Skip to main content

Advertisement

Log in

A study of the Immune Epitope Database for some fungi species using network topological indices

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In the last years, the encryption of system structure information with different network topological indices has been a very active field of research. In the present study, we assembled for the first time a complex network using data obtained from the Immune Epitope Database for fungi species, and we then considered the general topology, the node degree distribution, and the local structure of this network. We also calculated eight node centrality measures for the observed network and compared it with three theoretical models. In view of the results obtained, we may expect that the present approach can become a valuable tool to explore the complexity of this database, as well as for the storage, manipulation, comparison, and retrieval of information contained therein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ali T, Kaitha S, Mahmood S, Ftesi A, Stone J, Bronze MS (2013) Clinical use of anti-TNF therapy and increased risk of infections. Drug Healthc Patient Saf 5:79–99. doi:10.2147/DHPS.S28801

    Article  PubMed  PubMed Central  Google Scholar 

  2. González-Díaz H, González-Díaz Y, Santana L, Ubeira FM, Uriarte E (2008) Proteomics, networks and connectivity indices. Proteomics 8:750–778. doi:10.1002/pmic.200700638

    Article  PubMed  Google Scholar 

  3. Menke R (2004) Linked: the new science of networks (review). Perspect Biol Med 47:300–303. doi:10.1353/pbm.2004.0030

    Article  Google Scholar 

  4. Newman M (2003) The structure and function of complex networks. SIAM Rev 45:167–256. doi:10.1137/S003614450342480

    Article  Google Scholar 

  5. Balaban AT, Beteringhe A, Constantinescu T, Filip PA, Ivanciuc O (2007) Four new topological indices based on the molecular path code. J Chem Inf Model 47:716–731. doi:10.1021/ci6005068

    Article  CAS  PubMed  Google Scholar 

  6. Estrada E (2001) Generalization of topological índices. Chem Phys Lett 336:248–252. doi:10.1016/S0009-2614(01)00127-0

    Article  CAS  Google Scholar 

  7. González-Díaz H, Vilar S, Santana L, Uriarte E (2007) Medicinal chemistry and bioinformatics - current trends in drugs discovery with networks topological indices. Curr Top Med Chem 7:1025–1039. doi:10.2174/156802607780906771

    Article  Google Scholar 

  8. Ivanciuc O, Ivanciuc T, Klein DJ, Seitz WA, Balaban AT (2001) Wiener index extension by counting even/odd graph distances. J Chem Inf Comput Sci 41:536–549. doi:10.1021/ci000086f

  9. González-Díaz H, Romaris F, Duardo-Sanchez A, Pérez-Montoto LG, Prado-Prado F, Patlewicz G, Ubeira FM (2010) Predicting drugs and proteins in parasite infections with topological indices of complex networks: theoretical backgrounds, applications, and legal issues. Curr Pharm Des 16:2737–2764. doi:10.2174/138161210792389234

    Article  PubMed  Google Scholar 

  10. Agüero-Chapin G, González-Díaz H, Molina R, Varona-Santos J, Uriarte E, González-Díaz Y (2006) Novel 2D maps and coupling numbers for protein sequences. The first QSAR study of polygalacturonases; isolation and prediction of a novel sequence from Psidium guajava L. FEBS Lett 580:723–730. doi:10.1016/j.febslet.2005.12.072

    Article  PubMed  Google Scholar 

  11. Bielinska-Waz D, Nowak W, Waz P, Nandy A, Clark T (2007) Distribution moments of 2D-graphs as descriptors of DNA sequences. Chem Phys Lett 443:408–413. doi:10.1016/j.cplett.2007.06.088

    Article  CAS  Google Scholar 

  12. Chou KC (2005) Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21:10–19. doi:10.1093/bioinformatics/bth466

    Article  CAS  PubMed  Google Scholar 

  13. González-Díaz H, Cruz-Monteagudo M, Molina R, Tenorio E, Uriarte E (2005) Predicting multiple drugs side effects with a general drug-target interaction thermodynamic Markov model. Bioorg Med Chem 13:1119–1129. doi:10.1016/j.bmc.2004.11.030

    Article  PubMed  Google Scholar 

  14. Liao B, Ding K (2005) Graphical approach to analyzing DNA sequences. J Comput Chem 26:1519–1523. doi:10.1002/jcc.20287

    Article  CAS  PubMed  Google Scholar 

  15. Mandado M, Gonzáles-Moa MJ, Mosquera RA (2007) QTAIM N-center delocalization indices as descriptors of aromaticity in mono and poly heterocycles. J Comput Chem 28:1625–1633. doi:10.1002/jcc.20647

