Skip to main content
Log in

Design, synthesis and biological evaluation of novel 1,2,3-triazolyl \(\upbeta \)-hydroxy alkyl/carbazole hybrid molecules

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The design, synthesis and biological study of several novel 1,2,3-triazolyl \(\upbeta \)-hydroxy alkyl/carbazole hybrid molecules as a new type of antifungal agent has been described. In this synthesis, the N-alkylation reaction of carbazol-9-ide potassium salt with 3-bromoprop-1-yne afforded 9-(prop-2-ynyl)-9H-carbazole. The ‘Click’ Huisgen cycloaddition reaction of 9-(prop-2-ynyl)-9H-carbazole with diverse \(\upbeta \)-azido alcohols in the presence of copper-doped silica cuprous sulphate led to target molecules in excellent yields. The in vitro antifungal and antibacterial activities of title compounds were screened against various pathogenic fungal strains, Gram-positive and/or Gram-negative bacteria. In particular, 1-(4-((9H-carbazol-9-yl) methyl)-1H-1,2,3-triazol-1-yl)-3-butoxypropan-2-ol (10e) proved to have potent antifungal activity against all fungal tests compared with fluconazole and clotrimazole as studied reference drugs. Our molecular docking analysis revealed an appropriate fitting and a potential powerful interaction between compound 10e and an active site of the Mycobacterium P450DM enzyme. The strong hydrogen bondings between \(\upbeta \)-hydroxyl and ether groups in 10e were found to be the main factors that drive the molecule to fit in the active site of enzyme. The in silico pharmacokinetic studies were used for a better description of 10a–10n as potential lead antifungal agents for future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Emori TG, Gaynes RP (1993) An overview of nosocomial infections, including the role of the microbiology laboratory. Clin Microbiol Rev 6:428–442. doi:10.1128/CMR.6.4.428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pappas PG (2011) The role of azoles in the treatment of invasive mycoses: review of the infectious diseases society of America guidelines. Curr Opin Infect Dis 24:S1–S13. doi:10.1097/01.qco.0000399602.83515.ac

    Article  Google Scholar 

  3. Rüping MJ, Vehreschild JJ, Cornely OA (2008) Patients at high risk of invasive fungal infections. Drugs 68:1941–1962. doi:10.2165/00003495-200868140-00002

    Article  PubMed  Google Scholar 

  4. Jain A, Jain S, Rawat S (2010) Emerging fungal infections among children: a review on its clinical manifestations, diagnosis, and prevention. J Pharm Bioallied Sci 2:314–320. doi:10.4103/0975-7406.72131

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sorbera LA, Aravamudan J, Rosa E (2011) Therapeutic targets for candidiasis. Drugs Future 36:627–630. doi:10.1358/dof.2011.36.8.1686467

    Article  CAS  Google Scholar 

  6. Kleeman A, Engel J, Kutscher B, Reichert D (1999) Pharmaceutical substances, 3rd edn. Thieme, Stuttgart

    Google Scholar 

  7. Behbehani H, Ibrahim HM, Makhseed S, Mahmoud H (2011) Applications of 2-arylhydrazono nitriles in synthesis: preparation of new indole containing 1,2,3-triazole, pyrazole and pyrazolo[1,5-a]pyrimidine derivatives and evaluation of their antimicrobial activities. Eur J Med Chem 46:1813–1820. doi:10.1016/j.ejmech.2011.02.040

    Article  CAS  PubMed  Google Scholar 

  8. Johnson DS, Li JJ (2007) The art of drug synthesis. Wiley, Hoboken

    Book  Google Scholar 

  9. Kunzler A, Neuenfeldt PD, das Neves AM, Pereira CMP, Marques GH, Nascente PS, Fernandes MHV, Hübner SO (2013) Synthesis, antifungal and cytotoxic activities of 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidinones. Eur J Med Chem 64:74–80. doi:10.1016/j.ejmech.2013.03.030

    Article  CAS  PubMed  Google Scholar 

  10. Xu Y, Sheng C, Wang W, Che X, Cao Y, Dong G, Wang S, Ji H, Miao Z, Yao J, Zhang W (2010) Structure-based rational design, synthesis and antifungal activity of oxime-containing azole derivatives. Bioorg Med Chem Lett 20:2942–2945. doi:10.1016/j.bmcl.2010.03.014

    Article  CAS  PubMed  Google Scholar 

  11. Kathiravan MK, Salake AB, Chothe AS, Dudhe PB, Watode RP, Mukta MS, Gadhwe S (2012) The biology and chemistry of antifungal agents: a review. Bioorg Med Chem 20:5678–5698. doi:10.1016/j.bmc.2012.04.045

