Skip to main content

Advertisement

Log in

Transition metal-free one-pot synthesis of nitrogen-containing heterocycles

  • Comprehensive review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

One-pot heterocyclic synthesis is an exciting research area as it can open routes for the development of otherwise complex transformations in organic synthesis. Heterocyclic compounds show wide spectrum of applications in medicinal chemistry, chemical biology, and materials science. These heterocycles can be generated very efficiently through highly economical and viable routes using one-pot synthesis. In particular, the metal-free one-pot synthetic protocols are highly fascinating due to several advantages for the industrial production of heterocyclic frameworks. This comprehensive review is devoted to the transition metal-free one-pot synthesis of nitrogen-containing heterocycles from the period 2010–2013.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58
Scheme 59
Scheme 60
Scheme 61
Scheme 62
Scheme 63
Scheme 64
Scheme 65
Scheme 66
Scheme 67
Scheme 68
Scheme 69
Scheme 70
Scheme 71
Scheme 72
Scheme 73
Scheme 74
Scheme 75
Scheme 76
Scheme 77
Scheme 78
Scheme 79
Scheme 80
Scheme 81
Scheme 82
Scheme 83
Scheme 84
Scheme 85
Scheme 86
Scheme 87
Scheme 88
Scheme 89
Scheme 90
Scheme 91
Scheme 92
Scheme 93
Scheme 94
Scheme 95
Scheme 96
Scheme 97
Scheme 98
Scheme 99
Scheme 100
Scheme 101
Scheme 102
Scheme 103
Scheme 104
Scheme 105
Scheme 106
Scheme 107
Scheme 108
Scheme 109
Scheme 110
Scheme 111
Scheme 112
Scheme 113
Scheme 114
Scheme 115
Scheme 116
Scheme 117
Scheme 118
Scheme 119
Scheme 120
Scheme 121
Scheme 122
Scheme 123
Scheme 124
Scheme 125
Scheme 126
Scheme 127
Scheme 128

Similar content being viewed by others

References

  1. Buntrock RE (2012) Review of Heterocyclic chemistry, 5th edition. J Chem Educ 89:1349–1350. doi:10.1021/ed300616t

    Article  CAS  Google Scholar 

  2. Aldabbagh F (2013) Heterocyclic chemistry. Annu Rep Prog Chem B Org Chem 109:126–145. doi:10.1039/C3OC90009F

    Article  CAS  Google Scholar 

  3. Rajasekhar KK, Ananth VS, Nithiyananthan TS, Hareesh G, Kumar NP, Reddy RSP (2010) Comparative study of conventional and microwave induced synthesis of selected heterocyclic molecules. Int J ChemTech Res 2:592–597

    CAS  Google Scholar 

  4. Mueller RH, Thompson ME, DiPardo RM (1984) Stereo- and regioselective total synthesis of the hydropyrido[2,1,6-de Iquinolizine ladybug defensive alkaloids. J Org Chem 49:2217–2231. doi:10.1021/jo00186a029

    Article  CAS  Google Scholar 

  5. Patil PS, Lee CC, Huang YW, Zulueta MM, Hung SC (2013) Regioselective and stereoselective benzylidene installation and one-pot protection of D-mannose. Org Biomol Chem 11:2605–2612. doi:10.1039/c3ob40079d

    Article  PubMed  CAS  Google Scholar 

  6. Herkommer D, Schmalzbauer B, Menche D (2014) Sequential catalysis for stereoselective synthesis of complex polyketides. Nat Prod Rep 31:456–467. doi:10.1039/c3np70093c

    Article  PubMed  CAS  Google Scholar 

  7. Wu G, Yin W, Shen HC, Huang Y (2012) One-pot synthesis of useful heterocycles in medicinal chemistry using a cascade strategy. Green Chem 41:580–585. doi:10.1039/C2GC16457D

    Article  CAS  Google Scholar 

  8. Singh MS, Chowdhury S (2012) Recent developments in solvent-free multicomponent reactions: a perfect synergy for eco-compatible organic synthesis. RSC Adv 2:4547–4592. doi:10.1039/C2RA01056A

    Article  CAS  Google Scholar 

  9. Gu Y (2012) Multicomponent reactions in unconventional solvents: state of the art. Green Chem 14:2091–2128. doi:10.1039/C2GC35635J

    Article  CAS  Google Scholar 

  10. Ramachary DB, Jain S (2011) Sequential one-pot combination of multi-component and multi-catalysis cascade reactions: an emerging technology in organic synthesis. Org Biomol Chem 9:1277–1300. doi:10.1039/C0OB00611D

    Article  PubMed  CAS  Google Scholar 

  11. Yamamoto Y (2014) Synthesis of heterocycles via transition-metalcatalyzed hydroarylation of alkynes. Chem Soc Rev Chem Soc Rev 43:1575–1600. doi:10.1039/c3cs60369e

    Article  PubMed  CAS  Google Scholar 

  12. Du Z, Shao Z (2013) Combining transition metal catalysis and organocatalysis—an update. Chem Soc Rev 42:1337–1378. doi:10.1039/C2CS35258C

    Article  PubMed  CAS  Google Scholar 

  13. Kirsch G, Hesse S, Comel A (2004) Synthesis of five- and six-membered heterocycles through palladium-catalyzed reactions. Curr Org Synth 1:47–63. doi:10.2174/1570179043485475

    Article  CAS  Google Scholar 

  14. Shoji T, Yokoyama R, Ito S, Watanabe M, Toyota K, Yasunami M, Morita N (2007) Synthesis of heteroarylazulenes: transition metal free coupling strategy of azulene with heterocycles. Tetrahedron Lett 48:1099–1103. doi:10.1016/j.tetlet.2006.12.083

    Article  CAS  Google Scholar 

  15. Ivantsova MN, Tokareva MI, Mironov MA (2012) Multicomponent interphase synthesis of heterocyclic compounds (review). Chem Heterocycl Comp 48:584–598

    Article  CAS  Google Scholar 

  16. Parvatkar PT, Parameswaran PS, Tilve SG (2012) Recent developments in the synthesis of five- and six-membered heterocycles using molecular iodine. Chem Eur J 18:5460–5489. doi:10.1002/chem.201100324

    Article  PubMed  CAS  Google Scholar 

  17. Kandepi VVKM, Narender N (2012) Synthesis of N-heterocyclic compounds over zeolite molecular sieve catalysts: an approach towards green chemistry. Catal Sci Technol 2:471–487. doi:10.1039/C2CY00162D

    Article  CAS  Google Scholar 

  18. Majumder A, Gupta R, Jain A (2013) Microwave-assisted synthesis of nitrogen-containing heterocycles. Green Chem Lett Rev 6:151–182. doi:10.1080/17518253.2012.733032

    Article  CAS  Google Scholar 

  19. Sharma A, Appukkuttan P, Van der Eycken E (2012) Microwave-assisted synthesis of medium-sized heterocycles. Chem Commun (Camb) 48:1623–1637. doi:10.1039/c1cc15238f

  20. Romanchikova N, Trapencieris P, Zemītis J, Turks M (2013) A novel matrix metalloproteinase-2 inhibitor triazolylmethyl aziridine reduces melanoma cell invasion, angiogenesis and targets ERK1/2 phosphorylation. J Enzym Inhib Med Chem 29:765–772. doi:10.3109/14756366.2013.855207

  21. Kuszpit MR, Wulff WD, Tepe JJ (2011) One-pot synthesis of 2-imidazolines via the ting expansion of imidoyl chlorides with aziridines. J Org Chem 76:2913–2919. doi:10.1021/jo200101q

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Li X, Chen N, Xu J (2010) An improved and mild Wenker synthesis of aziridines synthesis. Synthesis 20:3423–3428. doi:10.1055/s-0030-1257913

    Google Scholar 

  23. Buckley BR, Patel AP, Wijayantha KGU (2013) Observations on the modified Wenker synthesis of aziridines and the development of a biphasic system. J Org Chem 78:1289–1292. doi:10.1021/jo302615g

    Article  PubMed  CAS  Google Scholar 

  24. Hayashi Y, Urushima T, Sakamoto D, Torii K, Ishikawa H (2011) One-pot synthesis of chiral aziridines by a domino reaction by using desulfonylative formation on the N-tosyl imine of Chloroacetaldehyde with an asymmetric Mannich reaction as a key step. Chem Eur J 17:11715–11718. doi:10.1002/chem.201101668

    Article  PubMed  CAS  Google Scholar 

  25. Bull JA, Boultwood T, Taylor AT (2012) Highly cis-selective synthesis of iodo-aziridines using diiodomethyllithium and in situ generated N-Boc-imines. Chem Commun 48:12246–12248. doi:10.1039/c2cc37029h

    Article  CAS  Google Scholar 

  26. Joshi S (2012) One-pot aziridation of 2,3-trans stilbene with chloramine T derivatives in the presence of catalyst phenyltrimethyl ammonium tribromide. J Nepal Chem Soc 29:121–125. doi:10.3126/jncs.v29i0.9277

    Google Scholar 

  27. Hegde JC, Girish KS, Adhikari A, Kalluraya B (2013) Novel one-pot synthesis of aziridines carrying sydnone moiety and their biological studies. Synthetic Comm 43:301–308. doi:10.1080/00397911.2011.599102

    Article  CAS  Google Scholar 

  28. Naeimi H, Rabiei K (2012) Sonocatalyzed facile and mild one pot synthesis of gem-dichloroaziridine derivatives under alkaline conditions. Ultrason Sonochem 19:130–135. doi:10.1016/j.ultsonch.2011.06.012

    Article  PubMed  CAS  Google Scholar 

  29. Lowe JT et al (2012) Synthesis and profiling of a diverse collection of azetidine-based scaffolds for the development of CNS-focused lead-like libraries. J Org Chem 77:7187–7211. doi:10.1021/jo300974j

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Alcaide B, Almendros P, Aragoncillo C (2004) Beta-lactams as versatile synthetic intermediates for the preparation of heterocycles of biological interest. Curr Med Chem 11:1921–1949

    Article  PubMed  CAS  Google Scholar 

  31. D’hooghe M, Dekeukeleire S, Leemans E, Kimpe ND (2010) Use of functionalized -lactams as building blocks in heterocyclic chemistry. Pure Appl Chem 82:1749–1759

