Skip to main content
Log in

QTL mapping of stripe, leaf and stem rust resistance genes in a Kariega × Avocet S doubled haploid wheat population

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Adult plant resistance to stripe (yellow) rust in the wheat cultivar Kariega has previously been ascribed to a major quantitative trait locus (QTL) on each of chromosomes 2B and 7D, along with a number of minor QTL. We have extended both the size of the cv. Kariega × cv. Avocet S mapping population, and the marker coverage within it, by assembling a set of Diversity Array Technology (DArT) markers. This has allowed for the analysis of the genetic basis of the adult plant and seedling resistances to stripe, leaf and stem rust present in the two mapping population parents. The stripe rust reactions of the segregating material were assessed in both field (three scoring dates) and greenhouse experiments. The chromosome 2B QTL became more important than the Lr34/Yr18 complex on chromosome 7D as the plants aged. As the infection progressed, the two QTL explained an increasing proportion of the variance for percentage leaf area infected. The cv. Kariega allele at the minor chromosome 4A QTL had a consistent effect on the severity of stripe rust infection and the overall plant reaction at the earlier scoring dates, but lost importance as the disease progressed. Several rust resistances were detected using an improved greenhouse-based test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp PJ, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity array technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  CAS  PubMed  Google Scholar 

  • Appels R (2003) A consensus molecular genetic map for wheat—a cooperative international effort. In: Progna NE (ed) Proceeding of the 10th international wheat genetics symposium. Paestum, Italy, pp 211–214

  • Börner A, Schumann E, Furste A, Cöster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Boshoff WHP, Pretorius ZA (1999) A new pathotype of Puccinia striiformis f. sp. tritici on wheat in South Africa. Plant Dis 83:591

    Article  Google Scholar 

  • Boukhatem N, Baret PV, Mingeot D, Jacquemin JM (2002) Quantitative trait loci for resistance against yellow rust in two wheat-derived recombinant inbred line populations. Theor Appl Genet 104:111–118

    Article  CAS  PubMed  Google Scholar 

  • Campbell CL, Madden LV (1990) Introduction to plant disease epidemiology. Wiley, New York

    Google Scholar 

  • Carter AH, Chen XM, Garland-Campbell K, Kidwell KK (2009) Identifying QTL for high-temperature adult-plant resistance to stripe rust (Puccinia striiformis f. sp. tritici) in the spring wheat (Triticum aestivum L.) cultivar ‘Louise’. Theor Appl Genet 119:1119–1128

    Article  PubMed  Google Scholar 

  • Chen XM (2007) Challenges and solutions for stripe rust control in the United States. Aust J Agric Res 58:648–655

    Article  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Collard B, Mace E, McPhail M, Wenzl P, Cakir M, Fox G, Poulsen D, Jordan D (2009) How accurate are the marker orders in crop linkage maps generated from large marker datasets? Crop Pasture Sci 60:362–372

    Article  CAS  Google Scholar 

  • Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913

    Article  CAS  PubMed  Google Scholar 

  • Dangl JJ, Jones JDG (2001) Plant pathogens and integrated defense responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294

    CAS  PubMed  Google Scholar 

  • German S, Barcellos A, Chaves M, Kohli M, Campos P, De Viedma L (2007) The situation of common wheat rusts in the Southern Cone of America and perspectives for control. Aust J Agric Res 58:620–630

    Article  Google Scholar 

  • Guo Q, Zhang ZJ, Xu YB, Li GH, Feng J, Zhou Y (2008) Quantitative trait loci for high-temperature adult-plant and slow-rusting resistance to Puccinia striiformis f. sp. tritici in wheat cultivars. Phytopathology 98:803–809

    Article  CAS  PubMed  Google Scholar 

  • Hovmoller MS, Justesen AF (2007) Appearance of atypical Puccinia striiformis f. sp. tritici phenotypes in north-western Europe. Aust J Agric Res 58:518–524

