Skip to main content

Advertisement

Log in

The present state of the art in expression, production and characterization of monoclonal antibodies

  • Comprehensive Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Monoclonal antibodies (MAb’s) have become one the most powerful therapeutic and diagnostic tools in modern medicine. Some estimates target the worldwide market of MAb’s on the order of $125 billion in the next four years. Recent advances in molecular biology, immunology, and development of robust production platforms will drive the development of more MAb’s suitable to treat an ever increasing number of disease states. This circumstance combined with the fact that many of the original antibody therapies from the 1980s and 1990s will soon be coming off patent will attract a great deal of investment in the development of larger industrial facilities to increase monoclonal antibody to meet increasing demand. In this review, the present state of the science that underlies the development of new antibodies therapies in Chinese hamster ovary cells combined with a description of the present challenges facing the industry in terms of the limitations of output and compliance with current good manufacturing practices and FDA regulations. Also addressed are future challenges to overcome production bottlenecks, description of critical quality control attributes particular to antibodies, and detailed treatment of scale-up considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

pDO:

Percent dissolved oxygen

\(\hbox {pCO}_{2}\) :

Percent dissolved \(\hbox {CO}_{2}\)

HPLC:

High performance liquid chromatography

RP-HPLC:

Reverse phase-high performance liquid chromatography

CHO:

Chinese hamster ovary

MAb:

Monoclonal antibody

MTX:

Methotrexate

MeOH:

Methanol

ACN:

Acetonitrile

HGPRT:

Hypoxanthine-guanine-phosphoribosyl-transferase

HAT Medium:

Hypoxanthine-aminopterin-thymidine medium

MALDI:

Matrix-assisted laser desorption/ionization

MALDI-TOF:

Matrix-assisted laser desorption/ionization-time-of-flight

CEX:

Cation exchange chromatography

AEX:

Anion exchange chromatography

IEC:

Ion exchange chromatography

HIC:

Hydrophobic interaction chromatography

ELISA:

Enzyme linked immunosorbent assay

FT-ICR:

Fourier ion cyclotron resonance

DHFR:

Dihydrofolate reductase

GS:

Glutamine synthase

IgG:

Immunoglobulin G

TFF:

Tangential flow filtration, spin filter

ATF:

Alternating tangential flow

ESI:

Electrospray ionization

FT-ICR:

Fourier transform ion cyclotron resonance

LTQ-Orbitrap:

Hybrid linear quadropole ion-trap-orbitrap

DFPS:

Depth filter perfusion system

References

  1. Desai NR, Giugliano RP, Zhou J, Kohli P, Somaratne R, Hoffman E, Liu T, Scott R, Wasserman SM, Sabatine MS (2014) AMG 145, a monoclonal antibody against PCSK9, facilitates achievement of national cholesterol education program-adult treatment panel III low-density lipoprotein cholesterol goals among high-risk patients: an analysis from the LAPLACE-TIMI 57 trial (LDL-C assessment with PCSK9 monoclonal antibody inhibition combined with statin thErapy-thrombolysis in myocardial infarction 57). J Am Coll Cardiol 63:430–433. doi:10.1016/j.jacc.2013.09.048

    Article  PubMed  CAS  Google Scholar 

  2. Mizutani N, Nabe T, Yoshino S (2015) IgE/antigen-mediated enhancement of IgE production is a mechanism underlying the exacerbation of airway inflammation and remodelling in mice. Immunology 144:107–115. doi:10.1111/imm.12355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Gallagher-Colombo SM, Miller J, Cengel KA, Putt ME, Vinogradov SA, Busch TM (2015) Erlotinib pretreatment improves photodynamic therapy of non-small cell lung carcinoma xenografts via multiple mechanisms. Cancer Res. doi:10.1158/0008-5472.CAN-14-3304

  4. Savic S, Diebold J, Zimmermann AK, Jochum W, Baschiera B, Grieshaber S, Tornillo L, Bisig B, Kerr K, Bubendorf L (2015) Screening for ALK in non-small cell lung carcinomas: 5A4 and D5F3 antibodies perform equally well, but combined use with FISH is recommended. Lung Cancer. doi:10.1016/j.lungcan.2015.05.012