    Article  CAS  Google Scholar 

  32. Miao C-B, Miao C-B, Dong C-P, Zhang M, Ren W-L, Meng Q, Sun X-Q, Yang H-T (2013) Highly stereoselective, one-pot synthesis of azetidines and 2,4-dioxo-1,3-diazabicyclo[3.2.0] compounds mediated by \(\text{I}_{2}\). J Org Chem 78:4329–4340. doi:10.1021/jo400181r

    Article  PubMed  CAS  Google Scholar 

  33. Feula A, Dhillon SS, Byravan R, Sangha M, Ebanks R, Salih MAH, Spencer N, Male L, Magyary I, Deng W-P, Müllerc F, Fossey JS (2013) Synthesis of azetidines and pyrrolidines via iodocyclisation of homoallyl amines and exploration of activity in a zebrafish embryo assay. Org Biomol Chem 11:5083–5093. doi:10.1039/C3OB41007B

    Article  PubMed  CAS  Google Scholar 

  34. Maegawa T, Otake K, Goto A, Fujioka H (2011) Direct conversion of acetals to esters with high regioselectivity Via O. P-acetals. Org Biomol Chem 9:5648. doi:10.1039/C1OB05687E

    Article  PubMed  CAS  Google Scholar 

  35. Maegawa T, Otake K, Hirosawa K, Goto A, Fujioka H (2012) Method for the efficient synthesis of highly-substituted oxetan- and azetidin, dihydrofuran- and pyrrolidin-3-ones and Its application to the synthesis of ()-pseudodeflectusin. Org Lett 14:4798–4801. doi:10.1021/ol302096j

  36. Rai A, Yadav LDS (2011) Strategic applications of Baylis–Hillman adducts to general syntheses of 3-nitroazetidines. Org Biomol Chem 9:8058–8061. doi:10.1039/c1ob06274c

    Article  PubMed  CAS  Google Scholar 

  37. Baumann M, Baxendale IR, Ley SV, Nikbin N (2011) An overview of the key routes to the best selling 5-membered ring heterocyclic pharmaceuticals. Beilstein J Org Chem 7:442–495. doi:10.3762/bjoc.7.57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Wang L, Cai C, Curran DP, Zhang W (2010) Enantioselective \(\upalpha \)-chlorination of aldehydes with recyclable fluorous (s)-pyrrolidine-thiourea bifunctional organocatalyst. Synlett 2010:433–436. doi:10.1055/s-0029-1219198

  39. Farkas A, Strohm PF (1968) Imidazole catalysis in the curing of epoxy resins. J Appl Polym Sci 12:159–168. doi:10.1002/app.1968.070120115

    Article  CAS  Google Scholar 

  40. Willy B, Müller JJT (2011) Rapid one-pot, four-step synthesis of highly fluorescent 1,3,4,5-tetrasubstituted pyrazoles. Org Lett 13:2082–2085. doi:10.1021/ol2004947

    Article  PubMed  CAS  Google Scholar 

  41. Aigner D, Ungerböck B, Mayr T, Saf R, Klimant I, Borisov SM (2013) Fluorescent materials for pH sensing and imaging based on novel 1,4-diketopyrrolo-[3,4-c]pyrrole dyes. J Mater Chem C 1:5685–5693. doi:10.1039/c3tc31130a

    Article  CAS  Google Scholar 

  42. Evenson SJ, Mumm MJ, Pokhodnya KI, Rasmussen SC (2011) Highly fluorescent dithieno[3,2-b:\(2^\prime,\,3^\prime \)-d]pyrrole-based materials: synthesis, characterization, and OLED device applications. Macromolecule 44:835–841. doi:10.1021/ma102633d

    Article  CAS  Google Scholar 

  43. Raposo MMM, Fonseca AMC, Castro MCR, Belsley M, Cardoso MFS, Carvalho LM, Coelho PJ (2011) Synthesis and characterization of novel diazenes bearing pyrrole, thiophene and thiazole heterocycles as efficient photochromic and nonlinear optical (NLO) materials. Dyes Pigments 91:62–73. doi:10.1016/j.dyepig.2011.02.012

    Article  CAS  Google Scholar 

  44. Koraiem AIM, El-Hamd RM, Abd El-All RM (1990) Studies on the synthesis of conjugated five-membered bis-heterocyclic dimethine cyanine dyes. Dyes Pigments 14:191–201. doi:10.1016/0143-7208(90)87016-V

    Article  CAS  Google Scholar 

  45. Estevez RV, Villacampa M, Menendez JC (2010) Multicomponent reactions for the synthesis of pyrroles. Chem Soc Rev 39:4402–4421. doi:10.1039/B917644F

    Article  PubMed  CAS  Google Scholar 

  46. Valizadeh H, Fakhari A (2010) A mild and facile one-pot synthesis of n-methyl-3-acyl-pyrroles. Molecules 15:2972–2979. doi:10.3390/molecules15052972

    Article  PubMed  CAS  Google Scholar 

  47. Tripoteau F, Eberlin L, Fox MA, Carboni B, Whiting A (2013) A novel, efficient synthesis of N-aryl pyrroles via reaction of 1-boronodienes with arylnitroso compounds. Chem Commun 49:5414–5416. doi:10.1039/C3CC42227E

    Article  CAS  Google Scholar 

  48. Baltazzi E, Krimen LI (1963) Recent advances in the chemistry of pyrrole. Chem Rev 63:511–555. doi:10.1021/cr60225a004

    Article  CAS  Google Scholar 

  49. Ghorbani-Vaghei R, Veisi H (2009) One-pot synthesis of substituted pyrroles with N,N,N\(^\prime \),N\(^\prime \)-tetra chlorobenzene-1,3-disulphonamide and N,N\(^\prime \)-Diiodo-N,N\(^\prime \)-1,2-ethanediyl bis(ptoluenesulphonamide) as novel catalytic reagents. S Afr J Chem 62:33–38

  50. Lin X, Mao Z, Dai X, Lu P, Wang Y (2011) A straightforward one-pot multicomponent synthesis of polysubstituted pyrroles. Chem Commun 47:6620–6622. doi:10.1039/C1CC11363A

    Article  CAS  Google Scholar 

  51. Eftekhari-Sis B, Vahdati-Khajeh S (2013) Ultrasound-assisted green synthesis of pyrroles and pyridazines in water via three-component condensation reactions of arylglyoxals. Curr Chem Lett 2:85–92. doi:10.5267/j.ccl.2013.02.002

    Article  CAS  Google Scholar 

  52. Das P, Ray S, Mukhopadhyay C (2013) Exploitation of dual character of cn moiety in the synthesis of uniquely decorated 3h-pyrroles: a rare observation. Org Lett 15:5622–5625. doi:10.1021/ol402950a

    Article  PubMed  CAS  Google Scholar 

  53. Wang K, Domling A (2010) Design of a versatile multicomponent reaction leading to 2-amino-5-ketoaryl pyrroles. Chem Biol Drug Des 75:277–283. doi:10.1111/j.1747-0285.2009.00942.x

    Article  PubMed  CAS  Google Scholar 

  54. Ngwerume S, Camp JE (2010) Synthesis of highly substituted pyrroles via nucleophilic catalysis. J Org Chem 75:6271–6274. doi:10.1021/jo1011448

    Article  PubMed  CAS  Google Scholar 

  55. Reddy CR, Reddy MD, Srikanth B (2012) Phosphine-mediated cascade reaction of azides with MBH-acetates of acetylenic aldehydes to substituted pyrroles: a facile access to N-fused pyrrolo-heterocycles. Org Biomol Chem 10:4280–4288. doi:10.1039/C2OB25272D

    Article  PubMed  CAS  Google Scholar 

  56. Shen J, Cheng G, Cui X (2013) “One pot” regiospecific synthesis of polysubstituted pyrroles from benzylamines and ynones under metal free conditions. Chem Commun 49:10641–10643. doi:10.1039/C3CC43844A

    Article  CAS  Google Scholar 

  57. Sommer S (1979) [3+2]-Cycloadditions of azoalkenes to enamines-criss-cross cycloadditions to azoalkenes. Angew Chem 18:695–696. doi:10.1002/anie.197906951

    Article  Google Scholar 

  58. South MS, Jakuboski TL, Westmeyer MD, Dukesherer DR (1996) Synthesis and reactions of haloazodienes. A new and general synthesis of substituted pyridazines. J Org Chem 61:8921–8934. doi:10.1021/jo960029e

    Article  PubMed  CAS  Google Scholar 

  59. Attanasi OA, Favi G, Filippone P, Golobi A, Perrulli FR, Santeusanio SA (2009) Novel and convenient protocol for synthesis of pyridazines. Org Lett 11:309–312. doi:10.1021/ol802432z

    Article  PubMed  CAS  Google Scholar 

  60. Attanasi OA, Favi G, Mantellini F, Moscatelli G, Santeusanio S (2011) synthesis of functionalized pyrroles via catalyst- and solvent-free sequential three-component enamine-azoene annulation. J Org Chem 76:2860–2866. doi:10.1021/jo200287k

    Article  PubMed  CAS  Google Scholar 

  61. Kolontsova AN, Ivantsova MN, Tokareva MI, Mironov MA (2010) Reaction of isocyanides with thiophenols and gem-diactivated olefins: a one-pot synthesis of substituted 2-aminopyrroles. Mol Divers 14:543–550. doi:10.1007/s11030-010-9233-x

    Article  PubMed  CAS  Google Scholar 

  62. Xu Z, Moliner FD, Cappelli AP, Hulme C (2013) Aldol reactions in multicomponent reaction based domino pathways: a multipurpose enabling tool in heterocyclic chemistry. Org Lett 15:2738–2741. doi:10.1021/ol401068u

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Georgescu E, Georgescu F, Popa MM, Draghici C, Tarko L, Dumitrascu F (2012) Efficient one-pot, three-component synthesis of a library of pyrrolo[1,2-c]pyrimidine derivatives. ACS Comb Sci 14:101–107. doi:10.1021/co2002125

    Article  PubMed  CAS  Google Scholar 

  64. Hong CM, Statsyuk AV (2013) The development of a one pot, regiocontrolled, threecomponent reaction for the synthesis of thieno[2,3-c-pyrroles. Org Biomol Chem 11:2932–2935. doi:10.1039/C3OB27492F

    Article  PubMed  CAS  Google Scholar 

  65. Che C, Li S, Jiang X, Quan J, Lin S, Yang Z (2010) One-pot syntheses of chromeno[3,4-c]pyrrole-3,4-diones via Ugi-4CR and Intramolecular Michael addition. Org Lett 12:4682–4685. doi:10.1021/ol1020477