    Article  CAS  PubMed  Google Scholar 

  16. Vaughan K, Peters B, Larche M, Pomes A, Broide D, Sette A (2013) Strategies to query and display allergy-derived epitope data from the immune epitope database. Int Arch Allergy Immunol 160:334–345. doi:10.1159/000343880

    Article  CAS  PubMed  Google Scholar 

  17. Flórez AF, Park D, Bhak J, Kim BC, Kuchinsky A, Morris JH, Espinosa J, Muskus C (2010) Protein network prediction and topological analysis in Leishmania major as a tool for drug target selection. BMC Bioinform 11:484. doi:10.1186/1471-2105-11-484

  18. Han HW, Ohn JH, Moon J, Kim JH (2013) Yin and Yang of disease genes and death genes between reciprocally scale-free biological networks. Nucleic Acids Res 41:9209–9217. doi:10.1093/nar/gkt683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kotlyar M, Fortney K, Jurisica I (2012) Network-based characterization of drug regulated genes, drug targets, and toxicity. Methods 57:499–507. doi:10.1016/j.ymeth.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  20. Yang L, Wang J, Wang H, Lv Y, Zuo Y, Li X, Jiang W (2014) Analysis and identification of essential genes in humans using topological properties and biological information. Gene 551:138–151. doi:10.1016/j.gene.2014.08.046

    Article  CAS  PubMed  Google Scholar 

  21. Moody J (1998) Matrix methods for calculating the triad census. Soc Netw 20:291–299. doi:10.1016/S0378-8733(98)00006-9

    Article  Google Scholar 

  22. Andraos J (2008) Kinetic plasticity and the determination of product ratios for kinetic schemes leading to multiple products without rate laws: new methods based on directed graphs. Can J Chem 86:342–357. doi:10.1139/v08-020

    Article  CAS  Google Scholar 

  23. Chou KC (1989) Graphical rules in steady and non-steady enzyme kinetics. J Biol Chem 264:12074–12079 PMID 2745429

    CAS  PubMed  Google Scholar 

  24. Kuzmic P, Ng KY, Heath TD (1992) Mixtures of tight-binding enzyme inhibitors. Kinetic analysis by a recursive rate equation. Anal Biochem 200:68–73. doi:10.1016/0003-2697(92)90278-F

    Article  CAS  PubMed  Google Scholar 

  25. Lin SX, Neet KE (1990) Demonstration of a slow conformational change in liver glucokinase by fluorescence spectroscopy. J Biol Chem 265:9670–9675

    CAS  PubMed  Google Scholar 

  26. Chou KC (1990) Applications of graph theory to enzyme kinetics and protein folding kinetics. Steady and non-steady state systems. Biophys Chem 35:1–24. doi:10.1016/0301-4622(90)80056-D

    Article  CAS  PubMed  Google Scholar 

  27. Chou KC, Zhang CT (1992) Diagrammatization of codon usage in 339 HIV proteins and its biological implication. AIDS Res Hum Retrovir 8:1967–1976. doi:10.1089/aid.1992.8.1967

    Article  CAS  PubMed  Google Scholar 

  28. Zhang CT, Chou KC (1994) A graphic approach to analyzing codon usage in 1562 Escherichia coli protein coding sequences. J Mol Biol 238:1–8. doi:10.1006/jmbi.1994.1263

  29. Althaus IW, Gonzales AJ, Chou JJ, Romero DL, Diebel MR, Chou KC, Kezdy FJ, Resnick L, Busso ME, So AG, Downey KM, Thomas RC, Aristoff PA, Tarpley WG, Reusser F (1993) The quinoline U-78036 is a potent inhibitor of HIV-1 reverse transcriptase. J Biol Chem 268:14875–14880

    CAS  PubMed  Google Scholar 

  30. Chou KC, Kezdy FJ, Reusser F (1994) Review: steady-state inhibition kinetics of processive nucleic acid polymerases and nucleases. Anal Biochem 221:217–230. doi:10.1006/abio.1994.1405

    Article  CAS  PubMed  Google Scholar 

  31. Chou KC, Zhang CT, Elrod DW (1996) Do “antisense proteins” exist? J Protein Chem 15:59–61. doi:10.1007/BF01886811

    Article  CAS  PubMed  Google Scholar 

  32. Qi XQ, Wen J, Qi ZH (2007) New 3D graphical representation of DNA sequence based on dual nucleotides. J Theor Biol 249:681–690. doi:10.1016/j.jtbi.2007.08.025