    Article  CAS  PubMed  Google Scholar 

  12. Odds F, Brown AJP, Gow NAR (2003) Antifungal agents: mechanisms of action. Trends Microbiol 11:272–279. doi:10.1016/S0966-842X(03)00117-3

    Article  CAS  PubMed  Google Scholar 

  13. Strushkevich N, Usanov SA (2010) Structural basis of human CYP51 inhibition by antifungal azoles. J Mol Biol 397:1067–1078. doi:10.1016/j.jmb.2010.01.075

    Article  CAS  PubMed  Google Scholar 

  14. Rostovtsev VV, Green LG, Fokin VV, Sharples KB (2002) A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41:2596–2599

    Article  CAS  Google Scholar 

  15. Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064. doi:10.1021/jo011148

    Article  PubMed  Google Scholar 

  16. Haider S, Alam MS, Hamid H (2014) 1, 2, 3-Triazoles: scaffold with medicinal significance. Inflamm Cell Signal 1:e95. doi:10.14800/ics.95

    Google Scholar 

  17. Moses JE, Moorhouse AD (2007) The growing applications of click chemistry. Chem Soc Rev 36:1249–1262. doi:10.1039/B613014N

    Article  CAS  PubMed  Google Scholar 

  18. Zhou CH, Wang Y (2012) Recent researches in triazole compounds as medicinal drugs. Curr Med Chem 19:239–280. doi:10.2174/092986712803414213

    Article  CAS  PubMed  Google Scholar 

  19. Meunier B (2008) Hybrid molecules with a dual mode of action: dream or reality? Acc Chem Res 41:69–77. doi:10.1021/ar7000843

    Article  CAS  PubMed  Google Scholar 

  20. Muregi FW, Ishih A (2010) Next-generation antimalarial drugs: hybrid molecules as a new strategy in drug design. Drug Dev Res 71:20–32. doi:10.1002/ddr.20345

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Letribot B, Akué-Gédu R, Santio NM, El-Ghozzi M, Avignant D, Cisnetti F, Koskinen PJ, Gautier A, Anizon F, Moreau P (2012) Use of copper(I) catalyzed azide alkyne cycloaddition (CuAAC) for the preparation of conjugated pyrrolo[2,3-a]carbazole Pim kinase inhibitors. Eur J Med Chem 2012:304–310. doi:10.1016/j.ejmech.2012.02.009

    Article  Google Scholar 

  22. Akrami H, Mirjalili BF, Khoobi M, Moradi A, Nadri H, Emami S, Foroumadi A, Vosooghi M, Shafiee A (2015) 9H-Carbazole derivatives containing the N-benzyl-1,2,3-triazole moiety as new acetylcholinesterase inhibitors. Arch Pharm Chem Life Sci 348:366–374. doi:10.1002/ardp.201400365

    Article  CAS  Google Scholar 

  23. Silva M, Gonçalves JCO, Oliveira-Campos AMF, Rodrigues LM, Esteves AP (2013) Synthesis of novel glycoconjugates derived from alkynyl heterocycles through a click approach. Synth Commun 43:1432–1438. doi:10.1080/00397911.2011.637655

    Article  CAS  Google Scholar 

  24. Ameen MA, El-Shaieb KM, Mohamed AH, Abdel-Latif FF (2015) Exploiting the 1,2,3-triazole moiety to generate carbazole molecular architectures through click approach. J Heterocycl Chem 52:1718–1722. doi:10.1002/jhet.1966

    Article  CAS  Google Scholar 

  25. Patpi SR, Pulipati L, Yogeeswari P, Sriram D, Jain N, Sridhar B, Murthy R, Devi TA, Kalivendi SV, Kantevari S (2012) Design, synthesis, and structure-activity correlations of novel dibenzo[b, d]furan, dibenzo[b, d]thiophene, and N-methylcarbazole clubbed 1,2,3-triazoles as potent inhibitors of Mycobacterium tuberculosis. J Med Chem 55:3911–3922. doi:10.1021/jm300125e

    Article  CAS  PubMed  Google Scholar 

  26. Surineni G, Yogeeswari P, Sriram D, Kantevari S (2015) Rational design, synthesis and evaluation of novel-substituted 1,2,3-triazolylmethyl carbazoles as potent inhibitors of Mycobacterium tuberculosis. Med Chem Res 24:1298–1309. doi:10.1007/s00044-014-1210-y

    Article  CAS  Google Scholar 

  27. Hung WY, Tu GM, Chena SW, Chi Y (2012) Phenylcarbazole-dipyridyl triazole hybrid as bipolar host material for phosphorescent OLEDs. J Mater Chem 22:5410–5418. doi:10.1039/c2jm15963e