    Article  PubMed  CAS  Google Scholar 

  66. Hong D, Chen Z, Lin X, Wang Y (2010) Synthesis of substituted indoles from 2-azidoacrylates and ortho-silyl aryltriflates. Org Lett 12:4608–4611. doi:10.1021/ol101934v

    Article  PubMed  CAS  Google Scholar 

  67. Kuznetsov A, Makarov A, Rubtsov EA, Butin AV, Gevorgyan V (2013) Brönsted acid-catalyzed one-pot synthesis of indoles from o-aminobenzyl alcohols and furans. J Org Chem 78:12144–12153. doi:10.1021/jo402132p

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Jiang B, Yi M-S, Shi F, Tu S-J, Pindi S, McDowell P, Li G (2012) A multi-component domino reaction for the direct access to polyfunctionalized indoles via intermolecular allylic esterification and indolation. Chem Commun 48:808–810. doi:10.1039/C1CC15913E

    Article  CAS  Google Scholar 

  69. Fu LP, Shi Q-Q, Shi Y, Jiang B, Tu SJi (2013) Three-component domino reactions for regioselective formation of bis-indole derivatives. ACS Comb Sci 15:135–140. doi:10.1021/co3001428

    Article  PubMed  CAS  Google Scholar 

  70. Maity S, Pathak S, Pramanik A (2013) Synthesis of 1,2-Diaryl-1\(H\)-indol-4-ols and 1,2-Diaryl-7-ethoxy-1,5,6,7-tetrahydroindol-4-ones from arylglyoxals and enamines through domino reactions. Eur J Org Chem 12:2479–2485. doi:10.1002/ejoc.201201616

    Article  CAS  Google Scholar 

  71. Jiang B, Li QY, Tu SJ, Li G (2012) Three-component domino reactions for selective formation of Indeno[1,2-b]indole derivatives. Org Lett 14:5210–5213. doi:10.1021/ol3023038

    Article  PubMed  CAS  Google Scholar 

  72. Rodrigues RC, Barros IMA, Lima ELS (2005) Mild one-pot conversion of carboxylic acids to amides or esters with Ph3P/trichloroisocyanuric acid. Tetrahedron Lett 46:5945–5947. doi:10.1016/j.tetlet.2005.06.127

    Article  CAS  Google Scholar 

  73. Jouyban A, Fakhree MAA, Shayanfar A (2010) Review of pharmaceutical applications of n-methyl-2-pyrrolidone. J Pharm Pharmaceut Sci 13:524–535

    CAS  Google Scholar 

  74. Lammens TM, Franssen MCR, Scott EL, Sanders JPM (2010) Synthesis of biobased N-methylpyrrolidone by one-pot cyclization and methylation of \(\upgamma \)-aminobutyric acid. Green Chem 12:1430–1436. doi:10.1039/c0gc00061b

    Article  CAS  Google Scholar 

  75. Amara Z, Drège E, Troufflard C, Retailleauc P, Joseph D (2012) Solvent-free double aza-Michael under ultrasound irradiation: diastereoselective sequential one-pot synthesis of pyrrolidine Lobelia alkaloids analogues. Org Biomol Chem 10:7148–7157. doi:10.1039/c2ob25963j

    Article  PubMed  CAS  Google Scholar 

  76. Lu Q, Song G, Jasinski JP, Keeleyc AC, Zhang W (2012) One-pot double [3+2] cycloaddition for diastereoselective synthesis of tetracyclic pyrrolidine compounds. Green Chem 14:3010–3012. doi:10.1039/c2gc36066g

    Article  CAS  Google Scholar 

  77. Liu H, Dou G, Shi D (2010) Regio- and stereoselective synthesis of novel dispiropyrrolidine bisoxindole derivatives via multicomponent reactions. J Comb Chem 12:292–294. doi:10.1021/cc900195t

    Article  PubMed  CAS  Google Scholar 

  78. Amberg W, Lange U, Ochse M, Pohlki F, Hutchins CW, Zanze I, Zhao H, Li H-Q, Wang Y (2013) Isoindoline derivatives, pharmaceutical compositions containing them, and their use in therapy WO 2013120835 A1

  79. Sović I, Stilinović V, Kaitner B, Kraljević-Pavelić S, Bujak M, Čuljak K, Novak P, Karminski-Zamola G (2011) Novel substituted 1-iminoisoindoline derivatives: Synthesis, structure determination and antiproliferative activity. J Mol Struct 1006:259–265. doi:10.1016/j.molstruc.2011.09.017

    Article  CAS  Google Scholar 

  80. Müller A, Höfner G, Renukappa-Gutke T, Parsons CG, Wanner KT (2011) Synthesis of a series of \(\upgamma \)-amino alcohols comprising an N-methyl isoindoline moiety and their evaluation as NMDA receptor antagonists. Bioorg Med Chem Lett 21:5795–5799. doi:10.1016/j.bmcl.2011.07.119

    Article  PubMed  CAS  Google Scholar 

  81. Kogushi M, Matsuoka T, Kawata T, Kuramochi H, Kawaguchi S, Murakami K, Hiyoshi H, Suzuki S, Kawahara T, Kajiwara A, Hishinuma I (2011) The novel and orally active thrombin receptor antagonist E5555 (Atopaxar) inhibits arterial thrombosis without affecting bleeding time in guinea pigs. Eur J Pharmacol 657:131–137. doi:10.1016/j.ejphar.2011.01.058

    Article  PubMed  CAS  Google Scholar 

  82. Walker JR, Fairfull-Smith KE, Anzai K, Lau S, White PJ, Scammells PJ, Bottle Steven E (2011) Edaravone containing isoindoline nitroxides for the potential treatment of cardiovascular ischaemia. Med Chem Commun 2:436–441. doi:10.1039/C1MD00041A

    Article  CAS  Google Scholar 

  83. Shen S, Xu X, Lei M, Hu L (2012) Novel one-pot synthesis of 2-substituted 3-alkoxyisoindolin-1-imine derivatives from 2-cyanobenzaldehyde, amine, and alcohol. Synthesis 44:3543–3549. doi:10.1055/s-0032-1317472

    Article  CAS  Google Scholar 

  84. Dreger SA (2011) Recent advances in the chemistry of pyrazoles. Properties, biological activities, and syntheses. Curr Org Chem 15:1423–1463. doi:10.2174/138527211795378263

    Article  Google Scholar 

  85. Phillips RM, Rosen T (2013) Topical antifungal agents. In: Wolverton SE (ed) Topical antifungal agents in comprehensive dermatologic therapy. Saunders, Philadelphia, pp 460–472

    Google Scholar 

  86. Fustero S, Simón-Fuentes A, Sanz- Cervera JF (2009) Recent advances in the synthesis of pyrazoles. A review. Org Prep Proced Int 41:253–290. doi:10.1080/00304940903077832

    Article  CAS  Google Scholar 

  87. Kumari S, Paliwal S, Chauhan R (2014) Synthesis of pyrazole derivatives possessing anticancer activity: current Status. Synth Commun 44:1521–1578. doi:10.1080/00397911.2013.828757

    Article  CAS  Google Scholar 

  88. Tang M, Zhang F-M (2013) Efficient one-pot synthesis of substituted pyrazoles. Tetrahedron 69:1233–1427. doi:10.1016/j.tet.2012.12.038

    Google Scholar 

  89. Tang M, Zhang W, Kong Y (2013) DABCO-promoted synthesis of pyrazoles from tosylhydrazones and nitroalkenes. Org Biomol Chem 11:6250–6254. doi:10.1039/C3OB41435C

  90. Su W-N, Lin T-P, Cheng K-M, Sung K-C, Lin S-K, Wong FF (2010) An efficient one-pot synthesis of N-(1,3-Diphenyl-1H-pyrazol- 5-yl)amides. J Heterocyclic Chem 47:831–837. doi:10.1002/jhet.343

    Article  CAS  Google Scholar 

  91. Xiang H, Qi X, Xie Y, Xu G, Yang C (2012) One-pot syntheses of novel pyrazole-containing bisphosphonate esters at room temperature. Org Biomol Chem 10:7730–7738. doi:10.1039/C2OB25889G

    Article  PubMed  CAS  Google Scholar 

  92. Guo S, Wang J, Guo D, Zhang X, Fan X (2012) Synthesis of 3,5-disubstituted pyrazoles via cyclocondensation of 1,2-allenic ketones with hydrazines: application to the synthesis of 5-(5-methyl-pyrazol-3-yl)-29-deoxycytidine. RSC Advances 2:3772–3777. doi:10.1039/C2RA20274C

    Article  CAS  Google Scholar 

  93. Whang J, Song Y-H (2012) A facile one-pot synthesis of sulfur-linked thieno[1,2,4]-triazolo[4,3-c]pyrimidine derivatives containing phenylpyrazole or thienopyrimidinylpyrazole moiety. Heterocycles 85:155–164. doi:10.3987/COM-11-12371

    Article  CAS  Google Scholar 

  94. Srivastava M, Rai P, Singh J, Singh J (2014) Efficient iodine-catalyzed one pot synthesis of highly functionalised pyrazoles in water. New J Chem 38:302–307. doi:10.1039/C3NJ01149F

    Article  CAS  Google Scholar 

  95. Liu P, Pan Y-M, Xu Y-L, Wang H-S (2012) PTSA-catalyzed Mannich-type-cyclization-oxidation tandem reactions: one-pot synthesis of 1,3,5-substituted pyrazoles from aldehydes, hydrazines and alkynes. Org Biomol Chem 10:4696–4698. doi:10.1039/C2OB25487E

    Article  PubMed  CAS  Google Scholar 

  96. Ziarani GM, Dashtianeh Z, Nahad MS, Badiei A One-pot synthesis of 1,2,4,5-tetra substituted imidazoles using sulfonic acid functionalized silica (SiO2-Pr-SO3H). Arabian J Chem. doi:10.1016/j.arabjc.2013.11.020

  97. Shaterian HR, Ranjbar M, Azizi K (2011) Efficient multi-component synthesis of highly substituted imidazoles utilizing \(\text{P}_{2}\text{O}_{5}/\text{SiO}_{2}\) as a reusable catalyst. Chin. J Chem 29:1635–1645

    Article  CAS  Google Scholar 

  98. Veisi H, Khazaei A, Heshmati L, Hemmati S (2012) Convenient one-pot synthesis of 2,4,5-triaryl-1h-imidazoles from arylaldehydes, benzyl alcohols, or benzyl halides with hmds in the presence of molecular iodine. Bull Korean Chem Soc 33:1231–1234. doi:10.5012/bkcs.2012.33.4.1231