  5. Beck A, Wurch T, Bailly C, Corvaia N (2010) Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 10:345–352. doi:10.1038/nri2747

    Article  PubMed  CAS  Google Scholar 

  6. Lonberg N (2008) Fully human antibodies from transgenic mouse and phage display platforms. Curr Opin Immunol 20:450–459. doi:10.1016/j.coi.2008.06.004

    Article  PubMed  CAS  Google Scholar 

  7. Ecker DM, Jones SD, Levine HL (2015) The therapeutic monoclonal antibody market. MAbs 7:9–14. doi:10.4161/19420862.2015.989042

    Article  PubMed  PubMed Central  Google Scholar 

  8. Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC (2005) Monoclonal antibody successes in the clinic. Nat Biotechnol 23:1073–1078. doi:10.1038/nbt0905-1073

    Article  PubMed  CAS  Google Scholar 

  9. Weiner LM (2006) Fully human therapeutic monoclonal antibodies. J Immunother 29:1–9

    Article  PubMed  CAS  Google Scholar 

  10. van Dijk MA, van de Winkel JGJ (2001) Human antibodies as next generation therapeutics. Curr Opin Chem Biol 5:368–374. doi:10.1016/S1367-5931(00)00216-7

    Article  PubMed  Google Scholar 

  11. Shukla AA, Hubbard B, Tressel T, Guhan S, Low D (2007) Downstream processing of monoclonal antibodies-application of platform approaches. J Chromatogr B Analyt Technol Biomed Life Sci 848:28–39. doi:10.1016/j.jchromb.2006.09.026

    Article  PubMed  CAS  Google Scholar 

  12. Czajkowsky DM, Hu J, Shao Z, Pleass RJ (2012) Fc-fusion proteins: new developments and future perspectives. EMBO Mol Med 4:1015–1028. doi:10.1002/emmm.201201379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Rita Costa A, Elisa Rodrigues M, Henriques M, Azeredo J, Oliveira R (2010) Guidelines to cell engineering for monoclonal antibody production. Eur J Pharm Biopharm 74:127–138. doi:10.1016/j.ejpb.2009.10.002

    Article  PubMed  CAS  Google Scholar 

  14. Banik GG, Todd PW, Kompala DS (1996) Foreign protein expression from S phase specific promoters in continuous cultures of recombinant CHO cells. Cytotechnology 22:179–184. doi:10.1007/BF00353937

    Article  PubMed  CAS  Google Scholar 

  15. Zhou M, Crawford Y, Ng D, Tung J, Pynn AF, Meier A, Yuk IH, Vijayasankaran N, Leach K, Joly J, Snedecor B, Shen A (2011) Decreasing lactate level and increasing antibody production in Chinese Hamster Ovary cells (CHO) by reducing the expression of lactate dehydrogenase and pyruvate dehydrogenase kinases. J Biotechnol 153:27–34. doi:10.1016/j.jbiotec.2011.03.003

    Article  PubMed  CAS  Google Scholar 

  16. Storey S (2010) Respiratory syncytial virus market. Nat Rev Drug Discov 9:15–16. doi:10.1038/nrd3075

    Article  PubMed  CAS  Google Scholar 

  17. Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12:278–287

    Article  PubMed  CAS  Google Scholar 

  18. Li F, Vijayasankaran N, Shen AY, Kiss R, Amanullah A (2010) Cell culture processes for monoclonal antibody production. MAbs 2:466–479

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhu MM, Goyal A, Rank DL, Gupta SK, Vanden Boom T, Lee SS (2005) Effects of elevated pCO\(_2\) and osmolality on growth of CHO cells and production of antibody-fusion protein B1: a case study. Biotechnol Prog 21:70–77. doi:10.1021/bp049815s

    Article  PubMed  CAS  Google Scholar 

  20. Ghaderi D, Zhang M, Hurtado-Ziola N, Varki A (2012) Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol Genet Eng Rev 28:147–175