    Article  CAS  Google Scholar 

  28. Bahy A, Chemli M, Ben Hassine B (2013) Synthesis and characterization of new carbazole-based materials for optoelectronic applications. Tetrahedron Lett 54:4026–4029. doi:10.1016/j.tetlet.2013.05.091

    Article  CAS  Google Scholar 

  29. Zhuang J, Li W, Su W, Zhou M, Cui Z (2014) Novel ternary bipolar host material with carbazole, triazole and phosphine oxide moieties for high efficiency sky-blue OLEDs. New J Chem 38:650–656. doi:10.1039/c3nj01054f

    Article  CAS  Google Scholar 

  30. Shi L, Jia N, Kong L, Qi S, Wu D (2014) Tuning resistive switching memory behavior from non-volatile to volatile by phenoxy linkages in soluble polyimides containing carbazole-tethered triazole groups. Macromol Chem Phys 215:2374–2388. doi:10.1002/macp.201400441

    Article  CAS  Google Scholar 

  31. Zhang FF, Gan LL, Zhou CH (2010) Synthesis, antibacterial and antifungal activities of some carbazole derivatives. Bioorg Med Chem Lett 20:1881–1884. doi:10.1016/j.bmcl.2010.01.159

    Article  CAS  PubMed  Google Scholar 

  32. Zhu SP, Wang WY, Fang K, Li ZG, Dong GQ, Miao ZY, Yao JZ, Zhang WN, Sheng CQ (2004) Design, synthesis and antifungal activity of carbazole derivatives. Chin Chem Lett 25:229–233. doi:10.1016/j.cclet.2013.10.022

    Article  Google Scholar 

  33. Soltani Rad MN, Khalafi-Nezhad A, Behrouz S (2009) Design and synthesis of some novel oxiconazole-like carboacyclic nucleoside analogues, as potential chemotherapeutic agents. Helv Chim Acta 92:1760–1774. doi:10.1002/hlca.200900051

    Article  CAS  Google Scholar 

  34. Soltani Rad MN, Khalafi-Nezhad A, Behrouz S (2010) Synthesis of some novel hydrazono acyclic nucleoside analogues. Beilstein J Org Chem 6(49):1–8. doi:10.3762/bjoc.6.49

    Google Scholar 

  35. Soltani Rad MN, Asrari Z, Behrouz S, Hakimelahi GH, Khalafi-Nezhad A (2011) ‘Click synthesis’ of 1H–1,2,3-triazolyl-based oxiconazole (=(1Z)-1-(2,4-dichlorophenyl)-2-(1\(H\)-imidazol-1-yl)ethanone O-[(2,4-dichlorophenyl)methyl]oxime) analogs. Helv Chim Acta 94:2194–2206. doi:10.1002/hlca.201100189

    Article  CAS  Google Scholar 

  36. Soltani Rad MN, Behrouz S, Nekoei AR, Faghih Z, Khalafi-Nezhad A (2011) Three-component synthesis of some novel N-heterocycle methyl-O-oxime ethers. Synthesis 24:4068–4076. doi:10.1055/s-0031-1289599

    Article  Google Scholar 

  37. Soltani Rad MN, Behrouz S, Doroodmand MM, Movahediyan A (2012) Copper-doped silica cuprous sulfate (CDSCS) as a highly efficient and new heterogeneous nano catalyst for [3+2] Huisgen cycloaddition. Tetrahedron 68:7812–7821. doi:10.1016/j.tet.2012.07.032

    Article  CAS  Google Scholar 

  38. Soltani Rad MN, Behrouz S, Karimitabar F, Khalafi-Nezhad A (2012) ‘Click synthesis’ of some novel O-substituted oximes containing 1,2,3-triazole-1,4-diyl residues as new analogs of \(\upbeta \)-adrenoceptor antagonists. Helv Chim Acta 95:491–501. doi:10.1002/hlca.201100324

    Article  Google Scholar 

  39. Soltani Rad MN, Behrouz S, Movahedian A, Doroodmand MM, Ghasemi Y, Rasoul-Amini S, Rezaie R (2013) Doped nano-sized copper(I) oxide (Cu\(_{2}\)O) on melamineformaldehyde resin: a highly efficient heterogeneous nano catalyst for ‘click’ synthesis of some novel 1H–1,2,3-triazole derivatives having antibacterial activity. Helv Chim Acta 96:688–701. doi:10.1002/hlca.201200224

    Article  Google Scholar 

  40. Behrouz S, Soltani Rad MN, Rostami S, Behrouz M, Zarehnezhad E, Zarehnezhad A (2014) Design, synthesis, and biological activities of novel azole-bonded \(\upbeta \)-hydroxypropyl oxime O-ethers. Mol Divers 18:797–808. doi:10.1007/s11030-014-9539-1