    Article  CAS  Google Scholar 

  99. Hasaninejad A, Zare A, Shekouhy M, Rad JA (2010) Catalyst-free one-pot four component synthesis of polysubstituted imidazoles in neutral ionic liquid 1-butyl-3-methylimidazolium bromide. J Comb Chem 12:844–849. doi:10.1021/cc100097m

    Article  PubMed  CAS  Google Scholar 

  100. Das PJ, Das J, Ghosh M, Sultana S (2013) Solvent free one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles catalyzed by secondary amine based ionic liquid and defective Keggin Heteropoly acid. Green Sustain Chem 3:6–13. doi:10.4236/gsc.2013.34A002

    Article  CAS  Google Scholar 

  101. Jourshari MS, Mamaghani M, Shirini F, Tabatabaeian K, Rassa M, Langari H (2013) An expedient one-pot synthesis of highly substituted imidazoles using supported ionic liquid-like phase (SILLP) as a green and efficient catalyst and evaluation of their anti-microbial activity. Chin Chem Lett 24:993–996. doi:10.1016/j.cclet.2013.06.005

    Article  CAS  Google Scholar 

  102. Zheng H, Shi QY, Du K, Mei YJ, Zhang PF (2013) One-pot synthesis of 2,4,5-trisubstituted imidazoles catalyzed by lipase. Catal Lett 143:118–121. doi:10.1007/s10562-012-0920-3

    Article  CAS  Google Scholar 

  103. Shitolea NV, Shitoleb BV, Kakdeb GK, Shingareb MS (2013) Tannic acid catalyzed an efficient synthesis of 2,4,5-triaryl-1H-imidazole. Orbital: the electronic. J Chem 5:35–39

    Article  CAS  Google Scholar 

  104. Zhang Y, Zhou Z (2013) One-pot synthesis of 2,4,5-trisubstituted imidazoles using [BPy]\(\text{H}_{2}\text{PO}_{4}\), an efficient and recyclable catalyst. Prep Biochem Biotechnol 43:189–196

    Article  PubMed  CAS  Google Scholar 

  105. Naik N, Kumar HV, Rangaswamy J, Harini ST, Umeshkumar TC (2012) Three- component one-pot synthesis of 5-Substituted 1-Aryl-2,3-diphenyl imidazoles: A novel class of promising antioxidants. J App Pharm Sci 2:067–074. doi:10.7324/JAPS.2012.21112

    Google Scholar 

  106. Parveen A, Ahmed A, Ahmed SK (2010) Ceric ammonium nitrate catalyzed efficient one-pot synthesis of 2, 4, 5-triaryl imidazoles. Res J Pharm BiolChemSc 1:943–951

    CAS  Google Scholar 

  107. Vikrant K, Ritu M, Neha S (2012) Synthesis of substituted imidazoles via a multi-component condensation catalyzed by p-toluene sulfonic acid. Res J Chem Sci 2:18–23

    Google Scholar 

  108. Marzouk AA, Abbasov VM, Talybov AH (2012) Short time one-spot synthesis of 2,4,5-trisubstituted- imidazoles using morpholinium hydrogen sulphate as green and reusable catalysts. Chem J 2:179–184

    CAS  Google Scholar 

  109. Zhongqiang Z, Xiaocui D, Yuliang Z, Lamei W (2012) One-pot synthesis of 2,4,5-triaryl-1h- imidazoles catalyzed by \(\text{NH}_{4}\) \(\text{H}_{2}\) \(\text{PO}_{4}\text{-SiO}_{2}\) under solvent-free conditions. J S-Cent Univ Natl (Nat Sci Ed) 31:15–18

    Google Scholar 

  110. Mirjalili BF, Bamoniri A, Mohaghegh N (2013) One-pot synthesis of 2,4,5-tri-substituted-1H-imidazoles promoted by trichloromelamine. Curr Chem Lett 2:35–42. doi:10.5267/j.ccl.2012.12.001

    Article  CAS  Google Scholar 

  111. Salehi J, Khodaei MM, Khosropour AR (2011) One-pot synthesis of 2,4,5-triaryl-1h-imidazoles from arylaldehydes, benzyl alcohols, or benzyl halides with hexamethyldisilazane in molten tetrabutylammonium bromide. Synthesis 3:459–462. doi:10.1055/s-0030-1258393

    Article  CAS  Google Scholar 

  112. Chen C-Y, Hu W-P, Yan P-C, Senadi GC, Wang J-J (2013) Metal-free, acid-promoted synthesis of imidazole derivatives via a multicomponent reaction. Org Lett 15:6116–6119. doi:10.1021/ol402892z

    Article  PubMed  CAS  Google Scholar 

  113. Chiba S, Wang Y-F, Lapointe G, Narasaka K (2008) Synthesis of polysubstituted n-h pyrroles from vinyl azides and 1,3-dicarbonyl compounds. Org Lett 10:313–316. doi:10.1021/ol702727j

    Article  PubMed  CAS  Google Scholar 

  114. Bonnamour J, Bolm C (2011) Iron(II) triflate as a catalyst for the synthesis of indoles by intramolecular C-H amination. Org Lett 13:2012. doi:10.1021/ol2004066

    Article  PubMed  CAS  Google Scholar 

  115. Yang YY, Shou WG, Chen ZB, Hong DA (2008) Tandem approach to isoquinolines from 2-azido-3-arylacrylates and alpha-diazocarbonyl compounds. J Org Chem 73:3928–3930. doi:10.1021/jo8003259

    Article  PubMed  CAS  Google Scholar 

  116. Hu B, Wang Z, Ai N, Zheng J, Liu X-H, Shan S, Wang Z (2011) Catalyst-free preparation of 1,2,4,5-tetrasubstituted imidazoles from a novel unexpected domino reaction of 2-azido acrylates and nitrones. Org Lett 13:6362–6365. doi:10.1021/ol202650z

    Article  PubMed  CAS  Google Scholar 

  117. Hu B, Ai N, Wang Z, Xu X, Li X (2012) One-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles by a tandem three-component reaction of hydroxylamines, aldehydes and 2-azido acrylates 2012:222–228. ARKIVOC. doi:10.3998/ark.5550190.0013.621

  118. Andrez J-C (2012) Synthesis of 2-amino-imidazoles, purines, and benzoxazolamines through DIB oxidation. RSC Advances 2:3261–3264. doi:10.1039/C2RA20101A

    Article  CAS  Google Scholar 

  119. Bansal Y, Silakari O (2012) The therapeutic journey of benzimidazoles: a review. Bioorg Med Chem 20:6208–6236. doi:10.1016/j.bmc.2012.09.013

    Article  PubMed  CAS  Google Scholar 

  120. Moorthy JN, Neogi I (2011) IBX-mediated one-pot synthesis of benzimidazoles from primary alcohols and arylmethyl bromides. Tetrahedron Lett 52:3868–3871. doi:10.1016/j.tetlet.2011.05.047

    Article  CAS  Google Scholar 

  121. Sontakke VA, Ghosh S, Lawande PP, Chopade BA, Shinde VS (2013) A simple, efficient synthesis of 2-aryl benzimidazoles using silica supported periodic acid catalyst and evaluation of anticancer activity. ISRN Org Chem. doi:10.1155/2013/453682

  122. Kumar D, Kommi DN, Chebolu R, Garg SK, Kumar R, Chakraborti AK (2013) Selectivity control during the solid supported protic acids catalysed synthesis of 1,2-disubstituted benzimidazoles and mechanistic insight to rationalize selectivity. RSC Adv 3:91–98. doi:10.1039/C2RA21994H

    Article  CAS  Google Scholar 

  123. Roy P, Pramanik A (2013) One-pot sequential synthesis of 1,2-disubstituted benzimidazoles under metal-free conditions. Tetrahedron Lett 54:5243–5245. doi:10.1016/j.tetlet.2013.07.083

    Article  CAS  Google Scholar 

  124. Xu Z, Ayaz M, Cappelli AA, Hulme C (2012) General one-pot, two-step protocol accessing a range of novel polycyclic heterocycles with high skeletal diversity. ACS Comb Sci 14:460–464. doi:10.1021/co300046r

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Manna SK, Mondal SK, Ahmed A, Mandal A, Jana A, Ikbal M, Samanta S, Ray JK (2014) One-pot synthesis of highly fluorescent polycyclic benzimidazole derivatives. RSC Adv 4:2474–2481. doi:10.1039/C3RA44521F

    Article  CAS  Google Scholar 

  126. Wu Z, Pan Y, Zhou X (2011) Synthesis of 3-aryl imidazo[1,2-a] pyridines by a catalyst-free cascade process. Synthesis 14:2255–2260. doi:10.1055/s-0030-1260669

    Google Scholar 

  127. Albrecht L, Albrecht A, Ransborg LK, Jørgensen KA (2011) Asymmetric organocatalytic [3 + 2]-annulation strategy for the synthesis of N-fused heteroaromatic compounds. Chem Sci 2:1273–1277. doi:10.1039/C1SC00122A

    Article  CAS  Google Scholar 

  128. Sohn SS, Bode JW (2006) N-Heterocyclic carbene catalyzed C-C bond cleavage in redox esterifications of chiral formylcyclopropanes. Angew Chem Int Ed 45:6021–6024. doi:10.1002/anie.200601919

    Article  CAS  Google Scholar 

  129. Fürstner A, Thiel OR, Ackermann L, Schanz H-J, Nolan SP (2000) Ruthenium carbene complexes with N, N‘-bis(mesityl)imidazol-2-ylidene ligands: RCM Catalysts of Extended Scope. J Org Chem 65:2204–2207. doi:10.1021/jo9918504

    Article  PubMed  CAS  Google Scholar 

  130. O’Brien CJ, Kantchev EAB, Chass GA, Hadei N, Hopkinson AC, Organ MG, Setiadi DH, Tangc T-H, Fang D-C (2005) Towards the rational design of palladium-N-heterocyclic carbine catalysts by a combined experimental and computational approach. Tetrahedron 61:9723–9735. doi:10.1016/j.tet.2005.07.101

    Article  CAS  Google Scholar 

  131. Hutt JT, Aron ZD (2011) Efficient, single-step access to imidazo[1,5-apyridine N-heterocyclic carbene precursors. Org Lett 13:5256–5259. doi:10.1021/ol202134n

