Skip to main content
Log in

Identification of quantitative trait loci for dry-matter, starch, and β-carotene content in sweetpotato

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Development of orange-fleshed sweetpotatoes (OFSP) is desired for the improvement of the food supply and nutritional status of millions of people in developing countries, particularly in sub-Saharan Africa. However, sweetpotato [Ipomoea batatas (L.) Lam] breeding is challenging due to its genetic complexity, and marker-assisted breeding tools are needed to facilitate crop improvement. We identified quantitative trait loci (QTL) for dry-matter, starch, and β-carotene content in a hexaploid sweetpotato mapping population derived from a cross between Tanzania, a white-fleshed, high dry-matter African landrace, and Beauregard, an orange-fleshed, low dry-matter sweetpotato cultivar popular in the USA. Two parental maps were constructed using a population of 240 clones. Strong correlations were observed between starch and dry-matter content (r > 0.8, P < 0.0001) in the storage roots, while moderate correlations (r = –0.6, P < 0.0001) were observed for β-carotene and starch content. In both parental maps, QTL analysis revealed the presence of 13 QTL for storage root dry-matter content, 12 QTL for starch content, and 8 QTL for β-carotene content. Multiple QTL regression models developed for segregation of alleles in each parent explained 15–24% of the variation in dry-matter content, 17–30% of the starch content, and 17–35% of β-carotene content. To the best of our knowledge, this research presents the only QTL mapping study published to date for dry-matter, starch, and β-carotene content in sweetpotato. This work improves our understanding of the inheritance of these important traits in sweetpotato, and represents a first step toward the long-term goal of developing marker-assisted breeding tools to facilitate sweetpotato breeding efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Beyer P, Al-Babili S, Ye X, Lucca P, Schaub P, Welsch R, Potrykus I (2000) Golden rice: introducing the beta-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. Symposium: plant breeding: a new tool for fighting micronutrient malnutrition. Am Soc Nutrit Sci

  • Brabet C, Reynoso D, Dufour D, Mestres C, Arredondo J, Scott GJ (1998) Starch content and properties of 106 sweetpotato clones from the world germplasm collection held at CIP, Peru. CIP Program Report 1997–98: impact on a challenging world. International Potato Center, Lima

    Google Scholar 

  • Buléona A, Colonna P, Planchota V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112

    Article  Google Scholar 

  • Cervantes-Flores JC (2006) Development of a genetic linkage map and QTL analysis in sweetpotato. Ph.D. Dissertation, Department of Horticultural Science, North Carolina State University, Raleigh, NC

  • Cervantes-Flores JC, Yencho GC, Davis EL (2002) Host reactions of sweetpotato genotypes to root-knot nematodes and variation in virulence of Meloidogyne incognita populations. Hort Sci 37:1112–1116

    Google Scholar 

  • Cervantes-Flores JC, Yencho GC, Kriegner A, Pecota P, Faulk MA, Mwanga ROM, Sosinski B (2008a) Development of a genetic map and identification of homologous linkage groups in sweetpotato using multiple-dose AFLP markers. Mol Breed 21:511–532

    Article  CAS  Google Scholar 

  • Cervantes-Flores JC, Yencho GC, Pecota KV, Sosinski B, Mwanga ROM (2008b) Detection of quantitative trait loci and inheritance of root-knot nematode resistance in sweetpotato. J Am Soc Hort Sci 133:844–851

    Google Scholar 

  • Chen Z, Schols HA, Voragen AGJ (2003) Physicochemical properties of starches obtained from three varieties of Chinese sweetpotatoes. J Food Sci 68:431–437

    Article  CAS  Google Scholar 

  • CIP, International Potato Center (2010a) About sweetpotato. <http://www.cipotato.org/sweetpotato/>

  • CIP, International Potato Center (2010b) The VITAA Project. <http://www.cipotato.org/vitaa/>

