Skip to main content
Log in

One-pot sequential coupling reactions as a new practical protocol for the synthesis of unsymmetrical 2,3-diethynyl quinoxalines and 4-ethynyl-substituted pyrrolo[1,2-a]quinoxalines

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

One palladium-catalyzed sequential coupling reactions were successfully used as a new protocol for the synthesis of unsymmetrical 2,3-diethynyl quinoxalines and 4-ethynyl-substituted pyrrolo[1,2-a]quinoxalines. The one-pot two coupling reactions of 2,3-dichloroquinoxaline, with two different terminal alkynes, under controlled conditions produced selectively unsymmetrical 2,3-diethynyl quinoxalines with high yields. When one of the two terminal alkynes was 3-propyne-1-ol, in the presence of secondary amines, cyclization occurred and 4-ethynyl-substituted pyrrolo[1,2-a]quinoxalines were successfully formed. All synthesized compounds were tested against the two bacterial strains including Micrococcus luteus and Pseudomonas aeruginosa.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Fig. 4
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Xu Z, Negishi E (2008) Efficient and stereoselective synthesis of yellow scale pheromone via alkyne haloboration, Zr-catalyzed asymmetric carboalumination of alkenes (ZACA reaction), and Pd-catalyzed tandem Negishi coupling. Org Lett 10:4311–4314. https://doi.org/10.1021/ol8017566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sonogashira K, Tohda Y, Hagihara N (1975) A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett 16:4467–4470

    Article  Google Scholar 

  3. Ezeokonkwo MA, Ugwuona FO, Ugwu IC (2015) Synthesis and antibacterial studies of some alkynylated benzo [a] phenoxazin-5-one and 1, 4-naphthoquinone derivatives. Asian J Chem 27:3843. https://doi.org/10.14233/ajchem.2015.19012

    Article  CAS  Google Scholar 

  4. Harmenberg J, Åkesson-Johansson A, Gräslund A et al (1991) The mechanism of action of the anti-herpes virus compound 2, 3-dimethyl-6 (2-dimethylaminoethyl)-6H-indolo-(2,3-b) quinoxaline. Antivir Res 15:193–204. https://doi.org/10.1016/0166-3542(91)90066-Z

    Article  CAS  PubMed  Google Scholar 

  5. Pereira JA, Pessoa AM, Cordeiro MND et al (2015) Quinoxaline, its derivatives and applications: a state of the art review. Eur J Med Chem 97:664–672. https://doi.org/10.1016/j.ejmech.2014.06.058

    Article  CAS  PubMed  Google Scholar 

  6. Naylor MA, Stephens MA, Nolan J et al (1993) Heterocyclic mono-N-oxides with potential applications as bioreductive anti-tumour drugs: part. 1 8-Alkylamino-substituted phenylimidazo [1, 2-a] quinoxalines. Anti-Cancer Drug Des 8:439–461. https://doi.org/10.1016/S0960-894X(99)00171-7

    Article  CAS  Google Scholar 

  7. Ghattass K, El-Sitt S, Zibara K et al (2014) The quinoxaline di-N-oxide DCQ blocks breast cancer metastasis in vitro and in vivo by targeting the hypoxia inducible factor-1 pathway. Mol Cancer 13:12. https://doi.org/10.1186/1476-4598-13-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Unzue A, Dong J, Lafleur K et al (2014) Pyrrolo [3, 2-b] quinoxaline derivatives as types i1/2 and ii eph tyrosine kinase inhibitors: structure-based design, synthesis, and in vivo validation. J Med Chem 57:6834–6844. https://doi.org/10.1021/jm5009242

    Article  CAS  PubMed  Google Scholar 

  9. Hajri M, Esteve MA, Khoumeri O et al (2016) Synthesis and evaluation of in vitro antiproliferative activity of new ethyl 3-(arylethynyl) quinoxaline-2-carboxylate and pyrido [4, 3-b] quinoxalin-1 (2H)-one derivatives. Eur J Med Chem 29:959–966. https://doi.org/10.1016/j.ejmech.2016.10.025

