Skip to main content

Advertisement

Log in

Blast resistance in rice: a review of conventional breeding to molecular approaches

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Blast disease caused by the fungal pathogen Magnaporthe oryzae is the most severe diseases of rice. Using classical plant breeding techniques, breeders have developed a number of blast resistant cultivars adapted to different rice growing regions worldwide. However, the rice industry remains threatened by blast disease due to the instability of blast fungus. Recent advances in rice genomics provide additional tools for plant breeders to improve rice production systems that would be environmentally friendly. This article outlines the application of conventional breeding, tissue culture and DNA-based markers that are used for accelerating the development of blast resistant rice cultivars. The best way for controlling the disease is to incorporate both qualitative and quantitative genes in resistant variety. Through conventional and molecular breeding many blast-resistant varieties have been developed. Conventional breeding for disease resistance is tedious, time consuming and mostly dependent on environment as compare to molecular breeding particularly marker assisted selection, which is easier, highly efficient and precise. For effective management of blast disease, breeding work should be focused on utilizing the broad spectrum of resistance genes and pyramiding genes and quantitative trait loci. Marker assisted selection provides potential solution to some of the problems that conventional breeding cannot resolve. In recent years, blast resistant genes have introgressed into Luhui 17, G46B, Zhenshan 97B, Jin 23B, CO39, IR50, Pusa1602 and Pusa1603 lines through marker assisted selection. Introduction of exotic genes for resistance induced the occurrence of new races of blast fungus, therefore breeding work should be concentrated in local resistance genes. This review focuses on the conventional breeding to the latest molecular progress in blast disease resistance in rice. This update information will be helpful guidance for rice breeders to develop durable blast resistant rice variety through marker assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khush GS (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol 59:1–6. doi:10.1007/s11103-005-2159-5

    Article  PubMed  CAS  Google Scholar 

  2. Latif MA, Rahman MM, Kabir MS, Ali MA, Islam MT, Rafii MY (2011) Genetic diversity analyzed by quantitative traits among rice (Oryza sativa L.) genotypes resistant to blast disease. Afr J Microbiol Res 5(25):4383–4391. doi:10.5897/AJMR11.492

    Google Scholar 

  3. Selvaraj CI, Nagarajan P, Thiyagarajan K, Bharathi M, Rabindran R (2011) Studies on heterosis and combining ability of well known blast resistant rice genotypes with high yielding varieties of rice (Oryza sativa L.). Int J Plant Breed Genet 5(2):111–129. doi:10.3923/ijpbg.2011.111.129

    Article  Google Scholar 

  4. Khush GS, Jena KK (2009) Current status and future prospects for research on blast resistance in rice (Oryza sativa L.). In: Wang GL, Valent B (eds) Advances in genetics, genomics and control of rice blast disease. Springer, Dordrecht, pp 1–10. doi:10.1007/978-1-4020-9500-9

    Chapter  Google Scholar 

  5. Kwon JO, Lee SG (2002) Real-time micro-weather factors of growing field to the epidemics of rice blast. Res Plant Dis 8:199–206 (in Korean, English abstract)

    Article  Google Scholar 

  6. Li YB, Wu CJ, Jiang GH, Wang LQ, He YQ (2007) Dynamic analyses of rice blast resistance for the assessment of genetic and environmental effects. Plant Breeding 126:541–547. doi:10.1111/j.1439-0523.2007.01409.x

    Article  Google Scholar 

  7. Scheuermann KK, Raimondi JV, Marschalek R, de Andrade A, Wickert E (2012) Magnaporthe oryzae genetic diversity and its outcomes on the search for durable resistance. Mol Basis Plant Genet Divers 331–356. doi: 10.5772/33479

  8. Latif MA, Badsha MA, Tajul MI, Kabir MS, Rafii MY, Mia MAT (2011) Identification of genotypes resistant to blast, bacterial leaf blight, sheath blight and tungro and efficacy of seed treating fungicides against blast disease of rice. Sci Res Essays 6(13):2804–2811. doi:10.5897/SRE11.315

    Google Scholar 

  9. Wang GL, Mackill DJ, Bonman JM, McCouch SR, Champoux MC, Nelson RJ (1994) RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics 136:1421–1434

    PubMed  CAS  Google Scholar 

  10. Jeger MJ, Pautasso M, Holdenrieder O, Shaw MW (2007) Modelling disease spread and control in networks: implications for plant sciences. New Phytol 174:279–297

    Article  PubMed  Google Scholar 

  11. Abe S (2004) Breeding of a blast resistant multiline variety of rice, Sasanishiki BL. Jpn Agric Res Q 38:149–154

    Google Scholar 

  12. Zhu YY, Chen HR, Fan JH, Wang YY, Li Y, Chen JB, Fan JX, Yang SS, Hu LP, Leung H, Mew TW, Teng PS, Wang ZH, Mundt CC (2000) Genetic diversity and disease control in rice. Nature 406:718–722. doi:10.1038/35021046

    Article  PubMed  CAS  Google Scholar 

  13. Bonman JM, Khush GS, Nelson RJ (1992) Breeding rice for resistance to pests. Ann Rev Phytopathol 30:507–528. doi:10.1146/annurev.py.30.090192.002451

    Article  Google Scholar 

  14. Dai L, Liu X, Xiao Y, Wang G (2007) Recent advances in cloning and characterization of disease resistance genes in rice. J Integr Plant Biol 49(1):112–119. doi:10.1111/j.1744-7909.2006.00413.x

    Article  CAS  Google Scholar 

  15. Manandhar HK, Lyngs Jorgensen HJ, Mathur SB, Smedegaard-Peterson V (1998) Suppression of rice blast by preinoculation with avirulent Pyricularia oryzae and the non-rice pathogen Bipolaris sorokiniana. Phytopathology 88:735–739. doi:10.1094/PHYTO.1998.88.7.735

    Article  PubMed  CAS  Google Scholar 

  16. Narayanan NN, Baisakh N, Vera Cruz CM, Gnanamanickam SS, Datta K, Datta SK (2002) Molecular breeding for the development of blast and bacterial blight resistance in rice cv. IR50. Crop Sci 42(6):2072–2079. doi:10.2135/cropsci2002.2072

    Article  CAS  Google Scholar 

  17. Wang B, Zhu C, Liu X, Wang W, Ding H, Jiang M, Li G, Liu W, Ya F (2011) Fine mapping of qHD4-1, a QTL controlling the heading date, to a 20.7-kb DNA fragment in rice (Oryza sativa L.). Plant Mol Biol Rep 29:702–713. doi:10.1007/s11105-010-0278-x

    Article  Google Scholar 

  18. Swamy BPM, Sarla N (2011) Meta-analysis of yield QTLS derived from inter-specific crosses of rice reveals consensus regions and candidate genes. Plant Mol Biol Rep 29(3):663–680. doi:10.1007/s11105-010-0274-1

    Article  Google Scholar 

  19. Zhao F, Cai Z, Hu T, Yao H, Wang L, Dong N, Wang B, Ru Z, Zhai W (2010) Genetic analysis and molecular mapping of a novel gene conferring resistance to rice stripe virus. Plant Mol Biol Rep 28(3):512–518. doi:10.1007/s11105-009-0178-0

    Article  Google Scholar 

  20. Hayashi K, Yoshida H, Ashikawa I (2006) Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes. Theor Appl Genet 113:251–260. doi:10.1007/s00122-006-0290-6

    Article  PubMed  CAS  Google Scholar 

  21. Latif MA, Rafii MY, Rahman MM, Talukdar MRB (2011) Microsatellite and minisatellite markers based DNA fingerprinting and genetic diversity of blast and ufra resistant genotypes. CR Biol 334:282–289. doi:10.1016/j.crvi.2011.02.003

    Article  CAS  Google Scholar 

  22. Werner K, Friedt W, Ordon F (2005) Strategies for pyramiding resistance genes against the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2). Mol Breed 16:45–55. doi:10.1007/s11032-005-3445-2

    Article  CAS  Google Scholar 

  23. Zhang YS, Luo LJ, Xu CG, Zhang QF, Xing YZ (2006) Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice (Oryza sativa). Theor Appl Genet 113:361–368. doi:10.1007/s00122-006-0305-3

    Article  PubMed  CAS  Google Scholar 

  24. Suwarno, Lubis E, Soenarjo E (2001) Breeding of upland rice for resistance to blast in Indonesia. In: Kardin MK, Prasadja I, Syam M (eds) Upland rice research in Indonesia current status and future direction. Central Research Institute for Food Crops, Agency for Agricultural Research and Development, Bogor, pp 7–14