    Article  PubMed  CAS  Google Scholar 

  132. Kaboudin B, Abedi Y, Yokomatsu T (2012) One-pot synthesis of 1,2,3-triazoles from boronic acids in water using Cu(II)-\(\upbeta \)-cyclodextrin complex as a nanocatalyst. Org Biomol Chem 10:4543–4548. doi:10.1039/c2ob25061f

    Article  PubMed  CAS  Google Scholar 

  133. Toste FD (2011) Gold catalysis for organic synthesis. Beilstein J Org Chem 7:553–554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Duan H, Yan W, Sengupta S, Shi X (2009) Highly efficient synthesis of vinyl substituted triazoles by Au(I) catalyzed alkyne activation. Bioorg Med Chem Lett 19:3899–3902. doi:10.1016/j.bmcl.2009.03.096

    Article  PubMed  CAS  Google Scholar 

  135. Kwok SW, Fotsing JR, Fraser RJ, Rodionov VO, Fokin VV (2010) Transition-metal-free catalytic synthesis of 1,5-diaryl-1,2,3 triazoles. Org Lett 12:4217–4219. doi:10.1021/ol101568d

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Valizadeh H, Amiri M, Khalili E (2012) Task-specific nitrite and azide ionic liquids for the efficient one-pot synthesis of 1,2,3-triazoles from the aniline derivatives. Mol Divers 16:319–323. doi:10.1007/s11030-012-9366-1

    Article  PubMed  CAS  Google Scholar 

  137. Staben ST, Blaquiere N (2010) Four-component synthesis of fully substituted 1,2,4-triazoles. Ange Chem Int Ed 49:325–328. doi:10.1002/anie.200905897

    Article  CAS  Google Scholar 

  138. Castanedo GM, Seng PS, Blaquiere N, Trapp S, Staben ST (2011) Synthesis of 1,3,5-substituted 1,2,4-triazoles from carboxylic acids, amidines, and hydrazines. J Org Chem 76:1177–1179. doi:10.1021/jo1023393

    Article  PubMed  CAS  Google Scholar 

  139. Hsieh H-Y, Lee W-C, Senadi GC, Hu W-P, Liang J-J, Tsai T-R, Chou Y-W, Kuo K-K, Chen C-Y, Wang (2013) Discovery, synthetic methodology, and biological evaluation for antiphotoaging activity of bicyclic[1,2,3]triazoles: in vitro and in vivo studies. J Med Chem 56:5422–5435. doi:10.1021/jm400394s

    Article  PubMed  CAS  Google Scholar 

  140. Roh RJ, Vavrova K, Hrabalek A (2012) Synthesis and functionalization of 5-substituted tetrazoles. Eur J Org Chem 31:6101–6118. doi:10.1002/ejoc.201200469

    Article  CAS  Google Scholar 

  141. Tisseh ZN, Dabiri M, Nobahar M, Soorki AA, Bazgir A (2012) Catalyst-free synthesis of N-rich heterocycles via multi-component reactions. Tetrahedron 68:3351–3356. doi:10.1016/j.tet.2012.02.051

    Article  CAS  Google Scholar 

  142. Gunawan S, Petit J, Concise CH (2012) Concise one-pot preparation of unique bis-pyrrolidinone tetrazoles. ACS Comb Sci 14:160–163. doi:10.1021/co200209a

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Katritzky AR, Rogovoy BV, Kovalenko KV (2003) Theoretical studies on the tautomerism and intramolecular hydrogen shifts of 5-amino-tetrazole in the gas phase. J Org Chem 68:4941–4943

    Article  PubMed  CAS  Google Scholar 

  144. Yella R, Khatun N, Rout SK, Patel BK (2011) Tandem regioselective synthesis of tetrazoles and related heterocycles using iodine. Org Biomol Chem 9:3235–3245. doi:10.1039/C0OB01007C

    Article  PubMed  CAS  Google Scholar 

  145. Soeta T, Tamura K, Fujinami S, Ukaji Y (2013) Three-component reaction of C, N-cyclic N’-acyl azomethine imines, isocyanides, and azide compounds: effective synthesis of 1,5-disubstituted tetrazoles with tetrahydroisoquinoline skeletons. Org Biomol Chem 11:2168–2174. doi:10.1039/C3OB27297D

    Article  PubMed  CAS  Google Scholar 

  146. Srinivas B, Prasanna B, Ravinder M (2013) One pot synthesis of substituted bistetrazolo-[1,5-a:5\(^\prime \),1\(^\prime \)-c]-quinoxalines. Chem Sci Trans 2:1074–1077. doi:10.7598/cst2013.472

    CAS  Google Scholar 

  147. Huang X, Li P, Li X-S, Xu D-C, Xie J-W (2010) The organocatalytic two-step synthesis of diversely functionalized tricyclic tetrazoles. Org Biomol Chem 8:4527–4529. doi:10.1039/C0OB00272K

    Article  PubMed  CAS  Google Scholar 

  148. Baumann M, Baxendale IR (2013) An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beilstein J Org Chem 9:2265–2319. doi:10.3762/bjoc.9.265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Hill MD (2010) Recent strategies for the synthesis of pyridine derivatives. Chem Eur J 16:12052–12062. doi:10.1002/chem.201001100

    Article  PubMed  CAS  Google Scholar 

  150. Stark DG, Morrill LC, Yeh P-P, Slawin AMZ, Riordan TJCO, Smith AD (2013) Isothiourea-mediated one-pot synthesis of functionalized pyridines. Angew Chem 125:11856–11860. doi:10.1002/anie.201306786

    Article  Google Scholar 

  151. Samshuddin S, Narayana B, Shetty DN, Raghavendra R (2011) An efficient synthesis of 2,4,6-triaryl pyridines and their biological evaluation. Der Pharma Chemica 3:232–240

  152. Porcar R, García-Verdugo E, Altava1 B, Burguete I, Luis SV (2013) Proceedings of the 10th Green Chemistry Conference on Continuous Flow Multi-step Catalytic. Organic Synthesis: Multireactor Networks. An international event Barcelona-Spain

  153. Bagley MC, Fusillo V, Jenkins RL, Lubinu MC, Mason C (2013) One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor. Beilstein J Org Chem 9:1957–1968. doi:10.3762/bjoc.9.232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Gupta R, Jain A, Jain M, Joshi R (2010) ‘One Pot’ synthesis of 2-amino-3-cyano-4,6-diarylpyridines under ultrasonic irradiation and grindstone technology. Bull Korean Chem Soc 31:3180–3182. doi:10.5012/bkcs.2010.31.11.3180

    Article  CAS  Google Scholar 

  155. Wan J-P, Loh CCJ, Panc F, Enders D (2012) Enantioselective organocatalytic domino synthesis of tetrahydropyridin-2-ols. Chem Commun 48:10049–10051. doi:10.1039/C2CC35644A

    Article  CAS  Google Scholar 

  156. Cacchi S, Fabrizi G, Filisti E (2008) \(N\)-Propargylic \(\upbeta \)-enaminones: common intermediates for the synthesis of polysubstituted pyrroles and pyridines. Org Lett 10:2629–2632. doi:10.1021/ol800518j

    Article  PubMed  CAS  Google Scholar 

  157. Zora M, Karabiyikoglu S (2012) In: Abstracts of Papers; 243th National Meeting of American Chemical Society, San Diego, California; March 25–29, 2012; Synthesis of pyridines via electrophilic cyclization of \(N\)-propargylic \(\upbeta \)-enaminones. American Chemical Society: Washington, DC, ORGN 844

  158. Siddiqui ZN, Ahmed N, Farooq F, Khan K (2013) Highly efficient solvent-free synthesis of novel pyranyl pyridine derivatives via \(\upbeta \)-enaminones using ZnO nanoparticles. Tetrahedron Lett 54:3599–3604. doi:10.1016/j.tetlet.2013.04.072

    Article  CAS  Google Scholar 

  159. Xin X, Wang D, Wu F, Li X, Wan B (2013) Cyclization and \(N\)-Iodosuccinimide-Induced Electrophilic Iodocyclization of 3-Aza-1,5-enynes To Synthesize 1,2-Dihydropyridines and 3-Iodo-1,2-dihydropyridines. J Org Chem 78:4065–4074. doi:10.1021/jo400387b

    Article  PubMed  CAS  Google Scholar 

  160. Xin X, Wang D, Li X, Wan B (2013) One-pot synthesis of pyridines from 3-aza-1,5-enynes. Tetrahedron 6:10245–10248. doi:10.1016/j.tet.2013.10.038

    Article  CAS  Google Scholar 

  161. Paolis OD, Baffoe J, Landge SM, Török B (2008) Multicomponent domino cyclization-oxidative aromatization on a bifunctional Pd/C/K-10 catalyst: an environmentally benign approach toward the synthesis of pyridines. Synthesis 21:3423–3428

    Google Scholar 

  162. Debache A, Boulcina R, Belfaitah A, Rhouati S, Carboni B (2008) One-pot synthesis of 1,4-dihydropyridines via a phenylboronic acid catalyzed hantzsch three-component reaction. Synlett 4:509–512

    Article  CAS  Google Scholar 

  163. Xin X, Wang Y, Kumar S, Liu X, Lin Y, Dong D (2010) Efficient one-pot synthesis of substituted pyridines through multicomponent reaction. Org Biomol Chem 8:3078–3082. doi:10.1039/c001117g. Epub 18 May 2010

  164. Shaikh YI, Shaikh AA, Nazeruddin GM (2012) Ammonia solution catalyzed one-pot synthesis of highly functionalized pyridine derivatives. J Chem Pharm Res 4:4953–4956

  165. Talea RH, Siraskar RU, Zangadeb SB (2013) Silica-supported 2,4,6-trichloro-1,3,5-triazine (silica-tct): environmentally benign, mild and efficient catalyst for the synthesis of 1,4-dihydropyridines under solvent-free conditions. Eur Chem Bull 2:279–282

    Google Scholar 

  166. Guo S, Yuan Y (2010) One-pot synthesis of 1,4-dihydropyridine and polyhydroquinoline derivatives via L-proline catalyzed hantzsch multicomponent reaction under ultrasound irradiation. Chin J Chem 28:811–817. doi:10.1002/cjoc.201090151

    Article  CAS  Google Scholar 

  167. Rajeshwari M, Sammaiah B, Sumalatha D, Sarada LN (2013) Chloro sulphonic acid: a simple and efficient catalyst for one-pot synthesis of hantzsch 1,4-dihydro pyridines. Indian J Adv Chem Sci 1:236–239