    Article  PubMed  CAS  Google Scholar 

  21. Rosenberg Y, Sack M, Montefiori D, Forthal D, Mao L, Abanto SH, Urban L, Landucci G, Fischer R, Jiang X (2013) Rapid high-level production of functional HIV broadly neutralizing monoclonal antibodies in transient plant expression systems. PLoS One 8:e58724. doi:10.1371/journal.pone.0058724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Malphettes L, Freyvert Y, Chang J, Liu P-Q, Chan E, Miller JC, Zhou Z, Nguyen T, Tsai C, Snowden AW, Collingwood TN, Gregory PD, Cost GJ (2010) Highly efficient deletion of FUT8 in CHO cell lines using zinc-finger nucleases yields cells that produce completely nonfucosylated antibodies. Biotechnol Bioeng 106:774–783. doi:10.1002/bit.22751

    Article  PubMed  CAS  Google Scholar 

  23. Guy B (2007) The perfect mix: recent progress in adjuvant research. Nat Rev Microbiol 5:505–517. doi:10.1038/nrmicro1681

    Article  PubMed  Google Scholar 

  24. Maloney DG (2005) Immunotherapy for non-Hodgkin’s lymphoma: monoclonal antibodies and vaccines. J Clin Oncol 23:6421–6428. doi:10.1200/JCO.2005.06.004

    Article  PubMed  CAS  Google Scholar 

  25. Wang TT, Tan GS, Hai R, Pica N, Ngai L, Ekiert DC, Wilson IA, Garcia-Sastre A, Moran TM, Palese P (2010) Vaccination with a synthetic peptide from the influenza virus hemagglutinin provides protection against distinct viral subtypes. Proc Natl Acad Sci USA 107:18979–18984. doi:10.1073/pnas.1013387107

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nelson AL, Dhimolea E, Reichert JM (2010) Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 9:767–774. doi:10.1038/nrd3229

    Article  PubMed  CAS  Google Scholar 

  27. Murphy AJ, Macdonald LE, Stevens S, Karow M, Dore AT, Pobursky K, Huang TT, Poueymirou WT, Esau L, Meola M, Mikulka W, Krueger P, Fairhurst J, Valenzuela DM, Papadopoulos N, Yancopoulos GD (2014) Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice. Proc Natl Acad Sci USA 111:5153–5158. doi:10.1073/pnas.1324022111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR (1994) Making antibodies by phage display technology. Annu Rev Immunol 12:433–455. doi:10.1146/annurev.iy.12.040194.002245

    Article  PubMed  CAS  Google Scholar 

  29. Clementi N, Mancini N, Solforosi L, Castelli M, Clementi M, Burioni R (2012) Phage display-based strategies for cloning and optimization of monoclonal antibodies directed against human pathogens. Int J Mol Sci 13:8273–8292. doi:10.3390/ijms13078273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Smith K, Garman L, Wrammert J, Zheng NY, Capra JD, Ahmed R, Wilson PC (2009) Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen. Nat Protoc 4:372–384. doi:10.1038/nprot.2009.3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kim J, Kim Y-G, Lee G (2012) CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol 93:917–930. doi:10.1007/s00253-011-3758-5

    Article  PubMed  CAS  Google Scholar 

  32. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398. doi:10.1038/nbt1026

    Article  PubMed  CAS  Google Scholar 

  33. Fan L, Kadura I, Krebs LE, Larson JL, Bowden DM, Frye CC (2013) Development of a highly-efficient CHO cell line generation system with engineered SV40E promoter. J Biotechnol 168:652–658. doi:10.1016/j.jbiotec.2013.08.021

    Article  PubMed  CAS  Google Scholar 

  34. Simonsen CC, Levinson AD (1983) Isolation and expression of an altered mouse dihydrofolate reductase cDNA. Proc Natl Acad Sci USA 80:2495–2499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Akbarzadeh-Sharbaf S, Yakhchali B, Minuchehr Z, Shokrgozar MA, Zeinali S (2013) Expression enhancement in trastuzumab therapeutic monoclonal antibody production using genomic amplification with methotrexate. Avicenna J Med Biotechnol 5:87–95