    Google Scholar 

  25. Lopez-Gerena J (2006) Mapping QTL controlling durable resistance to rice blast in the cultivar Oryzica Llanos 5. Ph.D. thesis, Universidad del Valle, Plant Pathology College of Agriculture, Cali, Colombia and Kansas State University, Manhatten, KS, USA

  26. Talukder ZI, Tharreau D, Price AH (2004) Quantitative trait loci analysis suggests that partial resistance to rice blast is mostly determined by race-specific interactions. New Phytol 162:197–209. doi:/10.1111/j.1469-8137.2004.01010.x/pdf

    Article  CAS  Google Scholar 

  27. Han SS, Ryu JD, Shim HS, Lee SW, Hong YK, Cha KH (2001) Breakdown of resistant cultivars by new race KI-1117a and race distribution of rice blast fungus during 1999–2000 in Korea. Res Plant Dis 7:86–92 (in Korean, English summary)

    Google Scholar 

  28. Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C, Yang F, Chu Z, Wang G, White FF, Yin Z (2005) R gene expression induced by a type-II effector triggers disease resistance in rice. Nature 435:1122–1125. doi:10.1038/nature03630

    Article  PubMed  CAS  Google Scholar 

  29. Khush GS (1989) Multiple disease and insect resistance for increased yield stability in rice. In: Progress in irrigated rice research. International Rice Research Institute, Manila, Philippines, pp 79–92. Record Number 19901144320

  30. Khush GS (1978) Breeding methods and procedures employed at IRRI for developing rice germ plasm with multiple resistance to diseases and insects. In: Symposium on methods of crop breeding. Tropical Agricultural Research Series, vol 11, pp 69–76

  31. Jensen NF (1970) A diallel selective mating system for cereal breeding. Crop Sci 10(6):629–635

    Article  Google Scholar 

  32. Allard RW (1960) Principles of plant breeding. Wiley, New York

    Google Scholar 

  33. Allard RW (1999) Principles of plant breeding, 2nd edn. Wiley, New York

    Google Scholar 

  34. Xi ZY, He FH, Zeng RZ, Zhang ZM, Ding XH, Li WT, Zhang GQ (2008) Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.). Genome 49(5):476–484. doi:10.1139/g06-005

    Article  CAS  Google Scholar 

  35. Joseph M, Gopalakrishnan S, Sharma RK, Singh VP, Singh AK, Singh NK, Mohapatra T (2004) Combining bacterial blight resistance and Basmati quality characteristics by phenotypic and molecular marker-assisted selection in rice. Mol Breed 13(4):377–387. doi:10.1023/B:MOLB.0000034093.63593.4c

    Article  CAS  Google Scholar 

  36. Toojinda T, Tragoonrung S, Vanavichit A, Siangliw JL, Pa-In N, Jantaboon J, Siangliw M, Fukai S (2005) Molecular breeding for rainfed lowland rice in the Mekong region. Plant Prod Sci 8(3):330–333

    Article  CAS  Google Scholar 

  37. Sreewongchai T, Toojinda T, Thanintorn N, Kosawang C, Vanavichit A, Tharreau D, Sirithunya P (2010) Development of elite indica rice lines with wide spectrum of resistance to Thai blast isolates by pyramiding multiple resistance QTLs. Plant Breed 129:176–180. doi:10.1111/j.1439-0523.2009.01669.x

    Article  CAS  Google Scholar 

  38. Fujimaki H (1979) Recurrent selection by using male sterility for rice improvement. Jpn Agric Res Q 13(3):153–156

    Google Scholar 

  39. Guimarães EP, Correa-Victoria F (2000) Use of recurrent selection for develop resistance Pyricularria grisea Sacc. on rice. In: Guimarães EP (ed) Advances in rice population improvement. Embrapa Rice and Beans, Santo Antonio de Goias, pp 165–175

    Google Scholar 

  40. Courtois B, Nelson R, Roumen E (1997) Creation of a gene pool to improve Piricularia on Resistance partial secanano rice through recurrent selection. In: Guimarães EP (ed) Recurrent selection in rice. International Center for Tropical Agriculture, Cali, pp 189–202

    Google Scholar 

  41. Rangel PHN, Cordeiro ACC, Lopes SIG, de Morais OP, Brondani C, Brondani RPV, Yokoyama S, Schiocchet M, Bacha R, Ishy T (2005) Advances in population improvement of irrigated rice in Brazil. In: Guimarães EP (ed) Population improvement, a way of exploiting rice genetic resources in Latin America. Food and Agriculture Organization of the United Nations (FAO), Rome, pp 145–186

    Google Scholar 

  42. de Badan AC, Guimarães EP, Ramis C (2005) Genetic gain for resistance to blast in a rice population. In: Guimarães EP (ed) Population improvement, a way of exploiting rice genetic resources in Latin America. Food and Agriculture Organization of the United Nations (FAO), Rome, pp 299–329

    Google Scholar 

  43. Shu QY (2009) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 425–427

    Google Scholar 

  44. Khambanonda P (1978) Mutation breeding in rice for high yield and better blast resistance. Thai Agric Sci 11(4):263–271. ISSN: 0049-3589

    Google Scholar 

  45. Kaur S, Padmanabhan SY, Rao M (1975) Induction of resistance to blast disease (Pyricularia oryzae) in the high yielding variety, Ratna (IRE × TKM 6). In: Proceedings of the IAEA research coordination Geoling, Ames, Iowa, pp 141–145

  46. Zhang MX, Xu JL, Luo RT, Shi De, Li ZK (2003) Genetic analysis and breeding use of blast resistance in a japonica rice mutant R917. Euphytica 130(1):71–76. doi:10.1023/A:1022380626371

    Article  CAS  Google Scholar 

  47. Gangadharan C, Mathur SC (1976) Di-ethyl sulphate induced blast resistant mutants in rice variety Mtu. 17. Sci Cult 42(4):226–228

    Google Scholar 

  48. Hadzim K, Ajimilah NH, Othman O, Arasu NT, Latifah A, Saad A (1988) Mutant Mahsuri: Baka untuk beras bermutu. Teknol Padi 4:7–13 (English abstract)

    Google Scholar 

  49. Azlan S, Alias I, Saad A, Habibuddin H (2004) Performance of potential mutant lines of MR 180. In: Sivaprasagam et al. (eds) Modern rice farming. Proceedings of the international rice conference Serdang, Malaysia: MARDI, 2003, pp 293–296

  50. Mohamad O, Nazir BM, Alias I, Azlan S, Abdul Rahim H, Abdullah MZ, Othman O, Hadzim K, Saad A, Habibuddin H, Golam F (2006) Development of improved rice varieties through the use of induced mutations in Malaysia. Plant Mutat Rep 1(1):27–33. ISSN: 1011-260X

    Google Scholar 

  51. Shu Q, Wu D, Xia Y (1997) The most widely cultivated rice variety ‘Zhefu 802’ in China and its geneology. MBNL 43:3–5

    Google Scholar 

  52. Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135(2):187–204. doi:10.1023/B:EUPH.0000014914.85465.4f

    Article  Google Scholar 

  53. Kiyosawa S (1982) Gene analysis for blast resistance. Oryza 18:196–203

    Google Scholar 

  54. Koizumi S (2007) Durability of resistance to rice blast disease. JIRCAS Working Rep 53:1–10

    CAS  Google Scholar 

  55. Korinsaka S, Sirithunyab P, Meakwatanakarnd P, Sarkarunge S, Vanavichitc A, Toojindaa T (2011) Changing allele frequencies associated with specific resistance genes to leaf blast in backcross introgression lines of Khao Dawk Mali 105 developed from a conventional selection program. Field Crops Res 122:32–39. doi:10.1016/j.fcr.2011.02.005

    Article  Google Scholar 

  56. Liu WG, Jin SJ, Zhu XY, Wang F, Li JH, Liu ZR, Liao YL, Zhu MS, Huang HJ, Liu YB (2008) Improving blast resistance of a thermo-sensitive genic male sterile rice line GD-8S by molecular marker-assisted selection. Rice Sci 15(3):179–185. doi:10.1016/S1672-6308(08)60040-2

    Article  Google Scholar 

  57. Nottegham JL (1993) Durable resistance to blast disease. In: Jacobs Th, Parlievliet JE (eds) Durability of disease resistance. Kluwer, London, pp 125–134