    Article  CAS  Google Scholar 

  10. David R (1998) Changing therapeutic paradigms in glaucoma management. Expert Opin Investig Drugs 7:1063–1086. https://doi.org/10.1517/13543784.7.7.1063

    Article  CAS  PubMed  Google Scholar 

  11. Campiani G, Cappelli A, Nacci V et al (1997) Novel and highly potent 5-HT3 receptor agonists based on a pyrroloquinoxaline structure. J Med Chem 40:3670–3678. https://doi.org/10.1021/jm970376w

    Article  CAS  PubMed  Google Scholar 

  12. Campiani G, Morelli E, Gemma S et al (1999) Pyrroloquinoxaline derivatives as high-affinity and selective 5-HT3 receptor agonists: synthesis, further structure–activity relationships, and biological studies. J Med Chem 42:4362–4379. https://doi.org/10.1021/jm990151g

    Article  CAS  PubMed  Google Scholar 

  13. Guillon J, Moreau S, Mouray E, Sinou V, Forfar I, Fabre SB, DesplatV Millet P, Parzy D, Jarry C, Grellier P (2008) New ferrocenic pyrrolo [1, 2-a] quinoxaline derivatives: synthesis, and in vitro antimalarial activity. Bioorg Med Chem 16:9133–9144. https://doi.org/10.1016/j.bmc.2008.09.038

    Article  CAS  PubMed  Google Scholar 

  14. Maga G, Gemma S, Fattorusso C, Locatelli GA, Butini S, Persico M, Kukreja G, Romano MP, Chiasserini L, Savini L, Novellino E, Nacci V, Spadari S, Campiani G (2005) Specific targeting of hepatitis C virus NS3 RNA helicase. Discovery of the potent and selective competitive nucleotide-mimicking inhibitor QU663. Biochem 44:9637–9644. https://doi.org/10.1021/bi047437u

    Article  CAS  Google Scholar 

  15. MoarbessG Deleuze C, Bonnard V, Gayraud S, Vidal JR, Bressolle F, Pinguet F, Bonnet PA (2008) In vitro and in vivo anti-tumoral activities of imidazo [1,2-a] quinoxaline, imidazo [1, 5-a] quinoxaline, and pyrazolo [1, 5-a] quinoxaline derivatives. Bioorg Med Chem 16:6601–6610. https://doi.org/10.1016/j.bmc.2008.05.022

    Article  CAS  Google Scholar 

  16. Guillon J, Mouray E, Moreau S, Mullie C, Forfar I, Desplat V, Belisle S, Pinaud N, Ravanello F, Le A, Leger JM, Gosmann G, Jarry C, Deleris G, Sonnet P, Grellier P (2011) New ferrocenic pyrrolo [1, 2-a] quinoxaline derivatives: synthesis, and in vitro antimalarial activity—part II. Eur J Med Chem 46:2310–2326. https://doi.org/10.1016/j.ejmech.2011.03.014

    Article  CAS  PubMed  Google Scholar 

  17. Desplat V, Geneste A, Begorre MA, Fabre SB, Brajot S, Massip S et al (2008) Synthesis of new pyrrolo [1,2-a] quinoxaline derivatives as potential inhibitors of Akt kinase. J Enzyme Inhib Med Chem 23:648–658. https://doi.org/10.1080/14756360802205448

    Article  CAS  PubMed  Google Scholar 

  18. Guillon J, Boulouard M, Lisowski V, Stiebing S, Lelong V, Dallemagne P, Rault S (2000) Synthesis of new 2-(aminomethyl)-4-phenylpyrrolo [1, 2-a]-quinoxalines and their preliminary in-vivo central dopamine antagonist activity evaluation in mice. J Pharm Pharmacol 52:1369–1375. https://doi.org/10.1211/0022357001777522