    Google Scholar 

  168. Ghosh PP, Mukherjee P, Das AR (2013) Triton-X-100 catalyzed synthesis of 1,4-dihydropyridines and their aromatization to pyridines and a new one pot synthesis of pyridines using visible light in aqueous media. RSC Adv 3:8220–8226. doi:10.1039/c3ra40706c

    Article  CAS  Google Scholar 

  169. Mansoor SS, Aswin K, Logaiya K, Sudhan SPN (2013) Melamine trisulfonic acid as an efficient catalyst for the synthesis of 2,6-dimethyl-4-substituted-1,4-dihydropyridine-3,5-diethyl/dimethylcarboxylate derivatives via Hantzsch reaction in solvent free condition. J King Saud Univ Sci 25:191–199. doi:10.1016/j.jksus.2013.02.001

    Article  Google Scholar 

  170. Kumar S, Bawa S, Gupta H (2009) Biological activities of quinoline derivatives. Mini Rev Med Chem 9(14):1648–1654

    Article  PubMed  CAS  Google Scholar 

  171. Dodiya DK, Ram HK, Trivedi AR, Shah VH (2011) An efficient, microwave-assisted, one-pot synthesis of novel 5,6,7,8-tetrahydroquinoline-3-carbonitriles. J Serb Chem Soc 76:823–830

    Article  CAS  Google Scholar 

  172. Kulkarni A, Torok B (2010) Microwave-assisted multicomponent domino cyclization-aromatization: an efficient approach for the synthesis of substituted quinolines. Green Chem 12:875–878. doi:10.1039/C001076F

    Article  CAS  Google Scholar 

  173. Gao W, Lin G, Li Y, Tao X, Liu R, Sun L (2012) An efficient access to the synthesis of novel 12-phenylbenzo[6,7]oxepino[3,4-b]quinolin- 13(6H)-one derivatives. Beilstein J Org Chem 8:1849–1857. doi:10.3762/bjoc.8.213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Alireza H, Abdolkarim Z, Zolfigol MA (2011) Synthesis of poly-substituted quinolines via friedländer hetero-annulation reaction using silica-supported \(\text{P}_{2}\text{O}_{5}\) under solvent-free conditions. Iran J Chem Chem Eng 30:73–81

    Google Scholar 

  175. Atar AB, Dindulkar SD, Jeong YT (2013) Lithium triflate (LiOTf): a highly efficient and reusable catalytic system for the synthesis of diversified quinolines under neat conditions. Monatsh Chem 144:695–701. doi:10.1007/s00706-012-0906-2

    Article  CAS  Google Scholar 

  176. Zhang M, Xiong B, Yang W, Kumar DNT, Ding Y-Q (2012) Facile one-pot synthesis of polysubstituted quinolines under solvent-free conditions using sulfamic acid as a reusable catalyst. Monatsh Chem 143:471–478. doi:10.1007/s00706-011-0590-7

    Article  CAS  Google Scholar 

  177. Asghari S, Qandalee M, Naderi Z, Sobhaninia Z (2010) One-pot synthesis of 4-arylquinolines from aromatic aminoketones and vinylphosphonium salts. Mol Divers 14:569–574. doi:10.1007/s11030-009-9188-y

    Article  PubMed  CAS  Google Scholar 

  178. Lv Q, Fang L, Wang P, Lu C, Yan F (2013) A simple one-pot synthesis of quinoline-4-carboxylic acid derivatives by Pfitzinger reaction of isatin with ketones in water. Monatsh Chem 144:391–394. doi:10.1007/s00706-012-0822-5

    Article  CAS  Google Scholar 

  179. Khong S, Kwon O (2012) One-pot phosphine-catalyzed syntheses of quinolines. J Org Chem 77:8257–8267. doi:10.1021/jo3015825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Huo Z, Gridnev ID, Yamamoto YA (2010) Method for the synthesis of substituted quinolines via electrophilic cyclization of 1-Azido-2-(2-propynyl)benzene. J Org Chem 75:1266–1270. doi:10.1021/jo902603v

    Article  PubMed  CAS  Google Scholar 

  181. Mitamura T, Ogawa A (2011) Synthesis of 2,4-diiodoquinolines via the photochemical cyclization of o-alkynylaryl isocyanides with iodine. J Org Chem 76:1163–1166. doi:10.1021/jo1021772

    Article  PubMed  CAS  Google Scholar 

  182. Choi HY, Kim DW, Chi DY (2002) Preparation of 7-Alkylamino-2-methylquinoline-5,8-diones. J Org Chem 67:5390–5393. doi:10.1021/jo0257039

    Article  PubMed  CAS  Google Scholar 

  183. Robert M, Dominik T, Halina N, Barbara P, Josef J, Katarina K, Jiri D, Jacek F, Agnieszka M, Jaroslaw P (2008) Investigating biological activity spectrum for novel quinoline analogues 2: hydroxyquinolinecarboxamides with photosynthesis-inhibiting activity. Bioorg Med Chem Lett 16:4490–4499. doi:10.1016/j.bmc.2008.02.065

    Article  CAS  Google Scholar 

  184. Chandrashekarappa KKH, Mahadevan KM, Manjappa KB (2013) High throughput one pot synthesis of 2-methylquinolines. Tetrahedron Lett 54:1368–1370. doi:10.1016/j.tetlet.2012.12.094

    Article  CAS  Google Scholar 

  185. Wang Y, Ai J, Liu G, Geng M, Ao Zhang (2011) Expeditious one-pot synthesis of C3-piperazinyl-substituted quinolines: key precursors to potent c-Met inhibitors. Org Biomol Chem 9:5930–5933. doi:10.1039/C1OB05830D

    Article  PubMed  CAS  Google Scholar 

  186. Shan G, Sun X, Xia Q, Rao Y (2011) Facile synthesis of substituted 2-alkylquinolines through [3+3] annulation between 3-ethoxycyclobutanones and aromatic amines at room temperature. Org Lett 13:5770–5773. doi:10.1021/ol202334s

    Article  PubMed  CAS  Google Scholar 

  187. Gordon CP, Young KA, Hizartzidis L, Deane FM, McCluskey (2011) A Investigation of the one-pot synthesis of quinolin-2-(1H)-ones and the discovery of a variation of the three-component Ugi reaction. Org Biomol Chem 9:1419–1428. doi:10.1039/c0ob00029a

    Article  PubMed  CAS  Google Scholar 

  188. Patel DS, Avalani JR, Raval DK (2012) Ionic liquid catalyzed convenient synthesis of imidazo[1,2-a]quinoline under sonic condition. J Braz Chem Soc 23:1951–1954. doi:10.1590/S0103-50532012005000051

    Article  CAS  Google Scholar 

  189. Tang B, Row KH (2013) Recent developments in deep eutectic solvents in chemical sciences. Monatsh Chem 144:1427–1454. doi:10.1007/s00706-012-0822-5

    Article  CAS  Google Scholar 

  190. DaiY Spronsen J, Witkamp G-J, Verpoorte R, Choi YH (2013) Ionic liquids and deep eutectic solvents in natural products research: mixtures of solids as extraction solvents. J Nat Prod 76:2162–2173. doi:10.1021/np400051w

    Article  CAS  Google Scholar 

  191. Pednekar S, Bhalerao R, Ghadge N (2013) One-pot multi-component synthesis of 1,4-dihydropyridine derivatives in biocompatible deep eutectic solvents. J Chem Sci 125:615–621

    Article  CAS  Google Scholar 

  192. Aswin K, Logaiya K, Sudhan PN, Mansoor SS (2012) An efficient one-pot synthesis of 1,4-dihydropyridine derivatives through Hantzsch reaction catalysed by melamine trisulfonic acid. J Taibah Univ Sci 6:1–9. doi:10.1016/j.jtusci.2012.12.001

    Article  Google Scholar 

  193. Abdolmohammadi S, Balalaie S (2012) An efficient synthesis of pyrido[2,3-d]pyrimidine derivatives via one-pot three-component reaction in aqueous media. IJOC 2:7–14. doi:10.4236/ijoc.2012.21002

    Article  CAS  Google Scholar 

  194. Allen J (2013, April 5) The future of drug design. Yale Scientific Magazine 2013

  195. Goswami SV, Thorat PB, Sudhakar R (2012) An efficient one-pot multi-component synthesis of highly functionalized piperidines. Heterocycl Commun 18:245–248. doi:10.1515/hc-2012-0105

    Article  CAS  Google Scholar 

  196. Khan AT, Lal M, Khan MM (2010) Synthesis of highly functionalized piperidines by one-pot multicomponent reaction using tetrabutylammonium tribromide (TBATB). Tetrahedron Lett 51:4419–4424. doi:10.1016/j.tetlet.2010.06.069

    Article  CAS  Google Scholar 

  197. Verma S, Jain SL, Sain B (2011) PEG-embedded KBr 3: a recyclable catalyst for multicomponent coupling reaction for the efficient synthesis of functionalized piperidines. Beilstein J Org Chem 7:1334–1341. doi:10.3762/bjoc.7.157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Lashkari M, Maghsoodlou MT, Hazeri N, Habibi-Khorassani SM, Sajadikhah SS, Doostmohamadi R (2013) Synthesis of highly functionalized piperidines via one-pot, five-component reactions in the presence of acetic acid solvent. Synthetic Commun 43:635–644. doi:10.1080/00397911.2011.601534

    Article  CAS  Google Scholar 

  199. Sajadikhah SS, Maghsoodlou MT, Hazeri N, Habibi-Khorassani SM, Shams-Najafi SJ (2012) One-pot multicomponent synthesis of highly substituted piperidines using p-toluenesulfonic acid monohydrate as catalyst. Monatsh Chem 143:939–945. doi:10.1007/s00706-011-0671-7

    Article  CAS  Google Scholar 

  200. Sajadikhah SS, Hazeri N, Maghsoodlou MT, Habibi-Khorassani SM, Willis AC (2014) Trityl chloride as an efficient organic catalyst for one-pot, five-component and diastereoselective synthesis of highly substituted piperidines. Res Chem Intermed 40:723–736. doi:10.1007/s11164-012-0997-8

    Article  CAS  Google Scholar 

  201. Singh AK, Chawla R, Rai A, Yadav LDS (2012) NHC-catalysed diastereoselective synthesis of multifunctionalised piperidines via cascade reaction of enals with azalactones. Chem Commun 48:3766–3768. doi:10.1039/C2CC00069E