    Chapter  Google Scholar 

  58. van der Plank JE (1975) Horizontal resistance: six suggested projects in relation to blast disease in rice. In: Horizontal resistant to blast disease in rice, pp 21–26. CIAT Serie, CE-9, Cali, Colombia

  59. Bidaux JM (1976) IRAT. Rice pathology. Annual report BP 636, Bouake, Ivory Coast

  60. Villareal RL (1980) Slow leaf blast infection in rice (Oryza sativa L.) p 123. Ph.D thesis, Pennsylvania University, USA

  61. Centre International de Agricultural Tropical (CIAT) (1982) Annual Report. P128, Cali, Colombia

  62. Leung H, Zhu Y, Resulla-Molina I, Fan JX, Chen H, Pangga I, Vera Cruz C, Mew TW (2003) Using genetic diversity to achieve sustainable rice disease management. Plant Dis 87(10):1156–1169 (Publication no. D-2003-0808-01F)

    Article  Google Scholar 

  63. Zhu YY, Fang H, Wang YY, Fan JX, Yang SS, Mew TW, Mundt CC (2005) Panicle blast and canopy moisture in rice cultivar mixtures. Phytopathology 95:433–438. doi:10.1094/PHYTO-95-0433

    Article  PubMed  Google Scholar 

  64. Higashi T, Sato H, Horisue N, Fujimaki H (1981) Breeding of isogenic lines for blast resistance in rice. 1. Comparison of characters between B4F2 lines and their recurrent, “Nipponbare”. Breed Sci 31((Supp. 1)):46 (in Japanese)

    Google Scholar 

  65. Horisue N, Higashi T, Sato H, Koizumi S (1984) Breeding of isogenic lines for blast resistance in rice. 2. Agronomical characteristics of kanto-IL1-14. Breed Sci 34((Supp. 1)):316 (in Japanese)

    Google Scholar 

  66. Nakajima T (1994) Mechanism of rice blast disease control by multilines. J Agric Sci 49:390–395 (in Japanese)

    Google Scholar 

  67. Matsunaga K (1996) Breeding of a multiline rice cultivar “Sasanishiki BL” and its use for control of blast disease in Miyagi prefecture. J Agric Sci 51:173–176 (in Japanese)

    Google Scholar 

  68. Ise K (1990) Effect of mixing planting of near isogenic lines of ‘Nippobare’ rice to reduce blast disease. Breed Sci 40(Supp. 1):288 (in Japanese)

    Google Scholar 

  69. Koizumi S, Fuji S (1994) Variation of field resistance to leaf blast in a rice strain, Chubu 32, due to isolates of the pathogen. Res Bull Aichi Agric Res Cent 27:85–93

    Google Scholar 

  70. Koizumi S, Tani T, Fuji S (1996) Control of rice blast by multilines. J Agric Sci 51:89–93 (in Japanese)

    Google Scholar 

  71. Nakajima T, Sonoda R, Yaegashi H (1996) Effect of a multiline of rice cultivar Sasanishiki and its isogenic lines on suppressing rice blast disease. Ann Phytopathol Soc Jpn 62(3):227–233

    Article  Google Scholar 

  72. Nakajima T, Sonoda R, Yaegashi H, Saito H (1996) Factors related to suppression of leaf blast disease with a multiline of rice cultivar Sasanishiki and its isogenic lines. Ann Phytopathol Soc Jpn 62(4):360–364

    Article  Google Scholar 

  73. Tsuji H, Sasahara M, Kanno H, Ohba A, Kanagawa M (1999) Change of pathogenic races of rice blast fungus on multiline cultivars ‘Sasanishiki BL’ in recent years. Ann Rep Plant Prot North Jpn 50:16–20 (in Japanese)

    Google Scholar 

  74. Ashizawa T, Zenbayashi K, Koizumi S (2001) Development of a simulation model for forecasting rice blast epidemics in multiline. Jpn J Phytopathol 67:194 (abstract in Japanese)

    Google Scholar 

  75. Ishizaki K, Hoshi T, Abe S, Sasaki Y, Kobayashi K, Kasaneyama H, Matsui T, Azuma S (2005) Breeding of blast resistant isogenic lines in rice variety “Koshihikara” and evaluation of their characters. Breed Sci 55(3):371–377. doi:10.1270/jsbbs.55.371

    Article  Google Scholar 

  76. Lin XH, Zhang DP, Xie YF, Gao HP, Zhang QF (1995) Identifying and mapping a new gene for bacterial blight resistance in rice based on RFLP markers. Phytopathology 86:1156–1159 Publication No. P-1996-0913-01R

    Article  Google Scholar 

  77. Koide Y, Kobayashi N, Xu D, Fukuta Y (2009) Resistance genes and selection DNA markers for blast disease in rice (Oryza sativa L.). JARQ 43(4):255–280. http://www.jircas.affrc.go.jp

    Google Scholar 

  78. Liu G, Lu G, Zeng L, Wang GL (2002) Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6. Mol Genet Genomics 267(4):472–480. doi:10.1007/s00438-002-0677-2

    Article  PubMed  CAS  Google Scholar 

  79. Zhu X, Yang Q, Yang J, Lei C, Wang J, Ling Z (2004) Differentiation ability of monogenic lines to Magnaporthe grisea in indica rice. Acta Phytopathol Sin 34:361–368 (in Chinese with English abstract)

    Google Scholar 

  80. Jeung J, Kim B, Cho Y, Han S, Moon H, Lee Y, Jena K (2007) A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. Theor Appl Genet 115(8):1163–1177. doi:10.1007/s00122-007-0642-x

    Article  PubMed  CAS  Google Scholar 

  81. Liu X, Yang Q, Lin F, Hua L, Wang C, Wang L, Pan Q (2007) Identification and fine mapping of Pi39(t), a major gene conferring the broad-spectrum resistance to Magnaporthe oryzae. Mol Genet Genomics 278(4):403–410. doi:10.1007/s00438-007-0258-5

    Article  PubMed  CAS  Google Scholar 

  82. Li W, Lei C, Cheng Z, Jia Y, Huang D, Wang J, Wang J, Zhang X, Su N, Guo X, Zhai H, Wan J (2008) Identification of SSR markers for a broad-spectrum blast resistance gene Pi20(t) for marker-assisted breeding. Mol Breeding 22(1):141–149. doi:10.1007/s11032-008-9163-9

    Article  CAS  Google Scholar 

  83. Yang JY, Chen S, Zeng LX, Li YL, Chen Z, Li CY, Zhu XY (2008) Race specificity of major rice blast resistance genes to Magnaporthe grisea isolates collected from indica rice in Guangdong, China. Rice Sci 15:311–318

    Article  Google Scholar 

  84. Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M (2008) Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics 180(4):2267–2276. doi:10.1534/genetics.108.095034

    Article  PubMed  CAS  Google Scholar 

  85. Hayashi K, Yoshida H (2009) Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J 57(3):413–425. doi:10.1111/j.1365-313X.2008.03694.x

    Article  PubMed  CAS  Google Scholar 

  86. Zapata-Arias FJ, Torrizo LB, Ando A (1995) Current developments in plant biotechnology for genetic improvement: the case of rice (Oryza sativa L.). World J Microbiol Biotechnol 11(4):393–399. doi:10.1007/BF00364614

    Article  CAS  Google Scholar 

  87. Larkin PJ, Scowcroft WR (1981) Somaclonal variation-a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60(4):197–214. doi:10.1007/BF02342540

    Article  Google Scholar 

  88. El-Kazzaz AA (2001) Inheritance of resistance to Fusarium oxysporum f.sp. lycopersici in F2 tomato plants via tissue culture. Egypt J Genet Cytol 30:51–59

    Google Scholar 

  89. El-Kazzaz AA, EL-Mougy NS (2001) Inheritance of disease resistance in cucumber plants to root rot caused by Fusarium solani using tissue culture techniques. Egypt J Phytopathol 29:57–68

    Google Scholar 

  90. El-Kazzaz AA, Ashour AMA (2004) Genetically resistant cucumber plants to wilt pathogen via tissue cultures. Egypt J Phytopathol 32:1–10

    Google Scholar 

  91. Pachon JG (1989) Evaluation of the potential use of somaclonal variation in the improvement of some characters of economic importance in rice (Oryza sativa L.). Pontificia Universidad Javeriana, Bogota, p 94