    Article  CAS  PubMed  Google Scholar 

  19. Morelli E, Gemma S, Budriesi R, Campiani G, Novellino E, Fattorusso C, Catalanotti B, Coccone SS, Ros S, Borrelli G, Persico M, Fiorini I, Nacci V, Ioan P, Chiarini A, Hamon M, Cagnotto A, Mennini T, Fracasso C, Colovic M, Caccia S, Butini S (2009) Specific targeting of peripheral serotonin 5-HT3 receptors. Synthesis, biological investigation, and structure–activity relationships. J Med Chem 52:3548–3562. https://doi.org/10.1021/jm900018b

    Article  CAS  PubMed  Google Scholar 

  20. Wurm T, Bucher J, Duckworth SB, Rudolph M, Rominger F, Hashmi ASK (2017) On the gold-catalyzed generation of vinyl cations from 1, 5-Diynes. Angew Chem Int Ed 56:3364–3368. https://doi.org/10.1002/anie.201700057

    Article  CAS  Google Scholar 

  21. Sekine K, Stuck F, Schulmeister J, Wurm T, Zetschok D, Rominger F, Rudolph M, Hashmi ASK (2018) N-heterocycle-fused pentalenes by a gold-catalyzed annulation of diethynyl-quinoxalines and-phenazines. Chem Eur J 24:12515–12518. https://doi.org/10.1002/chem.201803096

    Article  CAS  PubMed  Google Scholar 

  22. Verma AK, Jha RR, Sankar VK, Aggarwal T, Singh RP, Chandra R (2011) Lewis acid-catalyzed selective synthesis of diversely substituted indolo-and pyrrolo [1, 2-a] quinoxalines and quinoxalinones by modified pictet-spengler reaction. Eur J Med Chem 34:6998–7010. https://doi.org/10.1002/ejoc.201101013

    Article  CAS  Google Scholar 

  23. Pereira MF, Valerie T (2012) One-pot synthesis of pyrrolo [1,2-a] quinoxaline derivatives via iron-promoted aryl nitro reduction and aerobic oxidation of alcohols. Org Lett 14:4754–4757. https://doi.org/10.1021/ol302006b

    Article  CAS  Google Scholar 

  24. Jayaprakash S, Ramamohan M, Sridhar R, Raghavendrarao K, Paradesi N, Chandrasekhar K (2015) Simple and highly efficient synthesis of indolo-and pyrrolo [1,2-a] quinoxalines promoted by molecular iodine. Synlett 26:1096–1100. https://doi.org/10.1055/s-0034-1380347

    Article  CAS  Google Scholar 

  25. Xie C, Feng L, Li W, Ma X, Liu Y, Ma C (2016) Efficient synthesis of pyrrolo [1, 2-a] quinoxalines catalyzed by a Brønsted acid through cleavage of C–C bonds. Org Biomol Chem 14:8529–8535. https://doi.org/10.1039/C6OB01401A

    Article  CAS  PubMed  Google Scholar 

  26. Keivanloo A, Kazemi SS, Nasr-Isfahani H, Bamoniri A (2016) Novel multi-component synthesis of 1, 4-disubstituted pyrrolo [1, 2-a] quinoxalines through palladium-catalyzed coupling reaction/hetero-annulation in water. Tetrahedron 72:6536–6542. https://doi.org/10.1016/j.tet.2016.08.067

    Article  CAS  Google Scholar 

  27. Keivanloo A, Soozani A, Bakherad M, Mirzaee M, Rudbari HA, Bruno G (2017) Development of an unexpected reaction pathway for the synthesis of 1, 2, 4-trisubstituted pyrrolo [1, 2-a] quinoxalines through palladium-catalyzed cascade reactions. Tetrahedron 73:1633–1639. https://doi.org/10.1016/j.tet.2017.02.018

    Article  CAS  Google Scholar 

  28. Keivanloo A, Abbaspour S, Bakherad M, Notash B (2019) New Pd-mediated cascade reactions for synthesis of novel functionalized 1,3-oxazole-linked quinoxaline amines. Chem Select 4:1366–1370. https://doi.org/10.1002/slct.201803653