    Article  CAS  PubMed  Google Scholar 

  41. Bissantz C, Kuhn B, Stahl M (2010) A medicinal chemist’s guide to molecular interactions. J Med Chem 53:5061–5084. doi:10.1021/jm100112j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Al-Kaissy WWN, Tuama SHF, Al-Majidi SMH (2013) Synthesis, characterization and evaluation of antimicrobial activity of some new acetylenic amine and 2-oxoazetidine of carbazole. Am J Sci Ind Res 4:389–398. doi:10.5251/ajsir.2013.4.4.389.398

    Google Scholar 

  43. Li C, Liu X, Yuan M, Li J, Guo Y, Xu J, Zhu M, Lv J, Liu H, Li Y (2007) Unusual fluorescence enhancement of a novel carbazolyl diacetylene bound to gold nanoparticles. Langmuir 23:6754–6760. doi:10.1021/la070110k

    Article  CAS  PubMed  Google Scholar 

  44. Das B, Reddy VS, Tehseen F, Krishnaiah M (2007) Catalyst-free highly regio- and stereoselective ring opening of epoxides and aziridines with sodium azide using poly (ethylene glycol) as an efficient reaction medium. Synthesis 5:666–668. doi:10.1055/s-2007-965921

    Article  Google Scholar 

  45. National Committee for Clinical Laboratory Standards (1997) Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard, NCCLS Document M27-A. National Committee for clinical laboratory Standards, Wayne, USA

  46. Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49:3315–3321. doi:10.1021/jm051197e

    Article  CAS  PubMed  Google Scholar 

  47. Marcou G, Rognan D (2007) Optimizing fragment and scaffold docking by use of molecular interaction fingerprints. J Chem Inf Model 47:195–207. doi:10.1021/ci600342e

    Article  CAS  PubMed  Google Scholar 

  48. Podust LM, Poulos TL, Waterman MR (2001) Crystal structure of cytochrome P450 \(14\upalpha \)-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proc Natl Acad Sci USA 98:3068–3073. doi:10.1073/pnas.061562898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Conner KP, Vennam P, Woods CM, Krzyaniak MD, Bowman MK, Atkins WM (2012) 1,2,3-Triazole-heme interactions in cytochrome P450: functionally competent triazole-water-heme complexes. Biochemistry 51:6441–6457. doi:10.1021/bi300744z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Patrick GL (2011) An introduction to medicinal chemistry, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  51. Bienstock RJ (2011) Library design, search methods, and applications of fragment-based drug design, vol 1076. American Chemical Society, Washington

    Book  Google Scholar 

  52. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26. doi:10.1016/S0169-409X(00)00129-0

    Article  CAS  PubMed  Google Scholar 

  53. Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today 1:337–341. doi:10.1016/j.ddtec.2004.11.007

    Article  CAS  Google Scholar 

  54. OSIRIS Property Explorer, Actelion Pharmaceuticals Ltd, Gewerbestrasse 16, 4123 Allschwil, Switzerland

  55. Organic Chemistry Portal. Hauptstrasse 70, 4446 Buckten – Switzerland. http://www.organic-chemistry.org/prog/peo/. Accessed 22 July 2015

  56. ACD/Labs PhysChem Batch Software. Advanced Chemistry Development, Inc., 8 King Street East, Suite 107, Toronto, Ontario, Canada M5C 1B5. http://www.acdlabs.com/physchembatch/. Accessed 22 July 2015

  57. Marvin Chemaxon. ChemAxon Kft., Záhony u. 7, Building HX 1031 Budapest, Hungary. http://www.chemaxon.com. Accessed 22 July 2015

  58. Molinspiration Property. Molinspiration, Nova ulica, SK-900 26 Slovensky Grob, Slovak Republic. http://www.molinspiration.com/cgi-bin/properties. Accessed 22 July 2015

  59. Bhal SK, Kassam K, Peirson IG, Pearl GM (2007) The rule of five revisited: applying log d in place of log p in drug-likeness filters. Mol Pharm 4:556–560. doi:10.1021/mp0700209

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Shiraz University of Technology research council for partial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Navid Soltani Rad or Somayeh Behrouz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2072 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rad, M.N.S., Behrouz, S., Behrouz, M. et al. Design, synthesis and biological evaluation of novel 1,2,3-triazolyl \(\upbeta \)-hydroxy alkyl/carbazole hybrid molecules. Mol Divers 20, 705–718 (2016). https://doi.org/10.1007/s11030-016-9678-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-016-9678-7

Keywords

Navigation