    Google Scholar 

  92. Bouharmon J, Dekeyser A, Van Sint Jan V, Dogbe YS (1991) Application of somaclonal variation and in vitro selection to rice improvement. In: Rice genetics II, proceedings of the second international rice genetics symposium, 14–18 May 1990, International Rice Research Institute, Philippines, pp 271–277

  93. Araújo LG, Prabhu AS, Freire AB (1997) Variação somaclonal na cultivar de arroz IAC-47 para resistência à brusone. Fitopatol Bras Brasília 22(2):125–130

    Google Scholar 

  94. Evans DA, Sharp WR, Medina-Filho HP (1984) Somaclonal and gametoclonal variation. Am J Bot 71:759–774. http://www.jstor.org/stable/2443467

    Google Scholar 

  95. de Araújo GL, Prabhu AS (2002) Blast resistant somaclones of aromatic rice cultivar Basmati-370. Pesq Agropec Bras Brasília 37(8):1127–1135. doi:10.1590/S0100-204X2002000800010

    Article  Google Scholar 

  96. Araújo GL, Prabhu AS, Freire AB (2000) Development of blast resistant somaclones of the upland rice cultivar Araguaia. Pesq Agropec Bras Brasília 35(2):357–367. doi:10.1590/S0100-204X2000000200015

    Article  Google Scholar 

  97. El-Kazzaz AA, Hanafy MS, Abdel-Kader MM (2009) In vitro selection of resistant rice plants against rice blast caused by Pyricularia oryzae via tissue culture technique. Arch Phytopathol Plant Prot 42(9):847–856. doi:10.1080/03235400701492715

    Article  CAS  Google Scholar 

  98. McCouch SR, Nelson RJ, Tohme J, Zeigler RS (1994) Mapping of blast resistance gens in rice. In: Zeigler RS, Leong SA, Teng PS (eds) Rice blast disease. International Rice Research Institute, CAB International, Wallingford, pp 167–186. ISBN 0851989357

  99. Paterson AH, Damon S, Hewitt JD, Zamir D, Rabmowitch HD, Lincoln SE, Lander ES, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations and environments. Genetics 127(1):181–197

    PubMed  CAS  Google Scholar 

  100. Abenes MLP, Angeles ER, Khush GS, Huang N (1993) Selection of bacterial blight resistant plants in the F2 generation via their linkage to molecular markers. Rice Genet Newsl 10:120–123

    Google Scholar 

  101. McCouch SR, Kochert G, Yu ZH, Wang ZY, Coffiman R, Khush GS, Tanksley SD (1988) Molecular mapping of rice chromosomes. Theor Appl Genet 76(6):815–829. doi:10.1007/BF00273666

    Article  CAS  Google Scholar 

  102. Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu KS, Xiao JH, Yu ZH, Ronald PC, Harrington SE, Second G, McCouch S, Tanksley SD (1994) Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138(4):1251–1274

    PubMed  CAS  Google Scholar 

  103. Mackill DJ, Salam MA, Wang ZY, Tanksley SD (1993) A major photoperiod sensitivity gene tagged with RFLP and isozyme markers in rice. Theor Appl Genet 85(5):536–540. doi:10.1007/BF00220910

    Article  CAS  Google Scholar 

  104. Inukai T, Mackill DJ, Bonmann JM, satkarung S, Zeigler R, Nelson R, takamure I, Kinoshita T, takamure I, Kinoshita T (1992) Blast resistance genes Pi-2(t) and Pi-z may be allelic. Rice Genet Newsl 9:90–92

    Google Scholar 

  105. van der Plank JE (1968) Disease resistance in plants. Academic Press, New York

    Google Scholar 

  106. Ou SH, Nuque FL, Bandong JM (1975) Relationship between qualitative and quantitative resistance in rice blast. Phytopathology 65:1315–1316. ISSN: 0031-949X

    Google Scholar 

  107. Parlevliet JE (1979) Components of resistance that reduce the rate of epidemic development. Annu Rev Phytopathol 17:203–222. doi:10.1146/annurev.py.17.090179.001223

    Article  Google Scholar 

  108. McDonald B, Linde C (2002) The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124(2):163–180. doi:10.1023/A:1015678432355

    Article  CAS  Google Scholar 

  109. Roumen EC (1994) A strategy for accumulating genes for partial resistance to blast disease in rice within a conventional breeding program. In: Zeigler RS, Leong S, Teng P (eds) Rice blast disease. CAB International/IRRI, Madison, pp 245–265

    Google Scholar 

  110. Kongprakhon P, Cuesta-Marcos A, Hayes PM, Hongtrakul V, Sirithunya P, Toojinda T, Sangduen N (2010) Four QTL in rice associated with broad spectrum resistance to blast isolates from rice and barley. J Phytopathol 158(2):125–131. doi:10.1111/j.1439-0434.2009.01587.x

    Article  CAS  Google Scholar 

  111. Inukai T, Vales MI, Hori K, Sato K, Hayes PM (2006) RMo1 confers blast resistance in barley and is located within the complex of resistance genes containing Mla, a powdery mildew resistance gene. Mol Plant Microbe Interact 19(9):1034–1041. doi:10.1094/MPMI-19-1034

    Article  PubMed  CAS  Google Scholar 

  112. Huang N, Angeles ER, Domingo J, Magpantay G, Singh S, Bennett J, Khush GS (1997) Pyramiding of bacterial blight resistance genes via DNA marker-aided selection in rice. Theor Appl Genet 95(3):313–320. doi:10.1007/s001220050565

    Article  CAS  Google Scholar 

  113. Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T (1999) The Pib gene for rice blast resistance belongs to the nucleotide binding and leucinerice repeat class of plant disease resistance genes. Plant J 19(1):55–64. doi:10.1046/j.1365-313X.1999.00498.x

    Article  PubMed  Google Scholar 

  114. Wu JL, Sinha PK, Varivar M, Zheng KL, Leach JE, Courtois B, Leung H (2004) Association between molecular markers and blast resistance in an advanced backcross population of rice. Theor Appl Genet 108(6):1024–1032. doi:10.1007/s00122-003-1528-1

    Article  PubMed  CAS  Google Scholar 

  115. Bryan GT, Wu KS, Farrall L, Hershey HP, McAdams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12(11):2033–2046. doi:10.1105/tpc.12.11.2033

    PubMed  CAS  Google Scholar 

  116. Sharma TR, Madhav MS, Singh BK (2005) High-resolution mapping, cloning and molecular characterization of the Pi-kh gene of rice, which confers resistance to Magnaporthe grisea. Mol Gen Genomics 274(6):569–578. doi:10.1007/s00438-005-0035-2

    Article  CAS  Google Scholar 

  117. Lin F, Liu Y, Wang L, Liu X, Pan Q (2007) A high-resolution map of the rice blast resistance gene Pi15 constructed by sequence ready markers. Plant Breed 126(3):287–290. doi:10.1111/j.1439-0523.2007.01352.x

    Article  CAS  Google Scholar 

  118. Zhou E, Jia Y, Lee FN, Lin M, Jia M, Correll JC, Cartwright RD (2005) Evidence of the instability of a telomeric Magnaporthe grisea avirulence gene AVR-Pita in the US. Phytopathology 95(6):118

    Google Scholar 

  119. Qu SH, Liu GF, Zhou B, Bellizzi M, Zeng LR, Dai LY, Han B, Wang GL (2006) The broad-spectrum blast resistance gene Pi9 encodes an NBS-LRR protein and is a member of a multigene family in rice. Genetics 172(3):1901–1914. doi:10.1534/genetics.105.044891

    Article  PubMed  CAS  Google Scholar 

  120. Chen J, Henny R, Devanand P, Chao C (2006) AFLP analysis of nephthytis (Syngonium podophyllum Schott) selected from somaclonal variants. Plant Cell Rep 24(12):743–749. doi:10.1007/s00299-005-0032-2

    Article  PubMed  CAS  Google Scholar 

  121. Liu X, Lin F, Wang L, Pan Q (2007) The in silico map-based cloning of Pi36, a rice coiledcoiled-nucleotide-binding site-leucine-rich repeat gene that confers race specific resistance to the blast fungus. Genetics 176:2541–2549

    Article  PubMed  CAS  Google Scholar 

  122. Zhuang JY, Chai RY, Ma WB, Lu J, Jin MZ, Zheng KL (1997) Genetic analysis of the blast resistance gene at vegetative and reproductive stages in rice. Rice Genet Newsl 14:62–64