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Cockett MI, Bebbington CR, Yarranton GT (1990) High level expression of tissue inhibitor of metalloproteinases in Chinese hamster ovary cells using glutamine synthetase gene amplification. Biotechnology (NY) 8:662–667

    Article  CAS  Google Scholar 

  37. Kober L, Zehe C, Bode J (2013) Optimized signal peptides for the development of high expressing CHO cell lines. Biotechnol Bioeng 110:1164–1173. doi:10.1002/bit.24776

    Article  PubMed  CAS  Google Scholar 

  38. Xing Z, Kenty BM, Li ZJ, Lee SS (2009) Scale-up analysis for a CHO cell culture process in large-scale bioreactors. Biotechnol Bioeng 103:733–746. doi:10.1002/bit.22287

    Article  PubMed  CAS  Google Scholar 

  39. Varley J, Birch J (1999) Reactor design for large scale suspension animal cell culture. Cytotechnology 29:177–205. doi:10.1023/A:1008008021481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Pollock J, Ho SV, Farid SS (2013) Fed-batch and perfusion culture processes: economic, environmental, and operational feasibility under uncertainty. Biotechnol Bioeng 110:206–219. doi:10.1002/bit.24608

    Article  PubMed  CAS  Google Scholar 

  41. Lee JC, Chang HN, Oh DJ (2005) Recombinant antibody production by perfusion cultures of rCHO cells in a depth filter perfusion system. Biotechnol Prog 21:134–139. doi:10.1021/bp0497942

    Article  PubMed  CAS  Google Scholar 

  42. Tang YJ, Ohashi R, Hamel JF (2007) Perfusion culture of hybridoma cells for hyperproduction of IgG(2a) monoclonal antibody in a wave bioreactor-perfusion culture system. Biotechnol Prog 23:255–264. doi:10.1021/bp060299a

    Article  PubMed  CAS  Google Scholar 

  43. Crowley J, Wubben M, Martin JMC (2012) Process for cell culturing by continuous perfusion and alternating tangential flow. Google Patents

  44. Diekmann S, Durr C, Herrmann A, Lindner I, Jozic D (2011) Single use bioreactors for the clinical production of monoclonal antibodies—a study to analyze the performance of a CHO cell line and the quality of the produced monoclonal antibody. BMC Proc 5(Suppl 8):P103. doi:10.1186/1753-6561-5-S8-P103

    Article  PubMed  PubMed Central  Google Scholar 

  45. Singh V (1999) Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology 30:149–158. doi:10.1023/A:1008025016272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Smelko JP, Wiltberger KR, Hickman EF, Morris BJ, Blackburn TJ, Ryll T (2011) Performance of high intensity fed-batch mammalian cell cultures in disposable bioreactor systems. Biotechnol Prog 27:1358–1364. doi:10.1002/btpr.634

    Article  PubMed  CAS  Google Scholar 

  47. Gottschalk U (2009) Process scale purification of antibodies. Wiley, Hoboken

    Book  Google Scholar 

  48. McNerney T, Thomas A, Senczuk A, Petty K, Zhao X, Piper R, Carvalho J, Hammond M, Sawant S, Bussiere J (2015) PDADMAC flocculation of Chinese hamster ovary cells: enabling a centrifuge-less harvest process for monoclonal antibodies. MAbs 7:413–428. doi:10.1080/19420862.2015.1007824

    Article  PubMed  Google Scholar 

  49. Keller K, Friedmann T, Boxman A (2001) The bioseparation needs for tomorrow. Trends Biotechnol 19:438–441

    Article  PubMed  CAS  Google Scholar 

  50. Liu HF, Ma J, Winter C, Bayer R (2010) Recovery and purification process development for monoclonal antibody production. mAbs 2:480–499. doi:10.4161/mabs.2.5.12645

