article  PubMed  CAS  Google Scholar 

  662. Palmer AM, Grobbel B and Brehm C et al (2007). Preparation of tetrahydroimidazo[2,1-a]isoquinolines and their use as inhibitors of gastric acid secretion. Bioorg Med Chem 15: 7647–7660

    Article  PubMed  CAS  Google Scholar 

  663. Gold H, Larhed M, Nilsson P (2005) Microwave irradiation as a high-speed tool for activation of sluggish aryl chlorides in Grignard reactions. Synlett: 1596-600

  664. Wunderlich S and Knochel P (2008). High temperature metalation of functionalized aromatics and heteroaromatics using (tmp)2Zn·2MgCl2·2LiCl and microwave irradiation. Org Lett 10: 4705–4707

    Article  PubMed  CAS  Google Scholar 

  665. Bentz E, Moloney MG and Westaway SM (2004). Palladium-catalysed α-arylation of esters and amides under microwave conditions. Tetrahedron Lett 45: 7395–7397

    Article  CAS  Google Scholar 

  666. Bentz E, Moloney MG, Westaway SM (2007) Efficient reformatsky conjugate additions to alkylidene malonates and malonamides. Synlett: 733-36

  667. Braga AL, Paixão Mw and Westermann B et al (2008). Acceleration of arylzinc formation and its enantioselective addition to aldehydes by microwave irradiation and aziridine-2-methanol catalysts. J Org Chem 73: 2879–2882

    Article  PubMed  CAS  Google Scholar 

  668. Szatmári I, Sillanpää R and Fülöp F (2008). Microwave-assisted, highly enantioselective addition of diethylzinc to aromatic aldehydes catalyzed by chiral aminonaphthols. Tetrahedron Asymmetry 19: 612–617

    Article  CAS  Google Scholar 

  669. Genov M, Salas G and Espinet P (2008). Effect of microwave heating in the asymmetric addition of dimethylzinc to aldehydes. J Organomet Chem 693: 2017–2020

    Article  CAS  Google Scholar 

  670. Cook MJ, Fleming DW and Gallagher T (2005). Microwave-assisted, regioselective, Petasis olefination of unsymmetrical oxalates. Formation of pyruvate-based enol ethers and enamines. Tetrahedron Lett 46: 297–300

    Article  CAS  Google Scholar 

  671. Adriaenssens LV and Hartley RC (2007). β-Amino acids to piperidinones by Petasis methylenation and acid-induced cyclization. J Org Chem 72: 10287–10290

    Article  PubMed  CAS  Google Scholar 

  672. Su CR, Shen YC and Kuo PC et al (2006). Total synthesis and biological evaluation of viscolin, a 1,3-diphenylpropane as a novel potent anti-inflammatory agent. Bioorg Med Chem Lett 16: 6155–6160

    Article  PubMed  CAS  Google Scholar 

  673. Duvall JR, Wu F and Snider BB (2006). Structure reassignment and synthesis of jenamidines A1/A2, synthesis of (+)-NP25302, and formal synthesis of SB-311009 analogues. J Org Chem 71: 8579–8590

    Article  PubMed  CAS  Google Scholar 

  674. Morone M, Beverina L and Abbotto A et al (2006). Enhancement of two-photon absorption cross-section and singlet-oxygen generation in porphyrins upon β-functionalization with donor-acceptor substituents. Org Lett 8: 2719–2722

    Article  PubMed  CAS  Google Scholar 

  675. Stuhr-Hansen N (2005). Utilization of microwave heating in the McMurry reaction for facile coupling of aldehydes and ketones to give alkenes. Tetrahedron Lett 46: 5491–5494

    Article  CAS  Google Scholar 

  676. Kangasmetsä JJ and Johnson T (2005). Microwave-accelerated methodology for the direct reductive amination of aldehydes. Org Lett 7: 5653–5655

    Article  PubMed  CAS  Google Scholar 

  677. Coats SJ, Schulz MJ and Carson JR et al (2004). Parallel methods for the preparation and SAR exploration of N-ethyl-4-[(8-alkyl-8-aza-bicyclo[3.2.1]oct-3-ylidene)-aryl-methyl]-benzamides, powerful mu and delta opioid agonists. Bioorg Med Chem Lett 14: 5493–5498

    Article  PubMed  CAS  Google Scholar 

  678. Santagada V, Frecentese F and Perissutti E et al (2005). Efficient microwave combinatorial parallel and nonparallel synthesis of N-alkylated glycine methyl esters as peptide building blocks. J Comb Chem 7: 618–621

    Article  PubMed  CAS  Google Scholar 

  679. Miyazawa A, Tanaka K, Sakakura T et al (2005) Microwave-assisted direct transformation of amines to ketones using water as an oxygen source. Chem Commun: 2104-106

  680. Johansson MJ, Andersson KHO and Kann N (2008). Modular asymmetric synthesis of P-chirogenic β-amino phosphine boranes. J Org Chem 73: 4458–4463

    Article  PubMed  CAS  Google Scholar 

  681. Glynn D, Bernier D and Woodward S (2008). Microwave acceleration in DABAL-Me3-mediated amide formation. Tetrahedron Lett 49: 5687–5688

    Article  CAS  Google Scholar 

  682. Gelens E, Smeets L and Sliedregt LAJM et al (2005). An atom efficient and solvent-free synthesis of structurally diverse amides using microwaves. Tetrahedron Lett 46: 3751–3754

    Article  CAS  Google Scholar 

  683. Ferroud C, Godart M and Ung S et al (2008). Microwaves-assisted solvent-free synthesis of N-acetamides by amidation or aminolysis. Tetrahedron Lett 49: 3004–3008

    Article  CAS  Google Scholar 

  684. Polshettiwar V and Varma RS (2008). NafioncircledR-catalyzed microwave-assisted Ritter reaction: an atom-economic solvent-free synthesis of amides. Tetrahedron Lett 49: 2661‱2664

    Article  CAS  Google Scholar 

  685. Zhang L and Zhang JY (2005). Microwave-assisted synthesis of salicylamide via BCl 3 mediated coupling. J Comb Chem 7: 622-26

    Article  PubMed  CAS  Google Scholar 

  686. Martelanc M, Kranjc K and Polanc S et al (2005). An efficient microwave-assisted green transformation of fused succinic anhydrides into N-aminosuccinimide derivatives of bicyclo[2.2.2]octene in water. Green Chem 7: 737–741

    Article  CAS  Google Scholar 

  687. Hren J, Kranjc K, Polanc S et al (2008) Aqueous versus neat reaction conditions: the microwave-assisted, selective conversion of a fused anhydride ring with amines in the presence of a keto group. Synthesis: 452-58

  688. Massaro A, Mordini A, Reginato G et al (2007) Microwave-assisted transformation of esters into hydroxamic acids. Synthesis: 3201-204

  689. Cianci J, Baell JB and Harvey AJ (2007). Microwave-assisted, zinc-mediated peptide coupling of N-benzyl-α,α-disubstituted amino acids. Tetrahedron Lett 48: 5973–5975

    Article  CAS  Google Scholar 

  690. Katritzky AR, Todadze E and Angrish P et al (2007). Efficient peptide coupling involving sterically hindered amino acids. J Org Chem 72: 5794–5801

    Article  PubMed  CAS  Google Scholar 

  691. Katritzky AR, Khashab NM and Yoshioka M et al (2007). Microwave-assisted solid-phase peptide synthesis utilizing N-Fmoc-protected (α-aminoacyl)benzotriazoles. Chem Biol Drug Des 70: 465–468

    Article  PubMed  CAS  Google Scholar 

  692. De Luca L and Giacomelli G (2008). An easy microwave-assisted synthesis of sulfonamides directly from sulfonic acids. J Org Chem 73: 3967–3969

    Article  PubMed  CAS  Google Scholar 

  693. Flores Toque HA, Priviero FBM and Teixeira CE et al (2008). Synthesis and pharmacological evaluations of sildenafil analogues for treatment of erectile dysfunction. J Med Chem 51: 2807–2815

    Article  PubMed  CAS  Google Scholar 

  694. Katritzky AR, Angrish P (2006) Convenient and efficient preparation of N-protected (α-aminoacyl)oxy-substituted terpenes and alkanes. Synthesis: 4135-142

  695. Remme N, Koschek K, Schneider C (2007) Scandium triflate catalyzed transesterification of carboxylic esters. Synlett: 491-93