    Google Scholar 

  123. Wu KS, Martinez C, Lentini Z, Tohme J, Chumley FG, Scolnik PA, Valent B (1996) Cloning a blast resistance gene by chromosome walking. In: Khush GS (ed) Rice genetics III. Proceeding of the third international rice genetics symposium. International Rice Research Institute, Manila, Philippines, pp 669–674

  124. Tabien RE, Li Z, Paterson AH, Marchetti MA, Stansel JW, Pinson SRM (2000) Mapping of four major rice blast resistance genes from ‘Lemont’ and ‘Teqing’ and evaluation of their combinatorial effect for field resistance. Theor Appl Genet 101(8):1215–1225. doi:10.1007/s001220051600

    Article  CAS  Google Scholar 

  125. Inukai T, Nelson RJ, Zeigler RS, Sarkarung S, Mackill DJ (1994) Allelism of blast resistance genes in near-isogenic lines of rice. Phytopathology 84(11):1278–1283. doi:10.1094/Phyto-84-1278

    Article  Google Scholar 

  126. Ahn SN, Kim YK, Hong HC, Han SS, Choi HC, McCouch SR, Moon HP (1997) Mapping of genes conferring resistance to Korean isolates of rice blast fungus using DNA markers. Korean J Breed 29(4):416–423

    Google Scholar 

  127. Sallaud C, Lorieux M, Roumen E, Tharreau D, Berruyer R, Garsmeur SO, Ghesquiere A, Notteghem JL (2003) Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theor Appl Genet 106(5):794–803. doi:10.1007/s00122-002-1088-9

    PubMed  CAS  Google Scholar 

  128. Zheng KL, Zhuang JY, Lu J, Qian HR, Lin HX (1996) Identification of DNA markers tightly linked to blast resistance genes in rice. In: Khush GS (ed) Rice genetics III. Proceeding of the third international rice genetics symposium. International Rice Research Institute, Manila, Philippines, pp 565–569

  129. Jia YL, Wang ZH, Singh P (2002) Development of dominant rice blast Pi-ta resistance gene markers. Crop Sci 42:2145–2149

    Article  CAS  Google Scholar 

  130. Nakamura S, Asakawa S, Ohmido N, Fukui K, Shimizu N, Kawasaki S (1997) Construction of an 800-kb contig in the near-centromeric region of the rice blast resistance gene Pi-ta2 using a highly representive rice BAC library. Mol Gen Genet 254(6):611–620. doi:10.1007/s004380050459

    Article  PubMed  CAS  Google Scholar 

  131. Fjellstrom R, Conaway-Bormans CA, McClung AM, Marchetti MA, Shank AR, Park WD (2004) Development of DNA markers suitable for marker assisted selection of three Pi genes conferring resistance to multiple Pyricularia grisea pathotypes. Crop Sci 44(5):1790–1798. doi:10.2135/cropsci2004.1790

    Article  CAS  Google Scholar 

  132. Hayashi N, Ando I, Naito H (1996) Gene analysis of a new blast resistance in the paddy rice variety, Aichi Asahi. Breed Sci 46(Suppl 2):168 (in Japanese)

    Google Scholar 

  133. Hayashi N, Ando I, Imbe T (1998) Identification of a new resistance gene to a Chinese blast fungus isolate in the Japanese rice cultivar Aichi Asahi. Phytopathology 88:822–827 (Publication no. P-1998-0622-02R)

    Article  PubMed  CAS  Google Scholar 

  134. Iwata N (1997) Registration of new gene symbols. Rice Genet Newsl 14:9–11

    Google Scholar 

  135. Imbe T, Ora S, Yanoria MJT, Tsunematsu H (1997) A new gene for blast resistance in rice cultivar, IR24. Rice Genet Newsl 14:60–62

    Google Scholar 

  136. Liu XQ, Wang L, Chen S, Lin F, Pan QH (2005) Genetic and physical mapping of Pi36(t), a novel rice blast resistance gene located on rice chromosome 8. Mol Gen Genet 274(4):394–401. doi:10.1007/s00438-005-0032-5

    Article  CAS  Google Scholar 

  137. Goto I, Jaw YL, Baluch AA (1981) Genetic studies on resistance of rice plant to blast fungus IV. Linkage analysis of four genes, Pi-a, Pi-k, Pi-z and Pi-i. Ann Phytopathol Soc Jpn 47:252–254

    Article  Google Scholar 

  138. Kwon SW, Cho Y, Kim Y et al (2008) Development of near-isogenic Japonica rice lines with enhanced resistance to Magnaporthe grisea. Mol Cells 25(3):407–416

    PubMed  CAS  Google Scholar 

  139. Chauhan S, Farman ML, Zhang HB, Leong A (2002) Genetic and physical mapping of a rice blast resistance locus, PiCO39(t), that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea. Mol Genet Genomics 267:603–612. doi:10.1007/s00438-002-0691-4

    Article  PubMed  CAS  Google Scholar 

  140. Tabien RE, Li Z, Paterson AH, Marchetti MA, Stansel JW, Pinson SRM (2002) Mapping QTLs for field resistance to the rice blast pathogen and evaluating their individual and combined utility in improved varieties. Theor Appl Genet 105(2–3):313–324. doi:10.1007/s00122-002-0940-2

    PubMed  CAS  Google Scholar 

  141. Zenbayashi K, Ashizawa T, Tani T, Koizumi S (2002) Mapping of the QTL (quantitative trait locus) conferring partial resistance to leaf blast in rice cultivar Chubu 32. Theor Appl Genet 104(4):547–552. doi:10.1007/s00122-001-0779-y

    Article  PubMed  CAS  Google Scholar 

  142. Gowda M, Roy-Barman S, Chattoo BB (2006) Molecular mapping of a novel blast resistance gene Pi38 in rice using SSLP and AFLP markers. Plant Breed 125(6):596–599. doi:10.1111/j.1439-0523.2006.01248.x

    Article  CAS  Google Scholar 

  143. Fujii K, Hayano-Saito Y, Shumiya A, Inoue M (1995) Genetical mapping based on the RFLP analysis for the panicle blast resistance derived from a rice parental line St. No. 1. Breed Sci 45:209 (In Japanese)

    Google Scholar 

  144. Fujii K, Hayano-Saito Y, Saito K, Sugiura N, Hayashi N, Tsuji T, Izawa T, Iwasaki M (2000) Identification of RFLP marker tightly linked to the panicle blast resistance gene Pb1 in rice. Breeding Sci 50(3):183–188. ISSN: 1344-7610, Record Number 20003009467

    Google Scholar 

  145. Chen DH, de la Viña M, Inukai T, Mackill DJ, Ronald PC, Nelson RJ (1999) Molecular mapping of the blast resistance gene, Pi44(t), in a line derived from a durably resistant rice cultivar. Theor Appl Genet 98:1046–1053. doi:10.1007/s001220051166

    Article  CAS  Google Scholar 

  146. Sharma HC, Crouch JH, Sharma KK, Seetharama N, Hash CT (2002) Applications of biotechnology for crop improvement: prospects and constraints. Plant Sci 163:381–395. doi:10.1016/S0168-9452(02)00133-4

    Article  CAS  Google Scholar 

  147. Rai AK, Kumar SP, Gupta SK, Gautam N, Singh NK, Sharma TR (2011) Functional complementation of rice blast resistance gene Pi-kh(Pi54) conferring resistance to diverse strains of Magnaporthe oryzae. J Plant Biochem Biotechnol 20(1):55–65. doi:10.1007/s13562-010-0026-1

    Article  CAS  Google Scholar 

  148. Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N (2000) Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet 100(7):1121–1128. doi:10.1007/s001220051395

    Article  CAS  Google Scholar 

  149. Kaji R, Ogawa T (1996) RFLP mapping of a blast resistance gene, Pi-km, in rice. Breed Sci 46(Suppl. 1):70 (In Japanese)

    Google Scholar 

  150. Ahn SN, Kim YK, Han SS (1996) Molecular mapping of a gene for resistance to a Korean isolate of rice blast. Rice Genet Newsl 13:74–75

    Google Scholar 

  151. Hayasaka H, Miyao A, Yano M, Matsunaga K, Sasaki T (1996) RFLP mapping of a rice blast resistance gene Pi-k. Breed Sci 46(Suppl. 2):68 (In Japanese)

    Google Scholar 

  152. Pan Q, Wang L, Ikehashi H, Taniska T (1996) Identification of a new blast resistance gene in the indica rice cultivar Kasalath using Japanese differential cultivars and isozyme markers. Phytopathology 86(10):1071–1075. doi:10.1094/Phyto-86-1071

