Skip to main content
Log in

Synthesis and antifungal activity of dehydroabietic acid-based 1,3,4-thiadiazole-thiazolidinone compounds

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In an attempt to search for new natural products-based antifungal agents, a series of novel dehydroabietic acid derivatives bearing a 1,3,4-thiadiazole-thiazolidinone moiety were designed and synthesized. The primary bioassay used showed that at a concentration of \(50\,\upmu \hbox {g}/\hbox {mL}\), the target compounds 3c, 3f, and 3n exhibited excellent antifungal activity (91.3 % inhibition) against Gibberella zeae, which was equivalent to the commercial antifungal drug azoxystrobin (positive control).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

References

  1. Carman RM, Marty RA (1970) Diterpenoids. XXIV. A survey of the Agathis species of North Queensland. Two new resin acids. Aust J Chem 23:1457–1464. doi:10.1071/CH9701457

    Article  CAS  Google Scholar 

  2. Martin D, Tholl D, Gershenzon J, Bohlmann J (2002) Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. J Plant Physiol 129:1003–1018. doi:10.1104/pp.011001

    Article  CAS  Google Scholar 

  3. Savluchinske-Feio S, Curto MJM, Gigante B, Roseiro JC (2006) Antimicrobial activity of resin acid derivatives. Appl Microbiol Biotechnol 72:430–436. doi:10.1007/s00253-006-0517-0

    Article  CAS  PubMed  Google Scholar 

  4. Savluchinske-Feio S, Nunes L, Pereira PT, Silva AM, Roseiro JC, Gigante B, Curto MJM (2007) Activity of dehydroabietic acid derivatives against wood contaminant fungi. J Microbiol Methods 70:465–470. doi:10.1016/j.mimet.2007.06.001

    Article  CAS  PubMed  Google Scholar 

  5. Fonseca T, Gigantea B, Gilchrist TL (2001) A short synthesis of phenanthro[2,3-\(d\)] imidazoles from dehydroabietic acid. Application of the methodology as a convenient route to benzimidazoles. Tetrahedron 57:1793–1799. doi:10.1002/chin.200125164

    Article  CAS  Google Scholar 

  6. Xu XT, Ma XL, Duan WG, Chen L, Cen B, Mo QJ, Wang JY (2013) Synthesis and fungicidal activity of dehydroabietyl-1,2,4-triazolo-thiazolidinones. Holzforschung 67:107–112. doi:10.1515/hf-2012-0026

    CAS  Google Scholar 

  7. Gigante B, Santos C, Silva AM, Curto MJM, Nascimento MSJ, Pinto E, Pedro M, Cerqueira F, Pinto MM, Duarte MP, Laires A, Rueff J, Goncalves J, Pegado MI, Valdeira ML (2003) Catechols from abietic acid: synthesis and evaluation as bioactive compounds. Bioorg Med Chem 11:1631–1638. doi:10.1016/S0968-0896(03)00063-4

    Article  CAS  PubMed  Google Scholar 

  8. Rao XP, Wu Y, Song ZQ, Shang SB, Wang ZD (2011) Synthesis and antitumor activities of unsymmetrically disubstituted acylthioureas fused with hydrophenanthrene structure. Med Chem Res 20:333–338. doi:10.1007/s00044-010-9303-8

    Article  CAS  Google Scholar 

  9. Fonseca T, Gigante B, Marques MM, Gilchrist TL, Clercq ED (2004) Synthesis and antiviral evaluation of benzimidazoles, quinoxalines and indoles from dehydroabietic acid. Bioorg Med Chem 12:103–112. doi:10.1016/j.bmc.2003.10.013

    Article  CAS  PubMed  Google Scholar 

  10. González M, Pérez-Guaita D, Correa-Royero J, Zapata B, Agudelo L, Mesa-Arango A, Betancur-Galvis L (2010) Synthesis and biological evaluation of dehydroabietic acid derivatives. Eur J Med Chem 45:811–816. doi:10.1016/j.ejmech.2009.10.010

    Article  PubMed  Google Scholar 

  11. Wada H, Kodato S, Kawamori M (1985) Antiulcer activity of dehydroabietic acid derivatives. Chem Pharm Bull 33:1472–1487. doi:10.1248/cpb.33.1472

    Article  CAS  PubMed  Google Scholar 

  12. Duan WG, Li XR, Mo QJ, Huang JX, Cen B, Xu XT, Lei FH (2011) Synthesis and herbicidal activity of 5-dehydroabietyl-1,3,4-oxadiazole derivatives. Holzforschung 65:191–197. doi:10.1515/HF.2011.016