    Article  Google Scholar 

  • Hovmoller MS, Yahyaoui A, Milus EA, Justesen AF (2008) Rapid spread of two aggressive strains of a wheat rust fungus. Mol Ecol 17:3818–3826

    Article  PubMed  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25

    Article  CAS  PubMed  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Lagudah ES, McFadden H, Singh RP, Huerta-Espino J, Bariana HS, Spielmeyer W (2006) Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet 114:21–30

    Article  CAS  PubMed  Google Scholar 

  • Lagudah ES, Krattinger SG, Herrera-Foessel S, Singh RP, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter LL, Keller B (2009) Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet 119:889–898

    Article  CAS  PubMed  Google Scholar 

  • Lehmensiek A, Eckermann PJ, Verbyla AP, Appels R, Sutherland MW, Daggard GE (2005) Curation of wheat maps to improve map accuracy and QTL detection. Aust J Agric Res 56:1347–1354

    Article  Google Scholar 

  • Lin F, Chen XM (2009) Quantitative trait loci for non-race-specific, high-temperature adult-plant resistance to stripe rust in wheat cultivar express. Theor Appl Genet 118:631–642

    Article  CAS  PubMed  Google Scholar 

  • Luo P, Hu X, Zhang H, Ren Z (2009) Genes for resistance to stripe rust on chromosome 2B and their application in wheat breeding. Prog Nat Sci 19:9–15

    Article  CAS  Google Scholar 

  • Mallard S, Gaudet D, Aldeia A, Abelard C, Besnard AL, Sourdille P, Dedryver F (2005) Genetic analysis of durable resistance to yellow rust in bread wheat. Theor Appl Genet 110:1401–1409

    Article  CAS  PubMed  Google Scholar 

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  CAS  PubMed  Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO, Australia, pp 1–200

    Google Scholar 

  • Moldenhauer J, Moerschbacher BM, Van der Westhuizen AJ (2006) Histological investigation of stripe rust (Puccinia striiformis f. sp. tritici) development in resistant and susceptible wheat cultivars. Plant Pathol 55:469–474

    Article  Google Scholar 

  • Moldenhauer J, Pretorius ZA, Moerschbacher BM, Prins R, Van der Westhuizen AJ (2008) Histopathology and PR-protein markers provide insight into adult plant resistance to stripe rust of wheat. Mol Plant Pathol 9:137–145

    Article  CAS  PubMed  Google Scholar 

  • Pretorius ZA, Pakendorf KW, Marais GF, Prins R, Komen JS (2007a) Challenges for sustainable cereal rust control in South Africa. Aust J Agric Res 58:593–601

    Article  Google Scholar 

  • Pretorius ZA, Pienaar L, Prins R (2007b) Greenhouse and field assessment of adult plant resistance in wheat to Puccinia striiformis f. sp. tritici. Aust Plant Pathol 36:552–559

    Article  Google Scholar 

  • Prins R, Ramburan VP, Pretorius ZA, Boyd LA, Boshoff WHP, Smith PH, Louw JH (2005) Development of a doubled haploid mapping population and linkage map for the bread wheat cross Kariega × Avocet S. S Afr J Plant Soil 22:1–8

    CAS  Google Scholar 

  • Ramburan VP, Pretorius ZA, Louw JH, Boyd LA, Smith PH, Boshoff WHP, Prins R (2004) A genetic analysis of adult plant resistance to stripe rust in the wheat cultivar Kariega. Theor Appl Genet 108:1426–1433

    Article  CAS  PubMed  Google Scholar 

  • Rosewarne GM, Singh RP, Huerta-Espino J, Rebetzke GJ (2008) Quantitative trait loci for slow-rusting resistance in wheat to leaf rust and stripe rust identified with multi-environment analysis. Theor Appl Genet 116:1027–1034

    Article  CAS  PubMed  Google Scholar 

  • Rubiales D, Niks RE (1995) Characterization of Lr34, a major gene conferring nonhypersensitive resistance to wheat leaf rust. Plant Dis 79:1208–1212