    Article  Google Scholar 

  153. Goto I (1970) Genetic studies on the resistance of rice plant to the blast fungus I. Inheritance of resistance in crosses Sensho x H-79 and Imochishirazu x H-79. Ann Phytopathol Soc Jpn 36:304–312

    Article  Google Scholar 

  154. Shinoda H, Toriyama K, Yunoki T, Ezuka A, Sakurai Y (1971) Studies in the varietal resistance of rice to blast. 6. Linkage relationship of blast resistance genes. Bull Chugoku Agric Exp Stn Ser A 20:1–25 (in Japanese with English summary)

    Google Scholar 

  155. Goto I (1976) Genetic studies on resistance of rice plant to blast fungus II. Difference in resistance to the blast disease between Fukunishiki and its parental cultivar. Zenith Ann Phytopathol Soc Jpn 42:253–260

    Article  Google Scholar 

  156. Goto I (1988) Genetic studies on resistance of rice plant to blast fungus (VII). Blast resistance genes of Kuroka. Ann Phytopathol Soc Jpn 54:460–465

    Article  Google Scholar 

  157. Liu P, Zhu Z, Lu Y (2004) Marker-assisted selection in segregating generations of self-fertilizing crops. Theor Appl Genet 109(2):370–376. doi:10.1007/s00122-004-1636-6

    Article  PubMed  CAS  Google Scholar 

  158. Kinoshita T, Kiyosawa S (1997) Some considerations on linkage relationships between Pii and Piz in the blast resistance of rice. Rice Genet Newsl 14:57–59

    Google Scholar 

  159. Jeon JS, Chen D, Yi GH, Wang GL, Ronald PC (2003) Genetic and physical mapping of Pi5(t), a locus associated with broad-spectrum resistance to rice blast. Mol Genet Genomics 269(2):280–289. doi:10.1007/s00438-003-0834-2

    PubMed  CAS  Google Scholar 

  160. Inukai T, Nelson RJ, Zeigler RS, Sarkarung S, Mackill DJ, Bonman JM, Takamure I, Kinoshita T (1996) Genetic analysis of blast resistance in tropical rice cultivars using near-isogenic lines. In: Khush GS (ed) Rice genetics III, proceeding of the third international rice genetics symposium. International Rice Research Institute, Manila, Philippines, pp 447–455

  161. Pan QH, Hu ZD, Tanisaka T, Wang L (2003) Fine mapping of the blast resistance gene Pi15, linked to Pii on rice chromosome 9. Acta Bot Sinica 45(7):871–877

    CAS  Google Scholar 

  162. Ise K (1991) Linkage analysis of some blast resistance gene in rice, Oryza sativa L. Jpn J Breed 42(Suppl. 2):388–389 (In Japanese)

    Google Scholar 

  163. Berruyer R, Adreit H, Milazzo J, Gaillard S, Berger A, Dioh W, Lebrun MH, Tharreau D (2003) Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theor Appl Genet 107(6):1139–1147. doi:10.1007/s00122-003-1349-2

    Article  PubMed  CAS  Google Scholar 

  164. Pan QH, Tanisaka T, Ikehashi H (1995) Studies on the genetics and breeding of blast resistance in rice IV. Gene analysis for the blast resistance of a indica variety Kasalath. Breed Sci 45(Suppl. 2):170 [In Japanese]

    Google Scholar 

  165. Iwata N (1996) Registration of new gene symbols. Rice Genet Newsl 13:12–18

    Google Scholar 

  166. Wu JL, Fan YY, Li DB, Zheng KL, Leung H, Zhuang JY (2005) Genetic control of rice blast resistance in the durably resistant cultivar Gumei 2 against multiple isolates. Theor Appl Genet 111(1):50–56. doi:10.1007/s00122-005-1971-2

    Article  PubMed  CAS  Google Scholar 

  167. Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang GL (2006) The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant–Microbe Interact 19(11):1216–1228. doi: 10.1094/MPMI-19-1216

    Google Scholar 

  168. Hashimoto N, Higuchi K, Koiwa M, Yasuda K, Daigen M (1998) Selection of individual having Pi-z, the rice blast true resistance gene, using RFLP markers in resistance sensitive cross progeny. Breed Sci 48(Suppl. 2):109 (In Japanese)

    Google Scholar 

  169. Zhuang JY, Wu JL, Fan YY, Rao ZM, Zheng KL (2001) Genetic drag between a blast resistance gene and QTL conditioning yield trait detected in a recombinant inbred line population in rice. Rice Genet Newsl 18:69–70

    Google Scholar 

  170. Deng Y, Zhu X, Shen Y, He Z (2006) Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety. Theor Appl Genet 113(4):705–713. doi:10.1007/s00122-006-0338-7

    Article  PubMed  CAS  Google Scholar 

  171. Hayasaka H, Shimano T, Ebana K, Nagamura Y, Yano M, Sasaki T et al (1995) RFLP mapping of a rice blast resistance gene Pi-b. Breed Sci 45(Suppl. 1):92 (in Japanese)

    Google Scholar 

  172. Ballini E, Morel JB, Droc G, Price A, Courtois B, Notteghem JL, Tharreau D (2008) A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant Microbe Interact 21(7):859–868. doi:10.1094/MPMI-21-7-0859

    Article  PubMed  CAS  Google Scholar 

  173. Naqvi NI, Bonman JM, Makill DJ, Nelson RJ, Chattoo BB (1995) Identification of RAPD markers linked to major blast-resistance gene in rice. Mol Breed 1(4):341–348. doi:10.1007/BF01248411

    Article  CAS  Google Scholar 

  174. Naqvi NI, Chattoo BB (1996) Molecular genetic analysis and sequence characterized amplified region-assisted selection of blast resistance in rice. In: Khush GS (ed) Rice genetics III. Proceeding of the third international rice genetics symposium. International Rice Research Institute, Manila, Philippines, pp 570–576

  175. Fukuoka S, Okuno K (2001) QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice. Theor Appl Genet 103(2–3):185–190. doi:10.1007/s001220100611

    Article  CAS  Google Scholar 

  176. Fukuoka S, Okuno K, Kawase M (2007) Rice blast disease gene Pi21, resistance gene pi21 and utilization thereof. Patent WO/2007/000880

  177. Terashima T, Fukuoka S, Saka N, Kudo S (2008) Mapping of a blast field resistance gene Pi39(t) of elite rice strain Chubu 111. Plant Breed 127(5):485–489. doi:10.1111/j.1439-0523.2007.01451.x

    Article  Google Scholar 

  178. Chen XW, Li SG, Xu JC, Zhai WX, Ling ZZ, Ma BT, Wang YP, Wang WM, Cao G, Ma YQ, Shang JJ, Zhao XF, Zhou KD, Zhu LH (2004) Identification of two blast resistance genes in a rice variety. Digu J Phytopathol 152(2):77–85. doi:10.1046/j.1439-0434.2003.00803.x

    Article  CAS  Google Scholar 

  179. Zhou JH, Wang JL, Xu JC, Lei CL, Ling ZZ (2004) Identification and mapping of a rice blast resistance gene Pi-g(t) in the cultivar Guangchangzhan. Plant Pathol 53(2):191–196. doi:10.1111/j.0032-0862.2004.00986.x

    Article  CAS  Google Scholar 

  180. Lei CL, Huang DY, Li W, Wang JL, Liu ZL, Wang XT, Shi K, Cheng ZJ, Zhang X, Ling ZZ, Wan JM (2005) Molecular mapping of a blast resistance gene in an indica rice cultivar Yanxian No. 1. Rice Genet Newsl 22:76–77

    Google Scholar 

  181. Pan QH, Tanisaka T, Ikehashi H (1997) Studies on the genetics and breeding of blast resistance in rice VII. Gene analysis for the blast resistance of Indian native cultivar, Aus 373. Breed Sci 47(Suppl. 1):35 (in Japanese)

    Google Scholar 

  182. Barman SR, Gowda M, Venu RC, Chattoo BB (2004) Identification of a major blast resistance gene in the rice cultivar ‘Tetep’. Plant Breeding 123(3):300–302. doi:10.1111/j.1439-0523.2004.00982.x

    Article  CAS  Google Scholar 

  183. Nguyen T, Koizumi S, La T, Zenbayashi K, Ashizawa T, Yasuda N, Imazaki I, Miyasaka A (2006) Pi35(t), a new gene conferring partial resistance to leaf blast in the rice cultivar Hokkai 188. Theor Appl Genet 113(4):697–704. doi:10.1007/s00122-006-0337-8