    Article  PubMed  PubMed Central  Google Scholar 

  51. Li NN, Fane AG, Ho WSW, Matsuura T (2011) Advanced membrane technology and applications. Wiley, Hoboken

    Google Scholar 

  52. Aunins JG, Wang DI (1989) Induced flocculation of animal cells in suspension culture. Biotechnol Bioeng 34:629–638. doi:10.1002/bit.260340507

    Article  PubMed  CAS  Google Scholar 

  53. Riske F, Schroeder J, Belliveau J, Kang X, Kutzko J, Menon MK (2007) The use of chitosan as a flocculant in mammalian cell culture dramatically improves clarification throughput without adversely impacting monoclonal antibody recovery. J Biotechnol 128:813–823. doi:10.1016/j.jbiotec.2006.12.023

    Article  PubMed  CAS  Google Scholar 

  54. Hjelm H, Hjelm K, Sjoquist J (1972) Protein A from Staphylococcus aureus. Its isolation by affinity chromatography and its use as an immunosorbent for isolation of immunoglobulins. FEBS Lett 28:73–76

    Article  PubMed  CAS  Google Scholar 

  55. Carter-Franklin JN, Victa C, McDonald P, Fahrner R (2007) Fragments of protein A eluted during protein A affinity chromatography. J Chromatogr A 1163:105–111. doi:10.1016/j.chroma.2007.06.012

    Article  PubMed  CAS  Google Scholar 

  56. Starovasnik MA, O’Connell MP, Fairbrother WJ, Kelley RF (1999) Antibody variable region binding by Staphylococcal protein A: thermodynamic analysis and location of the Fv binding site on E-domain. Protein Sci 8:1423–1431. doi:10.1110/ps.8.7.1423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Fahrner RL, Knudsen HL, Basey CD, Galan W, Feuerhelm D, Vanderlaan M, Blank GS (2001) Industrial purification of pharmaceutical antibodies: development, operation, and validation of chromatography processes. Biotechnol Genet Eng Rev 18:301–327

    Article  PubMed  CAS  Google Scholar 

  58. Brorson K, Krejci S, Lee K, Hamilton E, Stein K, Xu Y (2003) Bracketed generic inactivation of rodent retroviruses by low pH treatment for monoclonal antibodies and recombinant proteins. Biotechnol Bioeng 82:321–329. doi:10.1002/bit.10574

    Article  PubMed  CAS  Google Scholar 

  59. Roberts PL (2014) Virus elimination during the purification of monoclonal antibodies by column chromatography and additional steps. Biotechnol Prog 30:1341–1347. doi:10.1002/btpr.1984

    Article  PubMed  CAS  Google Scholar 

  60. Roush DJ, Myrold A, Burnham MS, And JV, Hughes JV (2015) Limits in virus filtration capability? Impact of virus quality and spike level on virus removal with xenotropic murine leukemia virus. Biotechnol Prog 31:135–144. doi:10.1002/btpr.2020

    Article  PubMed  CAS  Google Scholar 

  61. J Immunother (1997) Points to consider in the manufacture and testing of monoclonal antibody products for human use. 20:214–243

  62. Burnouf T, Radosevich M (2003) Nanofiltration of plasma-derived biopharmaceutical products. Haemophilia 9:24–37. doi:10.1046/j.1365-2516.2003.00701.x

    Article  PubMed  CAS  Google Scholar 

  63. Sofer G (2003) Current issues in validation of chromatography. Dev Biol (Basel) 113:61–64

    CAS  Google Scholar 

  64. Kiefer P, Delmotte N, Vorholt JA (2011) Nanoscale ion-pair reversed-phase HPLC-MS for sensitive metabolome analysis. Anal Chem 83:850–855. doi:10.1021/ac102445r

    Article  PubMed  CAS  Google Scholar 

  65. He Y, Ning T, Xie T, Qiu Q, Zhang L, Sun Y, Jiang D, Fu K, Yin F, Zhang W, Shen L, Wang H, Li J, Lin Q, Sun Y, Li H, Zhu Y, Yang D (2011) Large-scale production of functional human serum albumin from transgenic rice seeds. Proc Natl Acad Sci 108:19078–19083. doi:10.1073/pnas.1109736108