    Article  Google Scholar 

  • Santra DK, Chen XM, Santra M, Campbell KG, Kidwell KK (2008) Identification and mapping QTL for high-temperature adult-plant resistance to stripe rust in winter wheat (Triticum aestivum L.) cultivar ‘Stephens’. Theor Appl Genet 117:793–802

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Huerta-Espino J, William M (2001) Slow rusting gene based resistance to leaf and yellow rusts in wheat: genetics and breeding at CIMMYT. In: 10th Assembly proceedings of the Wheat Breeding Society of Australia Inc., Mildura, Australia. 16th–21st September 2001, pp 103–108

  • Singh RP, Huerta-Espino J, William HM (2005) Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turk J Agric For 29:121–127

    CAS  Google Scholar 

  • Spielmeyer W, Singh RP, McFadden H, Wellings CR, Huerta-Espino J, Kong X, Appels R, Lagudah ES (2008) Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34/Yr18: a disease resistance locus effective against multiple pathogens in wheat. Theor Appl Genet 116:481–490

    Article  CAS  PubMed  Google Scholar 

  • Sui XX, Wang MN, Chen XM (2009) Molecular mapping of a stripe rust resistance gene in spring wheat cultivar Zak. Phytopathology 99:1209–1215

    Article  CAS  PubMed  Google Scholar 

  • Van Os H, Stam P, Visser RGF, Van Eck HJ (2005) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:30–40

    Article  CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wan A, Zhao Z, Chen X, He Z, Jin S, Jia Q, Yao G, Yang J, Wang B, Li G, Bi Y, Yuan Z (2004) Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Dis 88:896–904

    Article  Google Scholar 

  • Wang S, Basten CJ, Zeng Z-B (2007) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)

  • Wellings CR (2007) Puccinia striiformis f. sp tritici in Australia: a review of the incursion, evoluation, and adaptation of stripe rust in the period 1979–2005. Aust J Agric Res 58:567–575

    Article  Google Scholar 

  • Wellings CR, Singh RP, McIntosh RA, Pretorius ZA (2004) The development and application of near isogenic lines for the wheat stripe (yellow) rust pathosystem. In: Proceedings of the 11th cereal rusts and powdery mildews conference Norwich UK, August 2004, p 39

  • Wenzl P, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101(26):9915–9920

    Article  CAS  PubMed  Google Scholar 

  • Wittenberg AH, Van der Lee T, Cayla C, Kilian A, Visser RG, Schouten HJ (2005) Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana. Mol Genet Genomics 274:30–39

    Article  CAS  PubMed  Google Scholar 

  • Xia L, Peng K, Yang S, Wenzl P, Carmen de Vicente M, Fregene M, Kilian A (2005) DArT for high-throughput genotyping of cassava (Manihot esculenta) and its wild relatives. Theor Appl Genet 110:1092–1098

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Pang W, Ash G, Harper J, Carling J, Wenzl P, Huttner E, Zong X, Kilian A (2006) Low level of genetic diversity in cultivated Pigeonpea compared to its wild relatives is revealed by diversity arrays technology. Theor Appl Genet 113:585–595

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the ARC Small Grain Institute for the opportunity to use the mapping population. We also appreciate the contributions of F.J. Kloppers (PANNAR), who provided the field trial site and managed the field plots, and D.S. Snyman, D. Liebenberg and L. Rademeyer (CenGen), who were responsible for genotyping. We are grateful to the South African Winter Cereal Trust and the National Research Foundation for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Prins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prins, R., Pretorius, Z.A., Bender, C.M. et al. QTL mapping of stripe, leaf and stem rust resistance genes in a Kariega × Avocet S doubled haploid wheat population. Mol Breeding 27, 259–270 (2011). https://doi.org/10.1007/s11032-010-9428-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-010-9428-y

Keywords

Navigation