    Article  PubMed  CAS  Google Scholar 

  184. Imbe T, Matsumoto S (1985) Inheritance of resistance of rice varieties to the blast fungus strains virulent to the variety “Reiho”. Jpn J Breed 35:332–339 (in Japanese)

    Google Scholar 

  185. Fukuta Y, Yanoria MJT, Mercado-Escueta D, Ebron LA, Fujita Y, Araki E, Khush GS (2004) Quantitative trait loci (QTL) reactions to rice blast isolates from Japan and the Philippines. In: Kawasaki S (ed) Rice blast: interaction with rice and control. Kluwer, Dordrecht, pp 113–121

    Google Scholar 

  186. Chen H, Wang S, Xing Y, Xu C, Hayes PM, Zhang Q (2003) Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley. Proc Natl Acad Sci USA 100(5):2544–2549. doi:10.1073/pnas.0437898100

    Article  PubMed  CAS  Google Scholar 

  187. Huang HJ, Tseng CS, Lai MH (2004) Identification and mapping of the QTL controlling resistance to blast (Magnaporthe grisea) disease in rice. J Genet Mol Biol 15:96–107 (in Chinese, English abstract)

    Google Scholar 

  188. Talukder ZI, McDonald AJS, Price AH (2005) Loci controlling partial resistance to rice blast do not show marked QTL x environment interaction when plant nitrogen status alters disease severity. New Phytol 168(2):455–464. doi:10.1111/j.1469-8137.2005.01507.x

    Article  PubMed  CAS  Google Scholar 

  189. Sato H, Takeuchi Y, Hirabayashi H, Nemoto H, Hirayama M, Kato H, Imbe T, Ando I (2006) Mapping QTLs for field resistance to rice blast in the Japanese upland rice variety Norin 12. Breed Sci 56:415–418. doi:10.1270/jsbbs.56.415

    Article  Google Scholar 

  190. Parlevliet JE (1988) Identification and evaluation of quantitative resistance. In: Leonard KJ, Fry WE (eds) Plant disease epidemiology: genetics, resistance, and management, vol 2. McGraw-Hill, New York, pp 215–247

    Google Scholar 

  191. Bonman JM, Ahn SW (1990) Proceedings of the international rice research conference. IRRI, Philippines

    Google Scholar 

  192. Utami DW, Moeljopawiro S, Septiningsih EM, McCouch SR (1999) Proceedings of the international programme on rice biotechnology, Phuket, Thailand

  193. Vales M (1989) Strategy for the improvement of the resistance to rice blast disease. In: International symposium on the role of the biology to resolve the food crisis in Africa. African network of biosciences, Yamoussoukro, Côte d’Ivoire (in French)

  194. Fabien RE, Li Z, Marchetti MA, Pinson SRM (1998) Proceedings of the 2nd international rice blast conference, Montpellier, France

  195. Yunoki T, Ezuka A, Sakurai Y, Shinoda H, Toriyama K (1970) Studies on the varietal resistance to rice blast. 3. Testing methods for field resistance on young seedling grown in greenhouse. Bull Chugoku Natl Agric Exp Stn E 6:1–19

    Google Scholar 

  196. Fukuoka S, Okuno K (1997) QTL analysis for field resistance to rice blast using RFLP markers. Rice Genet Newsl 14:99

    Google Scholar 

  197. Zenbayashi-Sawata K, Ashizawa T, Koizumi S (2005) Pi34-AVR Pi34: a new gene-for-gene interaction for partial resistance in rice to blast caused by Magnaporthe grisea. J Gen Plant Pathol 71(6):395–401. doi:10.1007/s10327-005-0221-4

    Article  CAS  Google Scholar 

  198. Correa-Victoria FJ, Zeigler RS (1995) Pathogenic variability in Pyricularia grisea at a rice blast “Hot Spot” breeding site in eastern Colombia. Plant Dis 77:1029–1035

    Article  Google Scholar 

  199. Young ND (1996) QTL mapping and quantitative disease resistance in plants.Annual Review. Phytopathology 34:470–501. doi:10.1146/annurev.phyto.34.1.479

    Article  Google Scholar 

  200. Silue′ D, Tharreau D, Notteghem JL (1992) Identification of Magnaprothe grisea avirulence genes to seven rice cultivars. Phytopathology 82:1462–1467. doi:10.1094/Phyto-82-1462

    Article  Google Scholar 

  201. Ashkani S, Rafii MY, Sariah M, Abdullah SNA, Rusli I, Harun AR, Latif MA (2011) Analysis of simple sequence repeat markers linked with blast disease resistance genes in a segregating population of rice (Oryza sativa). Genet Mol Res 10(3):1345–1355. doi:10.4238/vol10-3gmr1331

    Article  PubMed  CAS  Google Scholar 

  202. Ashkani S, Rafii MY, Rusli I, Sariah M, Abdullah SNA, Harun AR, Latif MA (2012) SSRs for marker-assisted selection for blast resistance in rice (Oryza sativa L.). Plant Mol Biol Rep 30:79–86. doi:10.1007/s11105-011-0315-4

    Article  Google Scholar 

  203. Kelly JD (1995) Use of RAPD markers in breeding for major gene resistance to plant pathogens. Hortic Sci 30:461–465

    Google Scholar 

  204. Stavely JR, Steadman JR, Coyne DP, Lindgren DT (1989) Belneb rust resistant-1 and -2 great northern dry bean germplasm. Hortic Sci 24:400–401

    Google Scholar 

  205. Fjellstrom RG, McClung AM, Shank R, Marchetti T (2003) Progress on development of microsatellite markers associated with rice blast resistance genes. In: The XI congress of international plant and animal genome, January 11–15, San Diego, CA, USA, p 154

  206. Johnson VA, Gibbons JW, Moldenhauer KAK, Wang Z, Jia Y (2003) Rice variety improvement using marker assisted selection In: Norman RJ, Meullenet JF (eds) Rice research studies 2002. Arkansas Agricultural Experiment Station

  207. Conaway-Bormans CA, Marchetti MA, Johnson CW, McClung AM, Park WD (2003) Molecular markers linked to the blast resistance gene Pi-z in rice for use in marker-assisted selection. Theor Appl Genet 107(6):1014–1020. doi:10.1007/s00122-003-1338-5

    Article  PubMed  CAS  Google Scholar 

  208. Jia Y (2003) Marker assisted selection for the control of rice blast disease. Pestic Outlook 14:150–152

    Article  Google Scholar 

  209. Fjellstrom R, McClung AM, Shank AR (2006) SSR markers closely linked to the Pi-z locus are useful for selection of blast resistance in a broad array of rice germplasm. Mol Breed 17:149–157. doi:10.1007/s11032-005-4735-4

    Article  CAS  Google Scholar 

  210. Rybka K, Miyamoto M, Ando I, Saito A, Kawasaki S (1997) High resolution mapping of the indica-derived rice blast resistance genes. II. Pi-ta2 and Pi-ta and a consideration of their origin. Mol Plant Microbe Interact 10(4):517–524. doi:10.1094/MPMI.1997.10.4.517

    Article  CAS  Google Scholar 

  211. Chen S, Wang L, Que Z, Pan R, Pan Q (2005) Genetic and physical mapping of Pi37(t), a new gene conferring resistance to rice blast in the famous cultivar St. No. 1. Theor Appl Genet 111(8):1563–1570. doi:10.1007/s00122-005-0086-0

    Article  PubMed  CAS  Google Scholar 

  212. Du PV, Loan LC, Sang ND (2007) Blast research in Mekong river delta of Vietnam. In: JIRCAS (Japan International Research Center for Agricultural Sciences, Tsukuba, Japan) working report 53, pp 53–63

  213. Soller M, Beckmann JS (1983) Genetic polymorphism in varietal identification and genetic improvement. Theor Appl Genet 67(1):25–33. doi:10.1007/BF00303917

    Article  Google Scholar 

  214. Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:567–569

    Article  CAS  Google Scholar 

  215. Khush GS, Bacalangco E, Ogawa T (1990) A new gene for resistance to bacterial blight from O. longistaminata. Rice Genet Newsl 7:121–122

    Google Scholar 

  216. Kloppers FJ, Pretorius ZA (1997) Effects of combinations amongst genes Lr13, Lr34 and Lr37 on components of resistance in wheat to leaf rust. Plant Pathol 46:737–750. doi:10.1046/j.1365-3059.1997.d01-58.x