  696. Prediger I, Weiss T, Reiser O (2008) Facile access to 2-arylindolines and 2-arylindoles by microwave-assisted tandem radical cyclization. Synthesis: 2191-198

  697. Portela-Cubillo F, Scott JS and Walton JC (2008). Microwave-assisted syntheses of N-heterocycles using alkenone-, alkynone- and aryl-carbonyl O-phenyl oximes: formal synthesis of neocryptolepine. J Org Chem 73: 5558–5565

    Article  PubMed  CAS  Google Scholar 

  698. Portela-Cubillo F, Scott JS, Walton JC (2007) Microwave-assisted preparations of dihydropyrroles from alkenone O-phenyl oximes. Chem Commun: 4041-043

  699. Teichert A, Jantos K and Harms K et al (2004). One-pot homolytic aromatic substitutions/HWE olefinations under microwave conditions for the formation of a small oxindole library. Org Lett 6: 3477–3480

    Article  PubMed  CAS  Google Scholar 

  700. Merisor E, Conrad J and Klaiber I et al (2007). Triethyl phosphite mediated domino reaction: direct conversion of ω-nitroalkenes into N-heterocycles. Angew Chem Int Ed 46: 3353–3355

    Article  CAS  Google Scholar 

  701. Merisor E, Conrad J, Mika S et al (2007) Microwave-assisted reductive cyclization of N-allyl 2-nitroanilines: a new approach to substituted 1,2,3,4-tetrahydroquinoxalines. Synlett: 2033-036

  702. Parsons A, Sharpe D, Taylor P (2005) Radical addition reactions of diphenylphosphine sulfide. Synlett: 2981-983

  703. Jessop CM, Parsons AF, Routledge A et al (2006) Radical addition reactions of phosphorus hydrides: tuning the reactivity of phosphorus hydrides, the use of microwaves and Horner–Wadsworth–Emmons-type reactions. Eur J Org Chem: 1547-554

  704. Du Y, Creighton CJ and Yan Z et al (2005). The synthesis and evaluation of 10- and 12-membered ring benzofused enediyne amino acids. Bioorg Med Chem 13: 5936–5948

    Article  PubMed  CAS  Google Scholar 

  705. Hartung J, Daniel K and Gottwald T et al (2006). Microwave-assisted generation of alkoxyl radicals and their use in additions, β-fragmentations, and remote functionalizations. Org Biomol Chem 4: 2313–2322

    Article  PubMed  CAS  Google Scholar 

  706. Srinivasan N, Yurek-George A and Ganesan A (2005). Rapid deprotection of N-Boc amines by TFA combined with freebase generation using basic ion-exchange resins. Mol Divers 9: 291–293

    Article  PubMed  CAS  Google Scholar 

  707. Murray AJ, Parsons PJ and Hitchcock P (2007). The combined use of stereoelectronic control and ring closing metathesis for the synthesis of (-)-8-epi-swainsonine. Tetrahedron 63: 6485–6492

    Article  CAS  Google Scholar 

  708. Carlsson AC, Jam F and Tullberg M et al (2006). Microwave-assisted synthesis of the Schöllkopf chiral auxiliaries: (3S)- and (3R)-3,6-dihydro-2,5-diethoxy-3-isopropyl-pyrazine. Tetrahedron Lett 47: 5199–5201

    Article  CAS  Google Scholar 

  709. Raghuraman A, Riaz M, Hindle M and Desai UR (2007). Rapid and efficient microwave-assisted synthesis of highly sulfated organic scaffolds. Tetrahedron Lett 48: 6754–6758

    Article  PubMed  CAS  Google Scholar 

  710. Bode CM, Ting A and Schaus SE (2006). A general organic catalyst for asymmetric addition of stabilized nucleophiles to acyl imines. Tetrahedron 62: 11499–11505

    Article  CAS  Google Scholar 

  711. Yin J, Spindler J, Linker T (2007) Simple synthesis of 2-C-branched glyco-acetic acids. Chem Comm: 2712-713

  712. Magolan J, Carson CA and Kerr MA (2008). Total synthesis of (±)-mersicarpine. Org Lett 10: 1437–1440

    Article  PubMed  CAS  Google Scholar 

  713. Sá MM, Meier L (2006) Pyridine-free and solvent-free acetylation of nucleosides promoted by molecular sieves. Synlett: 3474-478

  714. Marette C, Larrouquet C and Tisnès P et al (2006). A simple and efficient transprotection of aryl methyl ether to aryl benzoate under microwave activation. Tetrahedron Lett 47: 6947–6950

    Article  CAS  Google Scholar 

  715. Luzzio FA and Chen J (2008). Efficient preparation and processing of the 4-methoxybenzyl (PMB) group for phenolic protection using ultrasound. J Org Chem 73: 5621–5624

    Article  PubMed  CAS  Google Scholar 

  716. Gregg BT, Golden KC and Quinn JF (2008). Indium(III)trifluoromethanesulfonate as a mild, efficient catalyst for the formation of acetals and ketals in the presence of acid sensitive functional groups. Tetrahedron 64: 3287–3295

    Article  CAS  Google Scholar 

  717. Persson T, Johansen SK and Martiny L et al (2004). Synthesis of carbon-14 labelled (5Z)-4-bromo-5-(bromomethylene)-2(5H)- furanone: a potent quorum sensing inhibitor. J Label Comp Radiopharm 47: 627–634

    Article  CAS  Google Scholar 

  718. Martins A and Lautens M (2008). A simple, cost-effective method for the regioselective deuteration of anilines. Org Lett 10: 4351–4353

    Article  PubMed  CAS  Google Scholar 

  719. Dahlén A, Prasad E, Hilmersson G and Flowers RA (2005). Exploring SmBr2-, SmI2-, and YbI2-mediated reactions assisted by microwave irradiation. Chem Eur J 11: 3279–3284

    Article  CAS  Google Scholar 

  720. Polshettiwar V and Varma RS (2007). Tandem bis-aldol reaction of ketones: a facile one-pot synthesis of 1,3-dioxanes in aqueous medium. J Org Chem 72: 7420–7422

    Article  PubMed  CAS  Google Scholar 

  721. Katritzky AR, Vincek AS, Suzuki K (2005) Microwave-assisted synthesis of peptidyl phosphorus ylides. ARKIVOC V: 116-26

  722. Jung ME and Maderna A (2005). Synthesis of bicyclo[2.2.2]oct-5-en-2-ones via a tandem intermolecular Michael addition intramolecular aldol process (a bridged Robinson annulation). Tetrahedron Lett 46: 5057–5061

    Article  CAS  Google Scholar 

  723. Giraud A, Provot O and Peyrat JF et al (2006). Microwave-assisted efficient synthesis of 1,2-diaryldiketones: a novel oxidation reaction of diarylalkynes with DMSO promoted by FeBr3. Tetrahedron 62: 7667–7673

    Article  CAS  Google Scholar 

  724. Corbu A, Gauron G and Castro JM et al (2008). Microwave-assisted domino reactions: function-compatibility, modulation, and greening efforts. Tetrahedron Asymmetry 19: 1730–1743

    Article  CAS  Google Scholar 

  725. Zhang L and Zhang JY (2006). Microwave-assisted, boron trichloride mediated acylation of phenols-synthesis of (o-hydroxyaryl)(aryl)methanones and xanthones. J Comb Chem 8: 361–367

    Article  PubMed  CAS  Google Scholar 

  726. Bagley M, Lubinu MC (2006) Microwave-assisted oxidative aromatization of Hantzsch 1,4-dihydropyridines using manganese dioxide. Synthesis: 1283-288

  727. Hellal M, Bihel F and Mongeot A et al (2006). Microwave-assisted cyclic amidine synthesis using TiCl4. Org Biomol Chem 4: 3142–3146

    Article  PubMed  CAS  Google Scholar 

  728. Monsieurs K, Rombouts G, Tapolcsányi P et al (2006) Synthesis of substituted phenanthrenes via intramolecular condensation based on temperature-dependent deprotonation using a weak carbonate base. Synlett: 3225-230

  729. Nakamura H, Sugiishi T and Tanaka Y (2008). Synthesis of allenes via CuBr-catalyzed homologation of alk-1-ynes accelerated by microwave. Tetrahedron Lett 49: 7230–7233