  • Doerge RW, Zeng ZB, Weir BS (1997) Statistical issues in the search for genes affecting quantitative traits in experimental populations. Stat Sci 12:195–219

    Article  Google Scholar 

  • Ducreux LJM, Morris WL, Hedley PE, Shepherd T, Davies HV, Millam S, Taylor MA (2005) Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein. J Exp Bot 56:81–89

    PubMed  CAS  Google Scholar 

  • FAO, Food and Agriculture Organization of the United Nations (2008) Production statistics <http://faostat.fao.org/>

  • Ganguli S, Dean DR (2003) Synthesis of biodegradable plastics based on nanoengineered sweetpotato starch/MPE blends. Abstr Papers Am Chem Soc 226:U482

    Google Scholar 

  • Hagenimana V, Low J (2000) Potential of orange-fleshed sweetpotatoes for raising vitamin A intake in Africa. Food Nutr Bull 21:414–418

    Google Scholar 

  • Hagenimana V, Carey EE, Gichuki ST, Oyunga MA, Imungi JK (1999) Carotenoid contents in fresh, dried and processed sweetpotato products. Ecol Food Nutr 37:455–473

    Article  Google Scholar 

  • Hall M, Smittle D (1983) Industrial-type sweetpotatoes: a renewable energy resource for Georgia. Agric Expt Stn Report. University of Georgia

  • Horner HT, Healy RA, Ren G, Fritz D, Klyne A, Seames C, Thornburg RW (2007) Amyloplast to chromoplast conversion in developing ornamental tobacco floral nectaries provides sugar for nectar and antioxidants for protection. Am J Bot 94:12–24

    Article  PubMed  CAS  Google Scholar 

  • Jarret RL, Gawel N, Whittemore A (1992) Phylogenetic relationships of the sweetpotato [Ipomoea-Batatas (L.) Lam]. J Am Soc Hort Sci 117:633–637

    Google Scholar 

  • K’osambo LM, Carey E, Misra AK, Wilkes J, Hagenimana V (1998) Influence of age, farming site and boiling on pro-vitamin A content in sweetpotato (Ipomoea batatas (L.) Lam.) storage roots. J Food Comp Analysis 11:305–321

    Article  Google Scholar 

  • Komaki K, Katayama K, Tamiya S (1998) Advancement of sweetpotato breeding for high starch content in Japan. Trop Agric 75:220–223

    Google Scholar 

  • Kreuze JF, Valkonen JPT, Ghislain M (2009) Genetic engineering. In: Loebenstein G, Thottappilly G (eds) The sweetpotato. Springer, Berlin, pp 41–63

    Chapter  Google Scholar 

  • Kumagai T, Umemura Y, Baba T, Iwanaga M (1990) The inheritance of beta-amylase null in storage roots of sweetpotato, Ipomoea batatas (L.) Lam. Theor Appl Genet 79:369–376

    Article  CAS  Google Scholar 

  • La Bonte DR, Picha DH, Johnson HA (2000) Carbohydrate-related changes in sweetpotato storage roots during development. J Am Soc Hort Sci 125:200–204

    CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying qualtitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lander E, Green P, Abrahamson J, Barlow A, Daly M, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Li L, Paolillo D, Parthasarathy M, DiMuzio E, Garvin D (2001) A novel gene mutation that confers abnormal patterns of beta-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). Plant J 26:59–67

    Article  PubMed  CAS  Google Scholar 

  • Low J, Walker T, Hijmans R (2001) The potential impact of orange-fleshed sweetpotatoes on vitamin A intake in sub-Saharan Africa. Workshop on Food-Based Approaches to Human Nutritional Deficiencies. The VITAA Project, Nairobi, Kenya

  • Low J, Arimond M, Osman N, Cungara B, Zano F, Tschirley D (2007) A food-based approach introducing orange-fleshed sweetpotatoes increased vitamin A intake and serum retinol concentrations in young children in rural Mozambique. J Nutr 137:1320–1327