    Article  CAS  Google Scholar 

  29. Kazemi SS, Keivanloo A, Nasr-Isfahani H, Bamoniri A (2016) Synthesis of novel 1,5-disubstituted pyrrolo [1, 2-a] quinazolines and their evaluation for anti-bacterial and anti-oxidant activities. RSC Adv 6:92663–92669. https://doi.org/10.1039/C6RA21219K

    Article  CAS  Google Scholar 

  30. Keivanloo A, Kazemi SS, Nasr-Isfahani H, Bamoniri A (2017) Efficient one-pot synthesis of new 1-amino substituted pyrrolo [1, 2-a] quinoline-4-carboxylate esters via copper-free Sonogashira coupling reactions. Mol Divers 21:29–36. https://doi.org/10.1007/s11030-016-9694-7

    Article  CAS  PubMed  Google Scholar 

  31. Besharati-Seidani T, Keivanloo A, Kaboudin B, Yokomatsu T (2016) Efficient synthesis of 2-phenyl-3-substituted furo/thieno [2, 3-b] quinoxalines via Sonogashira coupling reaction followed by iodocyclization and subsequent palladium-catalyzed cross-coupling reactions. RSC Adv 2016:83901–83908. https://doi.org/10.1039/C6RA15425E

    Article  CAS  Google Scholar 

  32. Besharati-Seidani T, Keivanloo A, Kaboudin B, Yoshida A, Yokomatsu T (2017) Regioselective synthesis of 2, 3-disubstituted 1-alkyl pyrrolo [2, 3-b] quinoxalines through palladium-catalyzed Heck reaction of chalcones and evaluation of their anti-bacterial activities. Tetrahedron 74:2350–2358. https://doi.org/10.1016/j.tet.2018.03.055

    Article  CAS  Google Scholar 

  33. Keivanloo A, Besharati-Seidani T, Kaboudin B, Yoshida A, Yokomatsu T (2018) One-pot synthesis of biologically active 1, 2, 3-trisubstituted pyrrolo [2, 3-b] quinoxalines through a palladium-catalyzed reaction with internal alkyne moieties. Mol Divers 22:879–891. https://doi.org/10.1007/s11030-018-9838-z

    Article  CAS  PubMed  Google Scholar 

  34. Fakharian M, Keivanloo A, Nabid MR (2018) Using calcium carbide as an acetylene source for cascade synthesis of pyrrolo [2,3-b] quinoxalines via copper-free sonogashira coupling reaction. Helv Chim Acta 101:e1800004. https://doi.org/10.1002/hlca.201800004

    Article  CAS  Google Scholar 

  35. Keivanloo A, Fakharian M, Nabid MR, Amin AH (2019) Novel one-pot synthesis of 1-alkyl-2-(aryloxy) methyl-1H-pyrrolo [2,3-b] quinoxalines via copper-free Sonogashira coupling reaction. J Iran Chem Soc 28:151–160. https://doi.org/10.1007/s13738-018-1492-y

    Article  CAS  Google Scholar 

  36. Ames DE, Brohi MI (1980) Alkynyl-and dialkynyl-quinoxalines. Synthesis of condensed quinoxalines. J Chem Soc Perkin Trans 1:1384–1389. https://doi.org/10.1039/P19800001384

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their thanks to the Research Council of the Shahrood University of Technology for the financial support of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Keivanloo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 708 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keivanloo, A., Lashkari, S., Bakherad, M. et al. One-pot sequential coupling reactions as a new practical protocol for the synthesis of unsymmetrical 2,3-diethynyl quinoxalines and 4-ethynyl-substituted pyrrolo[1,2-a]quinoxalines. Mol Divers 25, 981–993 (2021). https://doi.org/10.1007/s11030-020-10083-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10083-5

Keywords

Navigation