    Article  CAS  Google Scholar 

  730. de Souza ROMA, de Souza ALF and Fernández TL et al (2008). Morita-Baylis-Hillman reaction in water/ionic liquids under microwave irradiation. Lett Org Chem 5: 379–382

    Article  CAS  Google Scholar 

  731. Liermann JC and Opatz T (2008). Synthesis of lamellarin U and lamellarin G trimethyl ether by alkylation of a deprotonated α-aminonitrile. J Org Chem 73: 4526–4531

    Article  PubMed  CAS  Google Scholar 

  732. Ishikura M, Hasunuma M and Yamada K et al (2006). Microwave-assisted cycloaddition reaction of azides to N-substituted 2-azabicyclo[2.2.1]hept-5-en-3-ones. Heterocycles 68: 2253–2257

    Article  CAS  Google Scholar 

  733. Jiao L, Liang Y and Xu J (2006). Origin of the relative stereoselectivity of the β-lactam formation in the Staudinger reaction. J Am Chem Soc 128: 6060–6069

    Article  PubMed  CAS  Google Scholar 

  734. Hu L, Wang Y and Li B et al (2007). Diastereoselectivity in the Staudinger reaction: a useful probe for investigation of nonthermal microwave effects. Tetrahedron 63: 9387–9392

    Article  CAS  Google Scholar 

  735. Veitch GE, Bridgwood KL, Rands-Trevor K, Ley SV (2008) Magnesium nitride as a convenient source of ammonia: preparation of pyrroles. Synlett: 2597-600

  736. Werner S, Iyer PS and Fodor MD et al (2006). Solution-phase synthesis of a tricyclic pyrrole-2-carboxamide discovery library applying a Stetter–Paal–Knorr reaction sequence. J Comb Chem 8: 368–380

    Article  PubMed  CAS  Google Scholar 

  737. Mattson AE, Bharadwaj AR and Zuhl AM et al (2006). Thiazolium-catalyzed additions of acylsilanes: a general strategy for acyl anion addition reactions. J Org Chem 71: 5715–5724

    Article  PubMed  CAS  Google Scholar 

  738. Milgram BC, Eskildsen K and Richter SM et al (2007). Microwave-assisted Piloty-Robinson synthesis of 3,4-disubstituted pyrroles. J Org Chem 72: 3941–3944

    Article  PubMed  CAS  Google Scholar 

  739. Gupton JT, Banner EJ and Scharf AB et al (2006). The application of vinylogous iminium salt derivatives to an efficient synthesis of the pyrrole containing alkaloids rigidin and rigidin E. Tetrahedron 62: 8243–8255

    Article  CAS  Google Scholar 

  740. Kim I, Choi J, Lee S, Lee GH (2008) A highly efficient catalyst-free cycloisomerization approach to indolizinones. Synlett: 2334-338

  741. Lipinska TM and Czarnocki SJ (2006). A new approach to difficult Fischer synthesis: the use of zinc chloride catalyst in triethylene glycol under controlled microwave irradiation. Org Lett 8: 367–370

    Article  PubMed  CAS  Google Scholar 

  742. Lipinska TM (2006). Total synthesis of new indolo[2,3-a]quinolizine alkaloids sempervirine type, potential pharmaceuticals. Tetrahedron 62: 5736–5747

    Article  CAS  Google Scholar 

  743. Kraus GA and Guo H (2008). One-pot synthesis of 2-substituted indoles from 2-aminobenzyl phosphonium salts. A formal total synthesis of arcyriacyanin A. Org Lett 10: 3061–3063

    Article  PubMed  CAS  Google Scholar 

  744. Fuwa H and Sasaki M (2009). Synthesis of 2-substituted indoles and indolines via Suzuki-Miyaura coupling/5-endo-trig cyclization strategies. J Org Chem 74: 212–221

    Article  PubMed  CAS  Google Scholar 

  745. Savarin CG, Grise C and Murry JA et al (2007). Novel intramolecular reactivity of oximes: synthesis of cyclic and spiro-fused imines. Org Lett 9: 981–983

    Article  PubMed  CAS  Google Scholar 

  746. Goncalves S, Wagner A, Mioskowski C and Baati R (2009). Microwave-assisted synthesis of 4-keto-4,5,6,7-tetrahydrobenzofurans. Tetrahedron Lett 50: 274–276

    Article  CAS  Google Scholar 

  747. Schweizer E, Gaich T, Brecker L et al (2007) Synthetic studies towards the total synthesis of providencin. Synthesis: 3807-3814

  748. Eidamshaus C and Burch JD (2008). One-pot synthesis of benzofurans via palladium-catalyzed enolate arylation with o-bromophenols. Org Lett 10: 4211–4214

    Article  PubMed  CAS  Google Scholar 

  749. Humphries PS and Finefield JM (2006). Microwave-assisted synthesis utilizing supported reagents: a rapid and versatile synthesis of 1,5-diarylpyrazoles. Tetrahedron Lett 47: 2443–2446

    Article  CAS  Google Scholar 

  750. Ahlstrom MM, Ridderstrom M and Zamora I et al (2007). CYP2C9 Structure-metabolism relationships: optimizing the metabolic stability of COX-2 inhibitors. J Med Chem 50: 4444–4452

    Article  PubMed  CAS  Google Scholar 

  751. Pinkerton AB, Huang D and Cube RV et al (2007). Diaryl substituted pyrazoles as potent CCR2 receptor antagonists. Bioorg Med Chem Lett 17: 807–813

    Article  PubMed  CAS  Google Scholar 

  752. Bagley MC, Davis T and Dix MC et al (2006). Microwave-assisted synthesis of N-pyrazole ureas and the p38α inhibitor BIRB 796 for study into accelerated cell ageing. Org Biomol Chem 4: 4158–4164

    Article  PubMed  CAS  Google Scholar 

  753. Bagley M, Lubinu MC, Mason C (2007) Regioselective microwave-assisted synthesis of substituted pyrazoles from ethynyl ketones. Synlett: 704-08

  754. Borisov AV, Gorobets NY and Yermolayev SA et al (2007). One-pot microwave-assisted synthesis of a benzopyrano[2,3-c]pyrazol-3(2H)-one library. J Comb Chem 9: 909–911

    Article  PubMed  CAS  Google Scholar 

  755. Daniels RN, Kim K and Lebois EP et al (2008). Microwave-assisted protocols for the expedited synthesis of pyrazolo[1,5-a] and [3,4-d]pyrimidines. Tetrahedron Lett 49: 305–310

    Article  CAS  Google Scholar 

  756. Quiroga J, Trilleras J and Insuasty B et al (2008). Microwave-assisted synthesis of pyrazolo[3,4-d]pyrimidines from 2-amino-4,6-dichloropyrimidine-5-carbaldehyde under solvent-free conditions. Tetrahedron Lett 49: 3257–3259

    Article  CAS  Google Scholar 

  757. Wolkenberg SC, Wisnoski DD and Leister WH et al (2004). Efficient synthesis of imidazoles from aldehydes and 1,2-diketones using microwave irradiation. Org Lett 6: 1453–1456

    Article  PubMed  CAS  Google Scholar 

  758. Soh CH, Chui WK and Lam Y (2008). An efficient and expeditious synthesis of di- and monosubstituted 2-aminoimidazoles. J Comb Chem 10: 118–122

    Article  PubMed  CAS  Google Scholar 

  759. Koubachi J, El Kazzouli S and Berteina-Raboin S et al (2007). Synthesis of polysubstituted imidazo[1,2-a]pyridines via microwave-assisted one-pot cyclization/Suzuki coupling/palladium-catalyzed heteroarylation. J Org Chem 72: 7650–7655

    Article  PubMed  CAS  Google Scholar 

  760. Ermolat’ev DS and Van der Eycken EV (2008). A divergent synthesis of substituted 2-aminoimidazoles from 2-aminopyrimidines. J Org Chem 73: 6691–6697

    Article  PubMed  CAS  Google Scholar 

  761. Ermolat’ev DS, Babaev EV and Van der Eycken EV (2006). Efficient one-pot, two-step, microwave-assisted procedure for the synthesis of polysubstituted 2-aminoimidazoles. Org Lett 8: 5781–5784

    Article  PubMed  CAS  Google Scholar 

  762. Soh CH, Chui WK and Lam Y (2006). Synthesis of 2,4-disubstituted 5-aminoimidazoles using microwave irradiation. J Comb Chem 8: 464–468