    Article  Google Scholar 

  13. Duan WG, Li XR, Ma XL, Mo QJ, Xu XT, Cen B (2011) Synthesis and herbicidal activity of 5-dehydroabietyl-1,3,4-thiadiazole derivatives. Chem Ind For Prod 31:1–8

    CAS  Google Scholar 

  14. Mo QJ, Duan WG, Ma XL, Lin LS, Xu XT, Cen B (2012) Syntheses and fungicidal activities of 2-sustituted acylamino-5-dehydroabietyl-1,3,4-thiadiazole derivatives. Chemistry 75:160–165

    CAS  Google Scholar 

  15. Li FY, Mo QJ, Duan WG, Lin GS, Cen B, Chen NY, Yang ZQ (2014) Synthesis and insecticidal activities of N-(5-dehydroabietyl-1,3,4-thiadiazol-2-yl)-benzenesulfonamides. Med Chem Res 23:4420–4426. doi:10.1007/s00044-014-1009-x

    Article  CAS  Google Scholar 

  16. Chen NY, Duan WG, Liu LZ, Li FY, Lu MP, Liu BM (2015) Synthesis and antifungal activity of dehydroabietic acid-based thiadiazole-phosphonates. Holzforschung 69:1069–1075. doi:10.1515/hf-2014-0315

    Article  CAS  Google Scholar 

  17. Verma A, Saraf SK (2008) 4-Thiazolidinone-A biologically active scaffold. Eur J Med Chem 43:897–905. doi:10.1016/j.ejmech.2007.07.017

  18. Deep A, Jain S, Sharma PC, Mittal SK, Phogat P, Malhotra M (2014) Synthesis, characterization and antimicrobial evaluation of 2,5-disubstituted-4-thiazolidinone derivatives. Arab J Chem 7:287–291. doi:10.1016/j.arabjc.2010.10.032

    Article  CAS  Google Scholar 

  19. Hu J, Wang Y, Wei XY, Wu XX, Chen GZ, Cao GZ, Shen XQ, Zhang XH, Tang QQ (2013) Synthesis and biological evaluation of novel thiazolidinone derivatives as potential anti-inflammatory agents. Eur J Med Chem 64:292–301. doi:10.1016/j.ejmech.2013.04.010

    Article  CAS  PubMed  Google Scholar 

  20. Wu J, Yu LX, Yang FF, Li JJ, Wang P, Zhou WB, Qin LW, Li YQ, Luo J, Yi ZF, Liu MY, Chen YH (2014) Optimization of 2-(3-(arylalkyl amino carbonyl)phenyl)-3-(2-methoxyphenyl)-4- thiazolidinone derivatives as potent antitumor growth and metastasis agents. Eur J Med Chem 80:340–351. doi:10.1016/j.ejmech.2014.04.068

    Article  CAS  PubMed  Google Scholar 

  21. Alice K, Patrícia DN, Adriana MN, Claudio MPP, Gabriela HM, Patrícia SN, Maureen HVF, Silvia OH, Wilson C (2013) Synthesis, antifungal and cytotoxic activities of 2-aryl-3-((piperidin-1-yl)ethyl) thiazolidinones. Eur J Med Chem 64:74–80. doi:10.1016/j.ejmech.2013.03.030

    Article  Google Scholar 

  22. Sharma SC (1967) Synthesis of new fungicides. 2-(4\(^\prime \)-arylthiazolyl-2\(^\prime \)-imino)-3-aryl-4-thiazolidones. Bull Chem Soc Jpn 40:2422–2424. doi:10.1246/bcsj.40.2422

    Article  CAS  PubMed  Google Scholar 

  23. Peng QH, Duan WG, Xu XT, Fang HX, Shen CM (2007) Microwave-assisted extraction of dehydroabietic acid. Appl Chem Ind 36(860–862):868

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 31060100) and the Fund of Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization (No.FPRU2016-1). The authors are thankful to the Research Institute of Elemento-organic Chemistry, Nankai University, China, for the bioassay test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wengui Duan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 2995 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, N., Duan, W., Lin, G. et al. Synthesis and antifungal activity of dehydroabietic acid-based 1,3,4-thiadiazole-thiazolidinone compounds. Mol Divers 20, 897–905 (2016). https://doi.org/10.1007/s11030-016-9691-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-016-9691-x

Keywords

Navigation