    Article  CAS  Google Scholar 

  202. Urushima Sakamoto D, Ishikawa H, Hayashi Y (2010) Enantio- and diastereoselective synthesis of piperidines by coupling of four components in a “One-Pot” sequence involving diphenylprolinol silyl ether mediated michael reaction. Org Lett 12:4588–4591. doi:10.1021/ol1018932

    Article  PubMed  CAS  Google Scholar 

  203. Ghorai MK, Halder S, Das RK (2010) Domino Imino-Aldol-Aza-Michael reaction: one-pot diastereo- and enantioselective synthesis of piperidines. J Org Chem 75:7061–7072. doi:10.1021/jo101680f

    Article  PubMed  CAS  Google Scholar 

  204. Kumar I, Ramaraju P, Mir NA, Singh D, Guptac VK, Rajnikant (2013) Highly enantioselective [4 + 2] annulation via organocatalytic Mannich-reductive cyclization: one-pot synthesis of functionalized piperidines. Chem Commun 49:5645. doi:10.1039/c3cc42431f

    Article  CAS  Google Scholar 

  205. Kadouri-Puchot C, Comesse S (2005) Recent advances in asymmetric synthesis of pipecolic acid and derivatives. Amino Acids 29:101–130. doi:10.1007/s00726-005-0193-x

    Article  PubMed  CAS  Google Scholar 

  206. Vranova V, Lojkova L, Rejsek K, Formanek P (2013) Significance of the natural occurrence of L- versus D-Pipecolic acid: a Review. Chirality 25:823–831. doi:10.1002/chir.22237

  207. Fowler LS, Thomas LH, Ellis D, Sutherland A (2011) A one-pot, reductive amination/6-endo-trig cyclisation for the stereoselective synthesis of 6-substituted-4-oxopipecolic acids. Chem Commun 47:6569–6571. doi:10.1039/C1CC11916H

    Article  CAS  Google Scholar 

  208. Li Y, Xue Z, Ye W, Liu J, Yao J, Wang C (2014) One-pot multicomponent synthesis of highly functionalized piperidines from substituted \(\upbeta \) nitrostyrenes, meldrum’s acid, aromatic aldehydes, and ammonium acetate. ACS Comb Sci 16:113–119. doi:10.1021/co4001502

    Article  PubMed  CAS  Google Scholar 

  209. Frutos RP, Wei X, Patel ND, Tampone TG, Mulder JA, Busacca CA, Senanayake CH (2013) One-pot synthesis of 2,5-disubstituted pyrimidines from nitriles. J Org Chem 78:5800–5803. doi:10.1021/jo400720p

    Article  PubMed  CAS  Google Scholar 

  210. Patil DR, Salunkhe SM, Deshmukh MB, Anbhule PV (2010) One step synthesis of 6-amino-5-cyano-4-phenyl-2-mercapto pyrimidine using phosphorus pentoxide. Open Catal J 3:83–86

    Article  CAS  Google Scholar 

  211. Li Q-Y, Ge Z-M, Cheng T-M, Li R-T (2012) An efficient three-component, one-pot synthesis of 2-alkylthio-4-amino-5-cyano-6-aryl(alkyl)pyrimidines in water. Mol Divers 16:431–439. doi:10.1007/s11030-012-9376-z

    Article  PubMed  CAS  Google Scholar 

  212. Yan S, Tang Y, Yu F, Lin J (2011) One-pot synthesis of pyrimidines via cyclocondensation of b-bromovinyl aldehydes with amidine hydrochlorides. Helv Chim Acta 94:487–489. doi:10.1155/2013/235818

    Article  CAS  Google Scholar 

  213. Nemati F, Alizadeh SG (2013) Bi-SO3H Functionalized ionic liquid based on dabco: new and efficient catalyst for facile synthesis of dihydropyrimidinones. J Chem 2013:1–5. doi:10.1155/2013/235818

    Google Scholar 

  214. Yang K, Xiang J, Bao G, Dang Q, Bai X (2013) Synthesis of highly substituted 4h-pyrido[1,2-a]pyrimidines via a one-pot three-component condensation reaction. ACS Comb Sci 15:519–524. doi:10.1021/co400086u

    Article  PubMed  CAS  Google Scholar 

  215. Zhang X, Lin Q, Zhong PA (2010) Facile one-pot synthesis of 1-arylpyrazolo[3,4-d]pyrimidin-4-ones. Molecules 15:3079–3086. doi:10.3390/molecules15053079

    Article  PubMed  CAS  Google Scholar 

  216. Ablajan K, Kamil W, Tuoheti A, Wan-Fu S (2012) One-pot synthesis of 5-amino-7-aryl-7,8-dihydro-[1,2,4] triazolo[4,3-a]-pyrimidine-6-carbonitriles. Molecules 17:1860–1869. doi:10.3390/molecules17021860

    Article  PubMed  CAS  Google Scholar 

  217. Ghorbani-Vaghei R, Toghraei-Semiromi Z, Amiri M, Karimi-Nami R (2013) One-pot synthesis of tetrazolo[1,5-a]pyrimidines under solvent-free conditions. Mol Divers 17:307–318. doi:10.1007/s11030-013-9435-0

    Article  PubMed  CAS  Google Scholar 

  218. Zonouzi A, Hosseinzadeh F, Karimi N, Mirzazadeh R, Ng SW (2013) Novel approaches for the synthesis of a library of fluorescent chromenopyrimidine derivatives. ACS Comb Sci 15:240–246. doi:10.1021/co300141j

    Article  PubMed  CAS  Google Scholar 

  219. Meher CP, Rao AM, Omar M (2013) Piperazine-pyrazine and their multiple biological activities. AJPSR 3:43–60

    Google Scholar 

  220. Bagnoli L, Scarponi C, Rossi MG, Testaferri L, Tiecco M (2011) Synthesis of enantiopure 1,4-dioxanes, morpholines, and piperazines from the reaction of chiral 1,2-diols, amino alcohols, and diamines with vinyl selenones. Chem Eur J 17:993–999. doi:10.1002/chem.201002593

    Article  PubMed  CAS  Google Scholar 

  221. Rulev AY, Muzalevskiy VM, Kondrashov EV, Ushakov IA, Romanov AR, Khrustalev VN, Nenajdenko VG (2013) Reaction of \(\upalpha \)-bromo enones with 1,2-diamines. cascade assembly of 3-(trifluoromethyl)piperazin-2-ones via rearrangement. Org Lett 15:2726–2729. doi:10.1021/ol401041f

    Article  PubMed  CAS  Google Scholar 

  222. Kaïm LE, Grimaud L, Purumandla SR (2011) Multicomponent synthesis of fused benzimidazolopiperazines. J Org Chem 76:4728–4733. doi:10.1021/jo200397m

    Article  PubMed  CAS  Google Scholar 

  223. Trinchera P, Musio B, Degennaro L, Moliterni A, Falcicchiob A, Luis R (2012) One-pot preparation of piperazines by regioselective ring-opening of non-activated arylaziridines. Org Biomol Chem 10:1962–1965. doi:10.1039/C2OB07099E

    Article  PubMed  CAS  Google Scholar 

  224. Hartung A, Seufert F, Berges C, Gessner VH, Holzgrabe U (2012) One-pot Ugi/Aza-Michael synthesis of highly substituted 2,5-diketopiperazines with anti-proliferative properties. Molecules 17:14685–14699. doi:10.3390/molecules171214685

    Article  PubMed  CAS  Google Scholar 

  225. Bhowmik S, Kumara AKS, Batraa S (2013) Expeditious synthesis of chiral 1,2,3,4-Tetrahydropyrrolo[1,2-a]pyrazines. Tetrahedron Lett 54:2251–2254. doi:10.1016/j.tetlet.2013.02.067

    Article  CAS  Google Scholar 

  226. Lewgowd W, Stanczak A (2007) Cinnoline derivatives with biological activity. Arch Pharm Chem Life Sci 340:65–80. doi:10.1002/ardp.200500194

    Article  CAS  Google Scholar 

  227. Khalafy J, Rimaz M, Ezzati M, Prager RH (2012) A green one-pot protocol for regioselective synthesis of new substituted 7,8-dihydrocinnoline-5(6H)-ones. Bull Korean Chem Soc 33:2890–2896. doi:10.5012/bkcs.2012.33.9.2890

    Article  CAS  Google Scholar 

  228. Li X, Lee YR (2011) Facile one-pot synthesis of quinazoline-2,4-dione derivatives and application to naturally occurring alkaloids from zanthoxylum arborescens. Bull Korean Chem Soc 32:2121–2124. doi:10.5012/bkcs.2011.32.6.2121

    Article  CAS  Google Scholar 

  229. Zhang Z-H, Zhang X-N, Mo L-P, Li Y-X, Ma F-P (2012) Catalyst-free synthesis of quinazoline derivatives using low melting sugar-urea-salt mixture as a solvent. Green Chem 14:1502–1506. doi:10.1039/C2GC35258C

    Article  CAS  Google Scholar 

  230. Sarma R, Prajapati D (2011) Microwave-promoted efficient synthesis of dihydroquinazolines. Green Chem 13:718–722. doi:10.1039/C0GC00838A

    Article  CAS  Google Scholar 

  231. Naeimi H, Rabiei K (2011) Montmorillonite as a heterogeneous catalyst in the efficient, mild and one pot synthesis of Schiff bases under solvent-free conditions. J Chin Chem Soc 59:208–21258. doi:10.1002/jccs.201100354

    Article  CAS  Google Scholar 

  232. Darehkordi A, Hosseini SMS, Tahmooresi M (2012) Montmorillonite modified as an efficient and environment friendly catalyst for one- pot synthesis of 3, 4-dihydropyrimidine-2(1h) ones. IJMSE 9:49–57

    CAS  Google Scholar 

  233. Varadwaj GBB, Rana S, Parida K, Nayak BB (2014) A multi-functionalized montmorillonite for co-operative catalysis in one-pot Henry reaction and water pollution remediation. J Mater Chem A. doi:10.1039/C4TA00042K

  234. Crespo MI, Pages L, Vega A, Segarra V, Lopez M, Domenech T, Miralpeix M, Beleta J, Ryder H, Palacios JM (1998) Design, synthesis, and biological activities of new thieno[3,2-d]pyrimidines as selective type 4 phosphodiesterase inhibitors. J Med Chem 41:4021–4035. doi:10.1021/jm981012m