    Article  CAS  PubMed  Google Scholar 

  33. Vázquez-Prieto S, González-Díaz H, Paniagua E, Vilas R, Ubeira FM (2014) A QSPR-like model for multilocus genotype networks of Fasciola hepatica in Northwest Spain. J Theor Biol 343:16–24. doi:10.1016/j.jtbi.2013.11.005

  34. González-Díaz H, Prado-Prado F (2008) Unified QSAR and network-based computational chemistry approach to antimicrobials, Part 1: multispecies activity models for antifungals. J Comput Chem 29:656–657. doi:10.1002/jcc.20826

    Article  PubMed  Google Scholar 

  35. González-Díaz H, Prado-Prado FJ, Santana L, Uriarte E (2006) Unify QSAR approach to antimicrobials. Part 1: predicting antifungal activity against different species. Bioorg Med Chem 14:5973–5980. doi:10.1016/j.bmc.2006.05.018

    Article  PubMed  Google Scholar 

  36. Prado-Prado FJ, Borges F, Perez-Montoto LG, González-Díaz H (2009) Multi-target spectral moment: QSAR for antifungal drugs vs. different fungi species. Eur J Med Chem 44:4051–4056. doi:10.1016/j.ejmech.2009.04.040

    Article  CAS  PubMed  Google Scholar 

  37. Breitkreutz A, Choi H, Sharom JR, Boucher L, Neduva V, Larsen B, Lin ZY, Breitkreutz BJ, Stark C, Liu G, Ahn J, Dewar-Darch D, Reguly T, Tang X, Almeida R, Qin ZS, Pawson T, Gingras AC, Nesvizhskii AI, Tyers M (2010) A global protein kinase and phosphatase interaction network in yeast. Science 328:1043–1046. doi:10.1126/science.1176495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin YY, Qi Y, Lu JY, Pan X, Yuan DS, Zhao Y, Bader JS, Boeke JD (2008) A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation. Genes Dev 22:2062–2074. doi:10.1101/gad.1679508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nandy SK, Jouhten P, Nielsen J (2010) Reconstruction of the yeast protein-protein interaction network involved in nutrient sensing and global metabolic regulation. BMC Syst Biol 4:68. doi:10.1186/1752-0509-4-68

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shi MG, Huang DS, Li XL (2008) A protein interaction network analysis for yeast integral membrane protein. Protein Pept Lett 15:692–699. doi:10.2174/092986608785133627

    Article  CAS  PubMed  Google Scholar 

  41. González-Díaz H, Pérez-Montoto LG, Ubeira FM (2014) Model for vaccine design by prediction of B-epitopes of IEDB given perturbations in peptide sequence, in vivo process, experimental techniques, and source or host organisms. J Immunol Res. doi:10.1155/2014/768515

    PubMed  PubMed Central  Google Scholar 

  42. Vázquez-Prieto S, Paniagua E, Ubeira FM, González-Díaz H (2016) QSPR-perturbation models for the prediction of B-epitopes from immune epitope database: a potentially valuable route for predicting “in silico” new optimal peptide sequences and/or boundary conditions for vaccine development. Int J Pept Res Ther 22:445–450. doi:10.1007/s10989-016-9524-x

    Article  Google Scholar 

  43. Junker BH, Koschützki D, Schreiber F (2006) Exploration of biological network centralities with CentiBiN. BMC Bioinform 7:219. doi:10.1186/1471-2105-7-219

    Article  Google Scholar 

  44. Batagelj V, Mrvar A (1998) Pajek: a program for large network analysis. Connections 21:47–57. doi:10.1017/cbo9780511996368

    Google Scholar 

  45. StatSoft, Inc. (2002) STATISTICA (data analysis software system), version 6.0. www.statsoft.com

Download references

Acknowledgements

This work was supported by Grants GPC2014/058 from the Xunta de Galicia and AGL2011-30563-C03 from the Ministerio de Ciencia e Innovación, Spain. S.V.P. is supported by a postdoctoral fellowship from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Severo Vázquez-Prieto.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vázquez-Prieto, S., Paniagua, E., Solana, H. et al. A study of the Immune Epitope Database for some fungi species using network topological indices. Mol Divers 21, 713–718 (2017). https://doi.org/10.1007/s11030-017-9749-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-017-9749-4

Keywords

Navigation