    Article  PubMed  CAS  Google Scholar 

  763. Aidouni A, Demonceau A, Delaude L (2006) Microwave-assisted synthesis of N-heterocyclic carbene precursors. Synlett: 493-95

  764. Lin SY, Isome Y and Stewart E et al (2006). Microwave-assisted one step high-throughput synthesis of benzimidazoles. Tetrahedron Lett 47: 2883–2886

    Article  CAS  Google Scholar 

  765. VanVliet DS, Gillespie P and Scicinski JJ (2005). Rapid one-pot preparation of 2-substituted benzimidazoles from 2-nitroanilines using microwave conditions. Tetrahedron Lett 46: 6741–6743

    Article  CAS  Google Scholar 

  766. Al-Dweik M, Zahra J and Khanfar M et al (2008). Heterocycles [h]-fused to 4-oxoquinoline-3-carboxylic acid. Part VII: synthesis of some 6-oxoimidazo[4,5-h]quinoline-7-carboxylic acids and esters. Monatsh Chem 139: 1434–4475

    Google Scholar 

  767. Ursic U, Groselj U and Meden A et al (2008). Regiospecific [2+2] cycloadditions of electron-poor acetylenes to (Z)-2-acylamino-3-dimethylaminopropenoates: synthesis of highly functionalised buta-1,3-dienes. Tetrahedron Lett 49: 3775–3778

    Article  CAS  Google Scholar 

  768. Chiacchio U, Rescifina A and Saita MG et al (2005). Zinc(II) triflate-controlled 1,3-dipolar cycloadditions of C-(2-thiazolyl)nitrones: application to the synthesis of a novel isoxazolidinyl analogue of tiazofurin. J Org Chem 70: 8991–9001

    Article  PubMed  CAS  Google Scholar 

  769. Rescifina A, Chiacchio MA and Corsaro A et al (2006). Synthesis and biological activity of isoxazolidinyl polycyclic aromatic hydrocarbons: potential DNA intercalators. J Med Chem 49: 709–715

    Article  PubMed  CAS  Google Scholar 

  770. Yong SR, Ung AT and Pyne SG et al (2007). Synthesis of novel 3′ spirocyclic-oxindole derivatives and assessment of their cytostatic activities. Tetrahedron 63: 5579–5586

    Article  CAS  Google Scholar 

  771. Wipf P, Fletcher JM and Scarone L (2005). Microwave promoted oxazole synthesis: cyclocondensation cascade of oximes and acyl chlorides. Tetrahedron Lett 46: 5463–5466

    Article  CAS  Google Scholar 

  772. Huxley A (2006) Microwave-assisted synthesis of benzoxazole-7-carboxylate esters using trifluoroacetic acid and acetic acid. Synlett: 2658-660

  773. Kamila S, Zhang H and Biehl ER (2005). One-pot synthesis of 2-aryl- and 2-alkylbenzothiazoles under microwave irradiation. Heterocycles 65: 2119–2126

    Article  CAS  Google Scholar 

  774. Mu XJ, Zou JP and Zeng RS et al (2005). Mn(III)-Promoted cyclization of substituted thioformanilides under microwave irradiation: a new reagent for 2-substituted benzothiazoles. Tetrahedron Lett 46: 4345–4347

    Article  CAS  Google Scholar 

  775. Kazmaier U and Ackermann S (2005). A straightforward approach towards thiazoles and endothiopeptides via Ugi reaction. Org Biomol Chem 3: 3184–3187

    Article  PubMed  CAS  Google Scholar 

  776. Merritt E, Bagley M (2007) Holzapfel–Meyers–Nicolaou modification of the Hantzsch thiazole synthesis. Synthesis: 3535-541

  777. Yuan C, Liu Q and St.Jean DJ et al (2007). The discovery of 2-anilinothiazolones as 11β-HSD1 inhibitors. Bioorg Med Chem Lett 17: 6056–6061

    Article  PubMed  CAS  Google Scholar 

  778. Gao Y and Lam Y (2008). [3+2] Cycloaddition reactions in the synthesis of triazolo[4,5-b]pyridin-5-ones and pyrrolo[3,4-b]pyridin-2-ones. J Comb Chem 10: 327–332

    Article  PubMed  CAS  Google Scholar 

  779. Yeung KS, Farkas ME, Kadow JF and Meanwell NA (2005). A base-catalyzed, direct synthesis of 3,5-disubstituted 1,2,4-triazoles from nitriles and hydrazides. Tetrahedron Lett 46: 3429–3432

    Article  CAS  Google Scholar 

  780. Aldrich LN, Lebois EP and Lewis LM et al (2009). MAOS protocols for the general synthesis and lead optimization of 3,6-disubstituted-[1,2,4]triazolo[4,3-b]pyridazines. Tetrahedron Lett 50: 212–215

    Article  CAS  Google Scholar 

  781. Adib M, Jahromi AH and Tavoosi N et al (2006). Microwave-assisted efficient, one-pot, three-component synthesis of 3,5-disubstituted 1,2,4-oxadiazoles under solvent-free conditions. Tetrahedron Lett 47: 2965–2967

    Article  CAS  Google Scholar 

  782. Kurz T, Lolak N and Geffken D (2007). Rapid and efficient microwave-assisted synthesis of 5-amino-3-aralkoxy(methoxy)amino-1,2,4-oxadiazoles. Tetrahedron Lett 48: 2733–2735

    Article  CAS  Google Scholar 

  783. García Mancheño O and Bolm C (2007). Synthesis of N-(1H)-tetrazole sulfoximines. Org Lett 9: 2951–2954

    Article  CAS  Google Scholar 

  784. Sevilla S, Forns P and Fernàndez JC et al (2006). Microwave-assisted synthesis of 1,3-dihydro-[1,2,5]thiadiazolo[3,4-b]pyrazine-2,2-dioxides. Tetrahedron Lett 47: 8603–8606

    Article  CAS  Google Scholar 

  785. Shie JJ and Fang JM (2007). Microwave-assisted one-pot tandem reactions for direct conversion of primary alcohols and aldehydes to triazines and tetrazoles in aqueous media. J Org Chem 72: 3141–3144

    Article  PubMed  CAS  Google Scholar 

  786. Semple G, Skinner PJ and Gharbaoui T et al (2008). 3-(1H-tetrazol-5-yl)-1,4,5,6-tetrahydro-cyclopentapyrazole (MK-0354): a partial agonist of the nicotinic acid receptor, G-protein coupled receptor 109a, with antilipolytic but no vasodilatory activity in mice. J Med Chem 51: 5101–5108

    Article  PubMed  CAS  Google Scholar 

  787. Gorobets NY, Yousefi BH and Belaj F et al (2004). Rapid microwave-assisted solution phase synthesis of substituted 2-pyridone libraries. Tetrahedron 60: 8633–8644

    Article  CAS  Google Scholar 

  788. Adams J, Hardin A and Vounatsos F (2006). Microwave-assisted synthesis of new polysubstituted dienaminoesters and their cyclization to 3-bromo-2(1H)-pyridinones. J Org Chem 71: 9895–9898

    Article  PubMed  CAS  Google Scholar 

  789. Jia CS, Zhang Z, Tu SJ and Wang GW (2006). Rapid and efficient synthesis of poly-substituted quinolines assisted by p-toluene sulphonic acid under solvent-free conditions: comparative study of microwave irradiation versus conventional heating. Org Biomol Chem 4: 104–110

    Article  PubMed  CAS  Google Scholar 

  790. Lekhok K, Prajapati D, Boruah R (2008) Indium(III) trifluoromethanesulfonate: an efficient reusable catalyst for the alkynylation-cyclization of 2-aminoaryl ketones and synthesis of 2,4-disubstituted quinolines. Synlett: 655-58

  791. Tu S, Zhang J and Jia R et al (2007). An efficient route for the synthesis of a new class of pyrido[2,3-d]pyrimidine derivatives. Org Biomol Chem 5: 1450–1453

    Article  PubMed  CAS  Google Scholar 

  792. Glasnov TN, Stadlbauer W and Kappe CO (2005). Microwave-assisted multistep synthesis of functionalized 4-arylquinolin-2(1H)-ones using palladium-catalyzed cross-coupling chemistry. J Org Chem 70: 3864–3870