    Article  PubMed  CAS  Google Scholar 

  235. Lowe JA III, Archer RL, Chapin DS, Cheng JBD, Helweg JL, Johnson BK, Koe LA, Lebel PF, Moore JA, Russo Nielsen LL, Shirley JT (1991) Structure-activity relationship of quinazolinedione inhibitors of calcium-independent phosphodiesterase. J Med Chem 34:624–628. doi:10.1021/jm00106a024

  236. Kumar KS, Kumar PM, Kumar KA, Sreenivasulu M, Jafar AA, Rambabu D, Krishna GR, Reddy CM, Kapavarapu R, Shivakumar K, Priy KK, Parsac KVL, Pal MA (2011) A new three-component reaction: green synthesis of novel isoindolo[2,1-a]quinazoline derivatives as potent inhibitors of TNF-\(\upalpha \). Chem Commun 47:5010–5012. doi:10.1039/C1CC10715A

    Article  CAS  Google Scholar 

  237. Nageswar YVD, Reddy KH, Ramesh VKS, Murthy N (2013) Recent developments in the synthesis of quinoxaline derivatives by green synthetic approaches. Org Prep Proced Int 45:1–27. doi:10.1080/00304948.2013.743419

    Article  CAS  Google Scholar 

  238. Alinezhad H, Tajbakhsh M, Norouzi M, Baghery S (2013) An efficient and green protocol for the synthesis of 1,5-benzodiazepine and quinoxaline derivatives using protic pyridinium ionic liquid as a catalyst. World Appl Sci J 22:1711–1717. doi:10.5829/idosi.wasj.2013.22.12.2205

    CAS  Google Scholar 

  239. Sajjadifar S, Saeidian H, Zare S, Veisi H, Rezayati S (2013) Hantzsch reaction and quinoxaline synthesis using 1-methyl-3-(2-(sulfooxy)ethyl)-1H-imidazol-3-ium-chloride as a new, efficient and Bronsted acidic ionic liquid catalyst. Iran Chem Commun 1:4–13

    Google Scholar 

  240. Khaksar S, Rostamnezhad FA (2012) Novel one-pot synthesis of quinoxaline derivatives in fluorinated alcohols. Bull Korean Chem Soc 33:2581. doi:10.5012/bkcs.2012.33.8.2581

    Article  CAS  Google Scholar 

  241. Tarpada UP, Thummar BB, Raval DK (2013) A green protocol for the synthesis of quinoxaline derivatives catalyzed by polymer supported sulphanilic acid. Arab J Chem. doi:10.1016/j.arabjc.2013.11.021

  242. Huang A, Liu F, Zhan C, Liu Y, Ma C (2011) One-pot synthesis of pyrrolo[1,2-a]quinoxalines. Org Biomol Chem 9:7351–7357. doi:10.1039/C1OB05936J

    Article  PubMed  CAS  Google Scholar 

  243. Piltan M, Moradi L, Abasi G, Zarei SA (2013) A one-pot catalyst-free synthesis of functionalized pyrrolo[1,2-a]quinoxaline derivatives from benzene-1,2-diamine, acetylenedicarboxylates and ethyl bromopyruvate. Beilstein J Org Chem 9:510–515. doi:10.3762/bjoc.9.55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Singh UP, Bhat HR, Gahtori P (2012) Antifungal activity, SAR and physicochemical correlation of some thiazole-1,3,5-triazine derivatives. J Med Mycol 22:134–141. doi:10.1016/j.mycmed.2011.12.073

    Article  CAS  Google Scholar 

  245. el-Gendy Z, Morsy JM, Allimony HA, Ali WR, Abdel-Rahman RM (2001) Synthesis of heterobicyclic nitrogen systems bearing the 1,2,4-triazine moiety as anti-HIV and anticancer drugs, part III. Pharmazie 56:376–383

    PubMed  CAS  Google Scholar 

  246. Chen X, Zhan P, Liu X, Cheng Z, Meng C, Shao S, Pannecouque C, Clercq ED, Liu X (2012) Design, synthesis, anti-HIV evaluation and molecular modeling of piperidine-linked amino-triazine derivatives as potent non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem 20:3856–3864. doi:10.1016/j.bmc.2012.04.030

    Article  PubMed  CAS  Google Scholar 

  247. Kumar GJ, Sriramkumar HVS, Srihari BE, Shrivastava S, Naidu VGM, Srinivas K, Rao V (2013) Synthesis and anticancer activity of some new s-triazine derivatives. Med Chem Res 22:5973–5981. doi:10.1007/s00044-013-0584-6

    Article  CAS  Google Scholar 

  248. Mullick P, Khan SA, Begum T, Verma S, Kaushik D, Alam O (2009) Synthesis of 1,2,4-triazine derivatives as potential anti-anxiety and anti-inflammatory agents. Acta Pol Pharm 66:379–385

    PubMed  CAS  Google Scholar 

  249. Sunduru N, Gupta L, Chaturvedi V, Dwivedi R, Sinha S, Chauhan PM (2010) Discovery of new 1,3,5-triazine scaffolds with potent activity against Mycobacterium tuberculosis H37Rv. Eur J Med Chem 45(8):3335–3345. doi:10.1016/j.ejmech.2010.04.017

  250. Dianzani C, Collino M, Gallicchio M, Samaritani S, Signore G, Menicagli R, Fantozzi R (2006) Evaluation of in-vitro anti-inflammatory activity of some 2-alkyl-4,6-dimethoxy-1,3,5-triazines. J Pharm Pharmacol 58:219–226

    Article  PubMed  CAS  Google Scholar 

  251. Irannejad H, Naderi N, Emami S, Ghadikolaei RQ, Foroumadi A, Zafari T, Dadashpour (2014) S Microwave-assisted synthesis and anticonvulsant activity of 5, 6-bisaryl-1, 2, 4-triazine-3-thiol derivatives. Med Chem Res 23:2503–2514. doi:10.1007/s00044-013-0843-6

    Article  CAS  Google Scholar 

  252. Tappe H, Helmling W, Mischke P, Rebsamen K, Reiher U, Russ W, Schläfer L, Vermehren P (2000) Reactive dyes in Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim. doi:10.1002/14356007.a22-651

  253. Farshori Banday NN, Ahmad MR, Khan A, Rauf A, Abdul U (2011) Facile one pot synthesis of novel 3-substituted-1,6-dihydro-1,2,4-triazin-5-(2H)-ones from fatty acid hydrazide and their in-vitro antimicrobial activity. Ind J Chem 50B:605–610

    CAS  Google Scholar 

  254. Mohebat R, Saeedi FJ (2012) A one-pot synthesis of functionalized 1,3,5-triazine-2-thiones from ammonium thiocyanate, acid chlorides, and 2-aminopyridines under solventfree conditions. J Sulfur Chem 33:583–587

    Article  CAS  Google Scholar 

  255. Aboul-Enein HY, Ibrahim SE, Khalifa M (1989) Synthesis and biological activity of dibenz[c, e]azepines. Drug Des Deliv 4:27–33

    Article  PubMed  CAS  Google Scholar 

  256. Božinović N, Opsenica I, Šolaja BA, Double (2013) Palladium-catalyzed synthesis of azepines. Synlett 24:0049–0052. doi:10.1055/s-0032-1317667

    Google Scholar 

  257. Liu H, Li X, Chen Z, Hu W-X (2012) Azepine synthesis from alkyl azide and propargylic ester via gold catalysis. J Org Chem 77:5184–5190. doi:10.1021/jo300667a

    Article  PubMed  CAS  Google Scholar 

  258. Yin G, Zhu Y, Lu P, Wang Y (2011) Lewis acid-promoted three-component reactions of propargylic alcohols with 2-butynedioates and secondary amines. J Org Chem 76:8922–8929. doi:10.1021/jo2016407J

    Article  PubMed  CAS  Google Scholar 

  259. Mallepalli R, Yeramanchi L, Bantu R, Nagarapu L (2011) Polyethylene glycol (PEG-400) as an efficient and recyclable reaction medium for the one-pot synthesis of N-substituted azepines under catalyst-Free conditions. Synlett 18:2730–2732. doi:10.1055/s-0031-1289542

    Google Scholar 

  260. Attanasi OA, Crescentini LD, Filippone P, Mantellini F, Santeusanio S (2002) 1,2-Diaza-1,3-butadienes; just a nice class of compounds, or powerful tools in organic chemistry? Reviewing an experience. ARKIVOC 2002:274–292

  261. Attanasi OA, Crescentini LD, Favi G, Mantellini F, Nicolini S (2011) Divergent Regioselective synthesis of 2,5,6,7-tetrahydro-1H-1,4-diazepin-2-ones and 5H–1,4-benzodiazepines. J Org Chem 76:8320–8328. doi:10.1021/jo201497r

  262. Sandhar A, Singh RK (2013) Rapid and efficient synthesis of 2,3-dihydro-1h-1,5-benzodiazepines catalyzed by chloroacetic acid screened among various aliphatic acids under solvent free conditions. Chem Sci Trans 2:176–180. doi:10.7598/cst2013.315

  263. Xu J, Wei J, Bian L, Zhang J, Chen J, Deng H, Wu X, Zhang H, Cao W (2011) First one-pot stereoselective synthesis of cis-2,3-dihydro-4-perfluoroalkyl- 1H–1,5-benzodiazepines via a catalyst-free three-component reaction. Chem Commun 47:3607–3609. doi:10.1039/C0CC05039C

    Article  CAS  Google Scholar 

  264. Huang Y, Khoury K, Chanas T, Domling A (2012) Multicomponent synthesis of diverse 1,4-benzodiazepine scaffolds. Org Lett 14:5916–5919. doi:10.1021/ol302837h

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  265. Mofakham H, Shaabani A, Mousavifaraz S, Hajishaabanha F, Shaabani S, Ng SW (2012) A novel one-pot pseudo-five-component condensation reaction towards bifunctional diazepine-tetrazole containing compounds: synthesis of 1H-tetrazolyl-1H-1,4-diazepine-2,3-dicarbonitriles and 1H-tetrazolyl-benzo[b][1,4]diazepines. Mol Divers 16:351–356. doi:10.1007/s11030-012-9371-4

  266. Guggenheim KG, Toru H, Kurth MJ (2012) One-pot, two-step cascade synthesis of quinazolinotriazolobenzodiazepines. Org Lett 14:3732–3735. doi:10.1021/ol301592z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simpal Kumari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Kishore, D., Paliwal, S. et al. Transition metal-free one-pot synthesis of nitrogen-containing heterocycles. Mol Divers 20, 185–232 (2016). https://doi.org/10.1007/s11030-015-9596-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-015-9596-0

Keywords

Navigation