    Article  PubMed  PubMed Central  Google Scholar 

  66. Xie H, Chakraborty A, Ahn J, Yu YQ, Dakshinamoorthy DP, Gilar M, Chen W, Skilton SJ, Mazzeo JR (2010) Rapid comparison of a candidate biosimilar to an innovator monoclonal antibody with advanced liquid chromatography and mass spectrometry technologies. mAbs 2:379–394. doi:10.4161/mabs.11986

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chen J, Tetrault J, Ley A (2008) Comparison of standard and new generation hydrophobic interaction chromatography resins in the monoclonal antibody purification process. J Chromatogr A 1177:272–281. doi:10.1016/j.chroma.2007.07.083

    Article  PubMed  CAS  Google Scholar 

  68. Kupiec TP (2004) Quality-control analytical methods: high-performance liquid chromatography. Int J Pharm Compd 8:223–227

    Google Scholar 

  69. Bongers J, Cummings JJ, Ebert MB, Federici MM, Gledhill L, Gulati D, Hilliard GM, Jones BH, Lee KR, Mozdzanowski J, Naimoli M, Burman S (2000) Validation of a peptide mapping method for a therapeutic monoclonal antibody: what could we possibly learn about a method we have run 100 times? J Pharm Biomed Anal 21:1099–1128

    Article  PubMed  CAS  Google Scholar 

  70. Bondarenko PV, Second TP, Zabrouskov V, Makarov AA, Zhang Z (2009) Mass measurement and top-down HPLC/MS analysis of intact monoclonal antibodies on a hybrid linear quadrupole ion trap-Orbitrap mass spectrometer. J Am Soc Mass Spectrom 20:1415–1424. doi:10.1016/j.jasms.2009.03.020

    Article  PubMed  CAS  Google Scholar 

  71. Kelley B (2009) Industrialization of mAb production technology: the bioprocessing industry at a crossroads. MAbs 1:443–452

    Article  PubMed  PubMed Central  Google Scholar 

  72. Barnard G, Kull A, Sharkey N, Shaikh S, Rittenhour A, Burnina I, Jiang Y, Li F, Lynaugh H, Mitchell T, Nett J, Nylen A, Potgieter T, Prinz B, Rios S, Zha D, Sethuraman N, Stadheim T, Bobrowicz P (2010) High-throughput screening and selection of yeast cell lines expressing monoclonal antibodies. J Ind Microbiol Biotechnol 37:961–971. doi:10.1007/s10295-010-0746-1

    Article  PubMed  CAS  Google Scholar 

  73. Wang Y, Wei D, Yang H, Yang Y, Xing W, Li Y, Deng A (2009) Development of a highly sensitive and specific monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) for detection of Sudan I in food samples. Talanta 77:1783–1789. doi:10.1016/j.talanta.2008.10.016

    Article  PubMed  CAS  Google Scholar 

  74. Lee CJ, Seth G, Tsukuda J, Hamilton RW (2009) A clone screening method using mRNA levels to determine specific productivity and product quality for monoclonal antibodies. Biotechnol Bioeng 102:1107–1118. doi:10.1002/bit.22126

  75. Gerngross TU (2004) Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat Biotechnol 22:1409–1414. doi:10.1038/nbt1028

    Article  PubMed  CAS  Google Scholar 

  76. Nothaft H, Szymanski CM (2010) Protein glycosylation in bacteria: sweeter than ever. Nat Rev Microbiol 8:765–778. doi:10.1038/nrmicro2383

    Article  PubMed  CAS  Google Scholar 

  77. Reichert JM, Dewitz MC (2006) Anti-infective monoclonal antibodies: perils and promise of development. Nat Rev Drug Discov 5:191–195

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher L. Gaughan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaughan, C.L. The present state of the art in expression, production and characterization of monoclonal antibodies. Mol Divers 20, 255–270 (2016). https://doi.org/10.1007/s11030-015-9625-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-015-9625-z

Keywords

Navigation