    Article  PubMed  CAS  Google Scholar 

  793. Rivkin A and Adams B (2006). Solvent-free microwave synthesis of 4-hydroxy-3-phenylquinolin-2(1H)-ones and variants using activated arylmalonates. Tetrahedron Lett 47: 2395–2398

    Article  CAS  Google Scholar 

  794. Chichetti SM, Ahearn SP and Adams B et al (2007). Solvent-free microwave synthesis of novel 6-hydroxypyrimidin-4(1H)-one derivatives using arylmalonates. Tetrahedron Lett 48: 8250–8252

    Article  CAS  Google Scholar 

  795. Chichetti SM, Ahearn SP and Rivkin A (2008). A novel strategy for the synthesis of uracil derivatives using bis(pentafluorophenyl)imidodicarbonate. Tetrahedron Lett 49: 6081–6083

    Article  CAS  Google Scholar 

  796. Mésangeau C, Yous S and Pérès B et al (2005). Pictet-Spengler heterocyclizations via microwave-assisted degradation of DMSO. Tetrahedron Lett 46: 2465–2468

    Article  CAS  Google Scholar 

  797. Aberg V, Norman F and Chorell E et al (2005). Microwave-assisted decarboxylation of bicyclic 2-pyridone scaffolds and identification of Aβ-peptide aggregation inhibitors. Org Biomol Chem 3: 2817–2823

    Article  PubMed  CAS  Google Scholar 

  798. Tomaszewski MJ, Whalley A and Hu YJ (2008). A one-pot synthesis of 2,3-dihydro-1H-pyrrolo[3,2-c]quinolines. Tetrahedron Lett 49: 3172–3175

    Article  CAS  Google Scholar 

  799. Duvelleroy D, Perrio C and Parisel O et al (2005). Rapid synthesis of quinoline-4-carboxylic acid derivatives from arylimines and 2-substituted acrylates or acrylamides under indium(III) chloride and microwave activations. Scope and limitations of the reaction. Org Biomol Chem 3: 3794–3804

    Article  PubMed  CAS  Google Scholar 

  800. Fernandez SY, Raw SA and Taylor RJK (2005). Improved methodologies for the preparation of highly substituted pyridines. J Org Chem 70: 10086–10095

    Article  CAS  Google Scholar 

  801. Lee HK, Cao H and Rana TM (2005). Design, microwave-assisted synthesis, and photophysical properties of small molecule organic antennas for luminescence resonance energy transfer. J Comb Chem 7: 279–284

    Article  PubMed  CAS  Google Scholar 

  802. Kabalka GW and Mereddy AR (2005). Microwave-assisted synthesis of functionalized flavones and chromones. Tetrahedron Lett 46: 6315–6317

    Article  CAS  Google Scholar 

  803. Seijas JA, Vazquez-Tato MP and Carballido-Reboredo R (2005). Solvent-free synthesis of functionalized flavones under microwave irradiation. J Org Chem 70: 2855–2858

    Article  PubMed  CAS  Google Scholar 

  804. Katkevičs M, Kontijevskis A and Mutule I et al (2007). Microwave-promoted automated synthesis of a coumarin library. Chem Heterocycl Comp 43: 151–159

    Article  Google Scholar 

  805. Hellal M, Bourguignon JJ and Bihel FJJ (2008). 6-endo-dig Cyclization of heteroarylesters to alkynes promoted by Lewis acid catalyst in the presence of Brønsted acid. Tetrahedron Lett 49: 62–65

    Article  CAS  Google Scholar 

  806. Sandin H, Swanstein ML and Wellner E (2004). A fast and parallel route to cyclic isothioureas and guanidines with use of microwave-assisted chemistry. J Org Chem 69: 1571–1580

    Article  PubMed  CAS  Google Scholar 

  807. Movassaghi M and Hill MD (2006). Single-step synthesis of pyrimidine derivatives. J Am Chem Soc 128: 14254–14255

    Article  PubMed  CAS  Google Scholar 

  808. Chilin A, Marzaro G and Zanatta S et al (2007). A microwave improvement in the synthesis of the quinazoline scaffold. Tetrahedron Lett 48: 3229–3231

    Article  CAS  Google Scholar 

  809. Ferrini S, Ponticelli F and Taddei M (2007). Convenient synthetic approach to 2,4-disubstituted quinazolines. Org Lett 9: 69–72

    Article  PubMed  CAS  Google Scholar 

  810. Hill MD and Movassaghi M (2008). Observations on the use of microwave irradiation in azaheterocycle synthesis. Tetrahedron Lett 49: 4286–4288

    Article  CAS  Google Scholar 

  811. Ming L, Shuwen W and Lirong W et al (2005). A convenient, rapid, and highly selective method for synthesis of new pyrazolo[1,5-a]pyrimidines via the reaction of enaminones and 5-amino-1H-pyrazoles under microwave irradiation. J Heterocycl Chem 42: 925–930

    Article  Google Scholar 

  812. Shaaban MR (2008). Microwave-assisted synthesis of fused heterocycles incorporating trifluoromethyl moiety. J Fluor Chem 129: 1156–1161

    Article  CAS  Google Scholar 

  813. Yoon DS, Han Y and Stark TM et al (2004). Efficient synthesis of 4-aminoquinazoline and thieno[3,2-d]pyrimidin-4-ylamine derivatives by microwave irradiation. Org Lett 6: 4775–4778

    Article  PubMed  CAS  Google Scholar 

  814. Li Z, Huang H and Sun H et al (2008). Microwave-assisted efficient and convenient synthesis of 2,4(1H,3H)-quinazolinediones and 2-thioxoquinazolines. J Comb Chem 10: 484–486

    Article  PubMed  CAS  Google Scholar 

  815. Liu JF, Lee J and Dalton AM et al (2005). Microwave-assisted one-pot synthesis of 2,3-disubstituted 3H-quinazolin-4-ones. Tetrahedron Lett 46: 1241–1244

    Article  CAS  Google Scholar 

  816. Liu J-F, Ye P and Sprague K et al (2005). Novel one-pot total syntheses of deoxyvasicinone, mackinazolinone, isaindigotone, and their derivatives promoted by microwave irradiation. Org Lett 7: 3363–3366

    Article  PubMed  CAS  Google Scholar 

  817. Kostakis IK, Elomri A and Seguin E et al (2007). Rapid synthesis of 2,3-disubstituted-quinazolin-4-ones enhanced by microwave-assisted decomposition of formamide. Tetrahedron Lett 48: 6609–6613

    Article  CAS  Google Scholar 

  818. Kalusa A, Chessum N and Jones K (2008). An efficient synthesis of 2,3-diaryl (3H)-quinazolin-4-ones via imidoyl chlorides. Tetrahedron Lett 49: 5840–5842

    Article  CAS  Google Scholar 

  819. Tyagarajan S and Chakravarty PK (2005). Synthesis of pyrimidines from ketones using microwave irradiation. Tetrahedron Lett 46: 7889–7891

    Article  CAS  Google Scholar 

  820. Nie A, Wang J and Huang Z (2006). Microwave-assisted solution-phase parallel synthesis of 2,4,6-trisubstituted pyrimidines. J Comb Chem 8: 646–648

    Article  PubMed  CAS  Google Scholar 

  821. Devi I and Bhuyan PJ (2005). An expedient method for the synthesis of 6-substituted uracils under microwave irradiation in a solvent-free medium. Tetrahedron Lett 46: 5727–5729

    Article  CAS  Google Scholar 

  822. Avalos M, Babiano R and Cintas P et al (2006). A one-pot domino reaction in constructing isoorotate bases and their nucleosides. Tetrahedron Lett 47: 1989–1992

    Article  CAS  Google Scholar 

  823. Yoburn JC and Baskaran S (2005). Chemoselective arylamidine cyclizations: mild formation of 2-arylimidazole-4-carboxylic acids. Org Lett 7: 3801–3803

    Article  PubMed  CAS  Google Scholar 

  824. Sagar R and Park SB (2008). Facile and efficient synthesis of carbohybrids as stereodivergent druglike small molecules. J Org Chem 73: 3270–3273

    Article  PubMed  CAS  Google Scholar 

  825. Kim SY, Park KH, Chung YK (2005) Manganese(IV) dioxide-catalyzed synthesis of quinoxalines under microwave irradiation. Chem Commun: 1321-323

  826. Kamila S and Biehl ER (2006). Synthetic studies of bioactive quinoxalinones: a facile approach to potent euglycemic and hypolipidemic agents. Heterocycles 68: 1931–1939