    PubMed  CAS  Google Scholar 

  • Matsuda S, Kubota H (1984) The feasibility of National fuel alcohol programs in Southeast Asia. Biomass 4:161–182

    Article  Google Scholar 

  • McKnight Foundation Collaborative Crop Research Program (2009) <http://mcknight.ccrp.cornell.edu/projects/ehaf_cop/EHAF_spbreeding/sweetpotato_breeding_project.html>

  • Mwanga ROM, Odongo B, Niringiye C, Kapinga R, Tumwegamire S, Abidin PE, Carey EE, Lemaga B, Nsumba J, Zhang D (2007) Sweetpotato selection releases: lessons learnt from Uganda. Afr Crop Sci 15:11–23

    Google Scholar 

  • Myburg A, Remington D, O’Malley D, Sederoff R, Whetten R (2001) High-throughput AFLP analysis using infrared dye-labeled primers and an automated DNA sequencer. Biotechniques 30:348–357

    PubMed  CAS  Google Scholar 

  • Okuno S, Yoshimoto M, Kumagai T, Yamakawa O (1998) Contents of beta-carotene and alpha-tocopherol of sweetpotato cultivars newly developed for processing purposes. Trop Agric 75:174–176

    Google Scholar 

  • Padmaja G (2009) Uses and nutritional data of sweetpotato. In: Loebenstein G, Thottappilly G (eds) The sweetpotato. Springer, Berlin, pp 189–234

    Chapter  Google Scholar 

  • Reddy UK, Bates GT, Ryan-Bohac J, Nimmakayala P (2007) Sweetpotato. In: Kole C (ed) Genome mapping and molecular breeding in plant: pulses, sugar and tuber crops, vol 3. Springer, Berlin, pp 237–247

    Google Scholar 

  • Saigusa N, Ohba R (2006) Healthy alcoholic beverage “Pa-Puru” from purple-fleshed sweetpotato. Sweetpotato Research Front Newsletter (SPORF). National Agricultural Research Center for Kyushu Okinawa Region (KONARC), Japan

  • Scott GJ, Maldonado L (1999) Sweetpotato facts. A compendium of key figures and analysis for 30 important sweetpotato-producing countries. CIP, Lima

    Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  PubMed  CAS  Google Scholar 

  • Teow CC, Truong VD, McFeeters RF, Thompson RL, Pecota KV, Yencho GC (2007) Antioxidant activities, phenolic and β-carotene contents of sweetpotato genotypes with varying flesh colours. Food Chem 829–838

  • Van Ooijen JW, Voorrips RE (2001) JoinMapR 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acid Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Basten CJ, Gaffney P, Zeng ZB (2005) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC, p (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)

  • Woolfe JA (1992) Sweetpotato: an untapped resource. Cambridge University Press, New York

    Google Scholar 

  • Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    Article  PubMed  CAS  Google Scholar 

  • Young ND (1996) QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol 34:479–501

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This paper is a portion of a dissertation submitted by Jim C. Cervantes-Flores. The research reported in this publication was supported by funding provided by the McKnight Foundation Collaborative Crops Research Project, the North Carolina Sweetpotato Commission, Inc., the Consortium for Plant Biotechnology Research, and the GoldenLEAF Foundation. We thank Drs. Zhao-Bang Zeng, Jason Osborne and an unknown technical reviewer for their statistical advice, and Cindy Pierce, Jennifer Swift, Amanda Kroll, Christina Rowe for their assistance in the greenhouse and laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Yencho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cervantes-Flores, J.C., Sosinski, B., Pecota, K.V. et al. Identification of quantitative trait loci for dry-matter, starch, and β-carotene content in sweetpotato. Mol Breeding 28, 201–216 (2011). https://doi.org/10.1007/s11032-010-9474-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-010-9474-5

Keywords

Navigation