    Article  CAS  Google Scholar 

  827. Jainta M, Nieger M, Bräse S (2008) Microwave-assisted stereoselective one-pot synthesis of symmetrical and unsymmetrical 2,5-diketopiperazines from unprotected amino acids. Eur J Org Chem: 5418-424

  828. Minetto G, Lampariello LR, Taddei M (2005) Microwave-assisted synthesis of polysubstituted pyridazines. Synlett: 2743-746

  829. Caprosu MD, Butnariu RM and Mangalagiu II (2005). Synthesis and antimicrobial activity of some new pyridazine derivatives. Heterocycles 65: 1871–1879

    Article  CAS  Google Scholar 

  830. Zbancioc GN, Caprosu MC, Moldoveanu CC et al (2005) Microwave assisted synthesis for dimers via [3+3] dipolar cycloadditions. ARKIVOC X:189-98

  831. Hoogenboom R, Moore BC and Schubert US (2006). Microwave-assisted synthesis of 3,6-di(pyridin-2-yl) pyridazines: unexpected ketone and aldehyde cycloadditions. J Org Chem 71: 4903–4909

    Article  PubMed  CAS  Google Scholar 

  832. Dai WM, Wang X and Ma C (2005). Microwave-assisted one-pot regioselective synthesis of 2-alkyl-3,4-dihydro-3-oxo-2H-1,4-benzoxazines. Tetrahedron 61: 6879–6885

    Article  CAS  Google Scholar 

  833. Yuan Y, Liu G and Li et al (2007). Synthesis of diverse benzo[1,4] oxazin-3-one-based compounds using 1,5-difluoro-2,4-dinitrobenzene. J Comb Chem 9: 158–170

    Article  PubMed  CAS  Google Scholar 

  834. Feng G, Wu J and Dai WM (2006). One-pot regioselective annulation toward 3,4-dihydro-3-oxo-2H-1,4-benzoxazine scaffolds under controlled microwave heating. Tetrahedron 62: 4635–4642

    Article  CAS  Google Scholar 

  835. Xing X, Wu J, Feng G and Dai WM (2006). Microwave-assisted one-pot U-4CR and intramolecular O-alkylation toward heterocyclic scaffolds. Tetrahedron 62: 6774–6781

    Article  CAS  Google Scholar 

  836. Liu JF, Kaselj M and Isome Y et al (2005). Microwave-assisted concise total syntheses of quinazolinobenzodiazepine alkaloids. J Org Chem 70: 10488–10493

    Article  PubMed  CAS  Google Scholar 

  837. Ohta Y, Chiba H and Oishi S et al (2008). Concise synthesis of indole-fused 1,4-diazepines through copper(I)-catalyzed domino three-component coupling–cyclization–N-arylation under microwave irradiation. Org Lett 10: 3535–3538

    Article  PubMed  CAS  Google Scholar 

  838. Beeler AB, Acquilano DE and Su Q et al (2005). Synthesis of a library of complex macrodiolides employing cyclodimerization of hydroxy esters. J Comb Chem 7: 673–681

    Article  PubMed  CAS  Google Scholar 

  839. Abbiati G, Arcadi A and Bellinazzi A et al (2005). Intramolecular cyclization of δ-iminoacetylenes: a new entry to pyrazino[1,2-a]indoles. J Org Chem 70: 4088–4095

    Article  PubMed  CAS  Google Scholar 

  840. Vvedensky VY, Ivanov YV and Kysil V et al (2005). Microwave-mediated reactions of 3-aminomethylpyridines with acetylenedicarboxylates. A novel synthetic route to dihydronaphthyridines and naphthyridine-1-ones. Tetrahedron Lett 46: 3953–3956

    Article  CAS  Google Scholar 

  841. Kaval N, Halasz-Dajka B and Vo-Thanh G et al (2005). An efficient microwave-assisted solvent-free synthesis of pyrido-fused ring systems applying the tert-amino effect. Tetrahedron 61: 9052–9057

    Article  CAS  Google Scholar 

  842. Lebrini M, Bentiss F and Vezin H et al (2005). Crown compounds containing a 1,3,4-thiadiazole moiety: microwave assisted synthesis, crystal structure and quantum calculations. Heterocycles 65: 2847–2860

    Article  CAS  Google Scholar 

  843. Buckley BR, Boxhall JY, Bulman PC et al (2006) Mannich and O-alkylation reactions of tetraalkoxyresorcin[4]arenes—the use of some products in ligand-assisted reactions. Eur J Org Chem: 5117-134

  844. Koizumi H, Itoh Y and Ichikawa T (2006). On the magic of microwave-assisted organic synthesis 1,5-benzodiazepin-2-one from o-phenylenediamine and ethyl acetoacetate. Chem Lett 35: 1350–1351

    Article  CAS  Google Scholar 

  845. Giuseppone N, Schmitt JL and Lehn JM (2006). Driven evolution of a constitutional dynamic library of molecular helices toward the selective generation of [2 × 2] gridlike arrays under the pessure of metal ion coordination. J Am Chem Soc 128: 16748–16763

    Article  PubMed  CAS  Google Scholar 

  846. Miljanic OS, Dichtel WR and Mortezaei S et al (2006). Cyclobis(paraquat-p-phenylene)-based [2]catenanes prepared by kinetically controlled reactions involving alkynes. Org Lett 8: 4835–4838

    Article  PubMed  CAS  Google Scholar 

  847. Su S and Porco JA (2007). 1,2-Dihydroisoquinolines as templates for cascade reactions to access isoquinoline alkaloid frameworks. Org Lett 9: 4983–4986

    Article  PubMed  CAS  Google Scholar 

  848. Cho TJ, Shreiner CD, Hwang SH et al (2007) 5,10,15,20- Tetrakis[4′-(terpyridinyl)phenyl]porphyrin and its RuII complexes: synthesis, photovoltaic properties, and self-assembled morphology. Chem Commun: 4456-458

  849. Dogutan DK, Zaidi SHH and Thamyongkit P et al (2007). New route to ABCD-porphyrins via bilanes. J Org Chem 72: 7701–7714

    Article  PubMed  CAS  Google Scholar 

  850. Chandrasekharam M, Rao CS and Singh SP et al (2007). Microwave-assisted synthesis of metalloporphyrazines. Tetrahedron Lett 48: 2627–2630

    Article  CAS  Google Scholar 

  851. Elghamry I and Tietze LF (2008). Microwave assisted synthesis of novel annealed porphyrins. Tetrahedron Lett 49: 3972–3975

    Article  CAS  Google Scholar 

  852. Geske GD, Wezeman RJ, Siegel AP and Blackwell HE (2005). Small molecule inhibitors of bacterial quorum sensing and biofilm formation. J Am Chem Soc 127: 12762–12763

    Article  PubMed  CAS  Google Scholar 

  853. Geske GD, O’Neill JC and Miller DM et al (2007). Modulation of bacterial quorum sensing with synthetic ligands: systematic evaluation of N-acylated homoserine lactones in multiple species and new insights into their mechanisms of action. J Am Chem Soc 129: 13613–13625

    Article  PubMed  CAS  Google Scholar 

  854. Murray JK and Gellman SH (2005). Application of microwave irradiation to the synthesis of 14-helical β-peptides. Org Lett 7: 1517–1520

    Article  PubMed  CAS  Google Scholar 

  855. Petersson EJ and Schepartz A (2008). Toward β-amino acid proteins: design, synthesis and characterization of a fifteen kilodalton β-peptide tetramer. J Am Chem Soc 130: 821–823

    Article  PubMed  CAS  Google Scholar 

  856. Wisén S, Androsavich J and Evans CG et al (2008). Chemical modulators of heat shock protein 70 (Hsp70) by sequential, microwave-accelerated reactions on solid phase. Bioorg Med Chem Lett 18: 60–65

    Article  PubMed  CAS  Google Scholar 

  857. Rizzolo F, Sabatino G and Chelli M et al (2007). A convenient microwave-enhanced solid-phase synthesis of difficult peptide sequences: case study of gramicidin A and CSF114(Glc). Int J Pept Res Ther 13: 203–208

    Article  CAS  Google Scholar 

  858. Chen PH, Tseng YH and Mou Y et al (2008). Adsorption of a statherin peptide fragment on the surface of nanocrystallites of hydroxyapatite. J Am Chem Soc 130: 2862–2868

    Article  PubMed  CAS  Google Scholar 

  859. Coantic S, Subra G and Martinez J (2008). Microwave-assisted solid phase peptide synthesis on high loaded resins. Int J Pept Res Ther 14: 143–147

    Article  CAS  Google Scholar 

  860. Matsushita T, Hinou H and Kurogochi M et al (2005). Rapid microwave-assisted solid-phase glycopeptide synthesis. Org Lett 7: 877–880

    Article  PubMed  CAS  Google Scholar 

  861. Diaz-Mochon JJ, Fara MA and Sanchez-Martin RM et al (2008). Peptoid dendrimers—microwave-assisted solid-phase synthesis and transfection agent evaluation. Tetrahedron Lett 49: 923–926

    Article  CAS  Google Scholar 

  862. Fara MA, Díaz-Mochón JJ and Bradley M (2006). Microwave-assisted coupling with DIC/HOBt for the synthesis of difficult peptoids and fluorescently labelled peptides—a gentle heat goes a long way. Tetrahedron Lett 47: 1011–1014

    Article  CAS  Google Scholar 

  863. Park MS, Oh HS and Cho H et al (2007). Microwave-assisted solid-phase synthesis of pseudopeptides containing reduced amide bond. Tetrahedron Lett 48: 1053–1057

    Article  CAS  Google Scholar 

  864. Paolini I, Nuti F and de la Cruz Pozo-Carrero M et al (2007). A convenient microwave-assisted synthesis of N-glycosyl amino acids. Tetrahedron Lett 48: 2901–2904

    Article  CAS  Google Scholar 

  865. Palasek SA, Cox ZJ and Collins JM (2007). Limiting racemization and aspartimide formation in microwave-enhanced Fmoc solid phase peptide synthesis. J Pept Sci 13: 143–148

    Article  PubMed  CAS  Google Scholar 

  866. Bowman MD, Jeske RC and Blackwell HE (2004). Microwave-accelerated SPOT-synthesis on cellulose supports. Org Lett 6: 2019–2022

    Article  PubMed  CAS  Google Scholar 

  867. Bowman MD, Jacobson MM and Blackwell HE (2006). Discovery of fluorescent cyanopyridine and deazalumazine dyes using small molecule macroarrays. Org Lett 8: 1645–1648

    Article  PubMed  CAS  Google Scholar 

  868. Lin Q, O’Neil JC and Blackwell HE (2005). Small molecule macroarray construction via Ugi four-component reactions. Org Lett 7: 4455–4458

    Article  PubMed  CAS  Google Scholar 

  869. Lin Q, Blackwell HE (2006) Rapid synthesis of diketopiperazine macroarrays via Ugi four-component reactions on planar solid supports. Chem Commun: 2884-886

  870. Portal C, Launay D and Merritt A et al (2005). High throughput physical organic chemistry: analytical constructs for monomer reactivity profiling. J Comb Chem 7: 554–560

    Article  PubMed  CAS  Google Scholar 

  871. Leonetti F, Capaldi C and Carotti A (2007). Microwave-assisted solid phase synthesis of Imatinib, a blockbuster anticancer drug. Tetrahedron Lett 48: 3455–3458

    Article  CAS  Google Scholar 

  872. Sun LP and Dai WM (2006). An engineered linker capable of promoting on-resin reactions for microwave-assisted solid-phase organic synthesis. Angew Chem Int Ed 45: 7255–7258

    Article  CAS  Google Scholar 

  873. Merkx R, Rijkers DTS and van Haren MJ et al (2007). Resin-bound sulfonyl azides: efficient loading and activation strategy for the preparation of the N-acyl sulfonamide linker. J Org Chem 72: 4574–4577

    Article  PubMed  CAS  Google Scholar 

  874. Isidro-Llobet A, Alvarez M and Burger K et al (2007). p-Nitromandelic acid as a highly acid-stable safety-catch linker for solid-phase synthesis of peptide and depsipeptide acids. Org Lett 9: 1429–1432

    Article  PubMed  CAS  Google Scholar 

  875. Akamatsu H, Fukase K, Kusumoto S (2004) Solid-phase synthesis of indol-2-ones by microwave-assisted radical cyclization. Synlett: 1049-053

  876. De Luca L, Giacomelli G and Porcheddu A (2005). Synthesis of 1-alkyl-4-imidazolecarboxylates: a catch and release strategy. J Comb Chem 7: 905–908

    Article  PubMed  CAS  Google Scholar 

  877. Cerezo V, Amblard M and Martinez J et al (2008). Solid-phase synthesis of 5-arylhistidines via a microwave-assisted Suzuki–Miyaura cross-coupling. Tetrahedron 64: 10538–10545

    Article  CAS  Google Scholar 

  878. Grieco P, Cai M and Liu L et al (2008). Design and microwave-assisted synthesis of novel macrocyclic peptides active at melanocortin receptors: discovery of potent and selective hMC5R receptor antagonists. J Med Chem 51: 2701–2707

    Article  PubMed  CAS  Google Scholar 

  879. Gachkova N, Cassel J and Leue S et al (2005). The solid-phase Nicholas reaction: scope and limitations. J Comb Chem 7: 449–457

    Article  PubMed  CAS  Google Scholar 

  880. Tsukamoto H, Suzuki R and Kondo Y (2006). Revisiting benzenesulfonyl linker for the deoxygenation and multifunctionalization of phenols. J Comb Chem 8: 289–292

    Article  PubMed  CAS  Google Scholar 

  881. Tullberg M, Luthman K and Grøtli M (2006). Microwave-assisted solid-phase synthesis of 2,5-diketopiperazines: solvent and resin dependence. J Comb Chem 8: 915–922

    Article  PubMed  CAS  Google Scholar 

  882. Luca LD, Giacomelli G and Nieddu G (2008). Synthesis of substituted benzofurans via microwave-enhanced catch and release strategy. J Comb Chem 10: 517–520

    Article  PubMed  CAS  Google Scholar 

  883. Lim HJ, Myung D and Lee IYC et al (2008). Microwave-assisted synthesis of benzimidazoles, benzoxazoles, and benzothiazoles from resin-bound esters. J Comb Chem 10: 501–503

    Article  PubMed  CAS  Google Scholar 

  884. Carlson EE, May JF and Kiessling LL (2006). Chemical probes of UDP-galactopyranose mutase. Chem Biol 13: 825–837

    Article  PubMed  CAS  Google Scholar 

  885. Bando T, Fujimoto J and Minoshima M et al (2007). Detection of CAG repeat DNA sequences by pyrene-functionalized pyrrole-imidazole polyamides. Bioorg Med Chem 15: 6937–6942

    Article  PubMed  CAS  Google Scholar 

  886. Chang WJ, Kulkarni MV and Sun CM (2006). Traceless and stereoselective synthesis of tetrahydro-β-carbolinethiohydantoins by microwave irradiation. J Comb Chem 8: 141–144

    Article  PubMed  CAS  Google Scholar 

  887. Lin MJ and Sun CM (2006). Microwave-assisted and traceless synthesis of imidazoquinoxalinones. J Comb Chem 8: 455–458

    Article  PubMed  CAS  Google Scholar 

  888. Kim S, Yamamoto K and Hayashi K et al (2008). A cycloalkane-based thermomorphic system for palladium-catalyzed cross-coupling reactions. Tetrahedron 64: 2855–2863

    Article  CAS  Google Scholar 

  889. Zhang W, Chen CHT, Lu Y and Nagashima T (2004). A highly efficient microwave-assisted Suzuki coupling reaction of aryl perfluorooctylsulfonates with boronic acids. Org Lett 6: 1473–1476

    Article  PubMed  CAS  Google Scholar 

  890. Zhang W and Chen CHT (2005). Fluorous synthesis of biaryl-substituted proline analogs by 1,3-dipolar cycloaddition and Suzuki coupling reactions. Tetrahedron Lett 46: 1807–1810

    Article  PubMed  CAS  Google Scholar 

  891. Kaleta Z, Tarkanyi G and Gomory A et al (2006). Synthesis and application of a fluorous Lawesson’s reagent: convenient chromatography-free product purification. Org Lett 8: 1093–1095

    Article  PubMed  CAS  Google Scholar 

  892. Niembro S, Shafir A and Vallribera A et al (2008). Palladium nanoparticles supported on an organic-inorganic fluorinated hybrid material. Application to microwave-based Heck reaction. Org Lett 10: 3215–3218

    Article  PubMed  CAS  Google Scholar 

  893. Legeay JC, Vanden Eynde JJ and Bazureau JP (2005). Ionic liquid phase technology supported the three component synthesis of Hantzsch 1,4-dihydropyridines and Biginelli 3,4-dihydropyrimidin-2(1H)-ones under microwave dielectric heating. Tetrahedron 61: 12386–12397

    Article  CAS  Google Scholar 

  894. Legeay JC, Goujon JY and Vanden Eynde JJ et al (2006). Liquid-phase synthesis of polyhydroquinoline using task-specific ionic liquid technology. J Comb Chem 8: 829–833

    Article  PubMed  CAS  Google Scholar 

  895. Hu Y, Wei P and Huang H et al (2006). Microwave-assisted Gewald synthesis of 2-aminothiophenes using functional ionic liquid as soluble support. Heterocycles 68: 375–380

    Article  CAS  Google Scholar 

  896. Wang Y, Miller RL, Sauer DR and Djuric SW (2005). Rapid and efficient synthesis of 1,2,4-oxadiazoles utilizing polymer-supported reagents under microwave heating. Org Lett 7: 925–928

    Article  PubMed  CAS  Google Scholar 

  897. Wang Y, Sauer DR and Djuric SW (2006). A simple and efficient one step synthesis of 1,3,4-oxadiazoles utilizing polymer-supported reagents and microwave heating. Tetrahedron Lett 47: 105–108

    Article  CAS  Google Scholar 

  898. Wang Y, Sarris K and Sauer DR et al (2007). A simple and efficient automatable one step synthesis of triazolopyridines from carboxylic acids. Tetrahedron Lett 48: 2237–2340

    Article  CAS  Google Scholar 

  899. Baxendale IR, Ley SV and Martinelli M (2005). The rapid preparation of 2-aminosulfonamide-1,3,4-oxadiazoles using polymer-supported reagents and microwave heating. Tetrahedron 61: 5323–5349

    Article  CAS  Google Scholar 

  900. Radi M, Saletti S and Botta M (2008). A one-pot, two-step microwave-assisted synthesis of highly functionalized benzoxazoles using solid-supported reagents (SSRs). Tetrahedron Lett 49: 4464–4466

    Article  CAS  Google Scholar 

  901. Kacprzak KM, Maier NM and Lindner W (2006). Highly efficient immobilization of Cinchona alkaloid derivatives to silica gel via click chemistry. Tetrahedron Lett 47: 8721–8726

    Article  CAS  Google Scholar 

  902. Donati D, Morelli C and Taddei M (2005). A rapid microwave-assisted esterification utilizing the Mukaiyama supported reagent. Tetrahedron Lett 46: 2817–2819

    Article  CAS  Google Scholar 

  903. Crosignani S and Swinnen D (2005). A straightforward, one-pot protocol for the preparation of libraries of 2-oxazolines. J Comb Chem 7: 688–696

    Article  PubMed  CAS  Google Scholar 

  904. Le Bas MDH and O’Shea DF (2005). Parallel microwave-assisted library of imidazothiazol-3-ones and imidazothiazin-4-ones. J Comb Chem 7: 947–951

    Article  PubMed  CAS  Google Scholar 

  905. Werner S, Kasi D and Brummond KM (2007). Design and synthesis of a 3,4-dehydroproline amide discovery library. J Comb Chem 9: 677–683

    Article  PubMed  CAS  Google Scholar 

  906. Mao S, Probst D and Werner S et al (2008). Diverging Rh(I)-catalyzed carbocylization strategy to prepare a library of unique cyclic ethers. J Comb Chem 10: 235–246

    Article  PubMed  CAS  Google Scholar 

  907. Galaffu N and Bradley M (2005). Rapid access to reactive polymer-supported isocyanates. Tetrahedron Lett 46: 859–861

    Article  CAS  Google Scholar 

  908. Solodenko W, Schön U, Messinger J et al (2004) Microwave-assisted Suzuki-Miyaura reactions with an insoluble pyridine-aldoxime Pd-catalyst. Synlett: 1699-702

  909. Wang Y and Sauer DR (2004). Use of polymer-supported Pd reagents for rapid and efficient Suzuki reactions using microwave heating. Org Lett 6: 2793–2796

    Article  PubMed  CAS  Google Scholar 

  910. Christensen H, Kiil Sr and Dam-Johansen K et al (2007). Applicability of a fiber-supported catalyst on a Buchwald-Hartwig amination reaction. Org Process Res Dev 11: 956–965

    Article  CAS  Google Scholar 

  911. Ribelin TP, Judd AS and Akritopoulou-Zanze I et al (2007). Concise construction of novel bridged bicyclic lactams by sequenced Ugi/RCM/Heck reactions. Org Lett 9: 5119–5122

    Article  PubMed  CAS  Google Scholar 

  912. Bai L and Wang JX (2008). Reusable, polymer-supported, palladium-catalyzed, atom- efficient coupling reaction of aryl halides with sodium tetraphenylborate in water by focused microwave irradiation. Adv Synth Catal 350: 315–320

    Article  CAS  Google Scholar 

  913. Michrowska A, Mennecke K and Kunz U et al (2006). A new concept for the noncovalent binding of a ruthenium-based olefin metathesis catalyst to polymeric phases: preparation of a catalyst on Raschig rings. J Am Chem Soc 128: 13261–13267

    Article  PubMed  CAS  Google Scholar 

  914. Dawood KM and Kirschning A (2005). Combining enabling techniques in organic synthesis: solid-phase-assisted catalysis under microwave conditions using a stable Pd(II)-precatalyst. Tetrahedron 61: 12121–12130

    Article  CAS  Google Scholar 

  915. Shore G, Morin S and Organ MG (2006). Catalysis in capillaries by Pd thin films using microwave-assisted continuous-flow organic synthesis (MACOS). Angew Chem Int Ed 45: 2761–2766

    Article  CAS  Google Scholar 

  916. Shore G, Morin S and Mallik D et al (2008). Pd PEPPSI-IPr-mediated reactions in metal-coated capillaries under MACOS: the synthesis of indoles by sequential aryl amination/Heck coupling. Chem Eur J 14: 1351–1356

    Article  CAS  Google Scholar 

  917. Schmöger C, Szuppa T and Tied A et al (2008). Pd on porous glass: a versatile and easily recyclable catalyst for Suzuki and Heck reactions. ChemSusChem 1: 339–347

    Article  PubMed  CAS  Google Scholar 

  918. Lohmann S, Andrews S, Burke B et al (2005) Copper- and palladium-containing perovskites: catalysts for the Ullmann and Sonogashira reactions. Synlett: 1291-295

  919. Gronnow MJ, Luque R and Macquarrie DJ et al (2005). A novel highly active biomaterial supported palladium catalyst. Green Chem 7: 552–557

    Article  CAS  Google Scholar 

  920. Polshettiwar V and Varma RS (2008). Pd-N-heterocyclic carbene (NHC) organic silica: synthesis and application in carbon–carbon coupling reactions. Tetrahedron 64: 4637–4643

    Article  CAS  Google Scholar 

  921. Vedantham P, Guerra JM and Schoenen F et al (2008). Ionic immobilization, diversification, and release: application to the generation of a library of methionine aminopeptidase inhibitors. J Comb Chem 10: 185–194

    Article  PubMed  CAS  Google Scholar 

  922. Lei X and Porco JA (2004). Synthesis of a polymer-supported anthracene and its application as a dienophile scavenger. Org Lett 6: 795–798

    Article  PubMed  CAS  Google Scholar 

  923. Siu J, Baxendale IR and Lewthwaite RA et al (2005). A phase-switch purification approach for the expedient removal of tagged reagents and scavengers following their application in organic synthesis. Org Biomol Chem 3: 3140–3160

    Article  PubMed  CAS  Google Scholar 

  924. VanNoorden R (2008). Microwaving myths. Chem World 5(10): 40–46

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Oliver Kappe.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (DOC 17.6 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kappe, C.O., Dallinger, D. Controlled microwave heating in modern organic synthesis: highlights from the 2004–2008 literature. Mol Divers 13, 71–193 (2009). https://doi.org/10.1007/s11030-009-9138-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-009-9138-8

Keywords

Navigation