    Article  Google Scholar 

  217. Shanti ML, George MLC, Cruz CMV, Bernardo MA, Nelson RJ, Leung H, Reddy JN, Sridhar R (2001) Identification of resistance genes effective against rice bacterial blight pathogen in eastern India. Plant Dis 85(5):506–512. doi:10.1094/PDIS.2001.85.5.506

    Article  CAS  Google Scholar 

  218. Singh S, Sidhu JS, Huang N, Vikal Y, Li Z, Brar DS, Dhaliwal HS, Khush GS (2001) Pyramiding three bacterial blight resistance genes (Xa5, Xa13 and Xa21) using marker assisted selection into indica rice cultivar PR106. Theor Appl Genet 102(6):1011–1015. doi:10.1007/s001220000495

    Article  CAS  Google Scholar 

  219. Servin B, Martin OC, Mezard M, Hospital F (2004) Toward a theory of marker-assisted gene pyramiding. Genetics 168(1):513–523. doi:10.1534/genetics.103.023358

    Article  PubMed  CAS  Google Scholar 

  220. Singh VK, Singh A, Singh SP, Ellur RK, Choudhary V, Sarkel S, Singh D, Krishnan SG, Nagarajan M, Vinod KK, Singh UD, Rathore R, Prashanthi SK, Agrawal PK, Bhatt JC, Mohapatra T, Prabhu KV, Singh AK (2012) Incorporation of blast resistance into “PRR78”, an elite Basmati rice restorer line, through marker assisted backcross breeding. Field Crops Res 128:8–16. doi:10.1016/j.fcr.2011.12.003

    Article  Google Scholar 

  221. Fu C, Wu T, Liu W, Wang F, Li J, Zhu X, Huang H, Liu ZR, Liao Y, Zhu M, Chen J, Huang Y (2012) Genetic improvement of resistance to blast and bacterial blight of the elite maintainer line Rongfeng B in hybrid rice (Oryza sativa L.) by using marker-assisted selection. Afr J Biotechnol 11(67):13104–13124. doi:10.5897/AJB12.1465

    Article  CAS  Google Scholar 

  222. Lei C, Wu J, Ling Z, Zhuang J, Wang, J, Zheng K, Wan J (2006) Research progress on rice blast disease and resistance breeding in China. A differential system for blast resistance for stable rice production environment. Japan International Research Center for Agricultural Sciences (JIRCAS), Japan, working report No. 53

  223. Fujita D, Ebron LA, Kobayashi N, Fukuta Y (2006) Comparison of DNA marker analysis of the blast resistance genes Pib and Pita in IRRI-bred rice varieties with gene estimation by conventional genetic analysis. Development and characterization of blast resistance using differential varieties in rice. Japan International Research Center for Agricultural Sciences (JIRCAS), Japan, working report No. 63

  224. Peng S, Khush GS (2003) Four decades of breeding for varietal improvement of irrigated lowland rice in the International Rice Research Institute. Plant Prod Sci 6(3):157–164. doi:10.1626/pps.6.157

    Article  Google Scholar 

  225. Chen HQ, Chen ZX, Ni S, Zuo SM, Pan XB, Zhu XD (2008) Pyramiding three genes with resistance to blast by marker-assisted selection to improve rice blast resistance of Jin 23B, application, Zhongguo Shuidao Kexue. Chin J Rice Sci 22(1):23–27

    CAS  Google Scholar 

  226. Ou SH, Jennings PR (1969) Progress in the development of disease-resistant rice. Annu Rev Phytopathol 7:383–410. doi:10.1146/annurev.py.07.090169.002123

    Article  Google Scholar 

  227. Liu DW, Oard SV, Oard JH (2003) High transgene expression levels in sugarcane (Saccharum officinarurn L) driven by rice ubiquitin promoter RUBQ2. Plant Sci 165:743–750

    Article  CAS  Google Scholar 

  228. Chen XW, Li SG, Ma YQ, Li HY, Zhou KD, Zhu LH (2004) Marker-assisted selection and pyramiding for three blast resistance genes, Pi-d(t)1, Pi-b, Pi-ta2, in rice, Shengwu Gongcheng Xuebao. Chin J Biotechnol 20(5):708–714

    Google Scholar 

  229. Wen S, Gao B (2011) Introgressing blast resistant gene Pi-9(t) into elite rice restorer Luhui17 by marker-assisted selection. Rice Genomics Genet 2(4):31–36. doi:10.5376/rgg.2011.02.0004

    Google Scholar 

  230. Cornelissen BJC, Melchers LS (1993) Strategies for control of fungi diseases with transgenic plants. Plant Physiol 101:709–712

    PubMed  CAS  Google Scholar 

  231. Campbell MA, Heather AF, Pamela CR (2002) Engineering pathogen resistance in crop plants. Transgenic Res 11(6):599–613. doi:10.1023/A:1021109509953

    Article  PubMed  CAS  Google Scholar 

  232. Tan YN, Yi ZL, Jiang JX, Qin JP, Xiao L (2004) Strategies and advances in improving resistance to rice blast by transgenic approaches. Mol Plant Breed 2(6):847–852 (in Chinese with English abstract)

    CAS  Google Scholar 

  233. Nishizawa Y, Nishio Z, Nakazono K, Soma M, Nakajima E, Ugaki M, Hibi T (1999) Enhanced resistance to blast (Magnaporthe grisea) in transgenic Japonica rice by constitutive expression of rice chitinase. Theor Appl Genet 99(3–4):383–390. doi:10.1007/s001220051248

    Article  PubMed  CAS  Google Scholar 

  234. Stark-Lorenzen P, Nelke B, HanBler G, Muhlbach HP, Thomzik JE (1997) Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L). Plant Cell Rep 16(10):668–673. doi:10.1007/s002990050299

    Article  CAS  Google Scholar 

  235. Feng DR, Wei JW, Xu XP, Xu Y, Li BJ (1999) Introduction of multiple antifungal protein genes into rice and preliminary study on resistance to Pyricularia oryzae of transgenic rices. Acta Sci Nat Univ Sunyatsen 38(4):62–66 (in Chinese with English abstract)

    Google Scholar 

  236. Ming XT, Wang LJ, An CC, Yuan HY, Zheng HH, Chen ZL (2000) Introducing trichosanthin gene into rice mediated by Agrobacterium tumefacien and testing the activity of resistance to blast. Chin Sci Bull 45:1080–1084

    Google Scholar 

  237. Kanzaki H, Nirasasawa S, Saitoh H, Ito M (2002) Over expression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice. Theor Appl Genet 105(6–7):809–814. doi:10.1007/s00122-001-0817-9

    PubMed  CAS  Google Scholar 

  238. Jain RK, Jain S (2000) Transgenic strategies for genetic improvement of Basmati rice. Indian J Exp Biol 38(1):6–17

    PubMed  CAS  Google Scholar 

  239. Xu MH, Li CY, Li JB, Tan XL, Tian WZ, Tang ZS (2003) Analysis of resistant spectrum to rice blast in transgenic rice lines introduced lysozyme gene from T4 phage. Agric Sci China 2(3):273–279

    Google Scholar 

  240. Qing C, Jing Y, Lin L, Yuan S, Jinbin L, Youyong Z, Chengyun L (2011) Chlorimuronethyl resistance selectable marker unsuited for the transformation of rice blast fungus (Magnaporthe grisea). In: Li D, Liu Y, Chen Y (eds) CCTA 2010, part I, IFIP AICT 344, pp 335–342

  241. Li D, Bobrowicz P, Wilkinson HH, Ebbole DJ (2005) A mitogen-activated protein kinase pathway essential for mating and contributing to vegetative growth in Neurospora crassa. Genetics 170(3):1091–1104. doi:10.1534/genetics.104.036772

    Article  PubMed  CAS  Google Scholar 

  242. Chen QH, Wang YC, Li AN, Zhang ZG, Zheng XB (2007) Molecular mapping of two cultivar-specific avirulence genes in the rice blast fungus Magnaporthe grisea. Mol Genet Genomics 277(2):139–148. doi:10.1007/s00438-006-0179-8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Longterm Research Grant Scheme (LRGS), Food Security Project, Ministry of Higher Education, Malaysia, for the financial support to conduct research activities on rice breeding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Rafii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miah, G., Rafii, M.Y., Ismail, M.R. et al. Blast resistance in rice: a review of conventional breeding to molecular approaches. Mol Biol Rep 40, 2369–2388 (2013). https://doi.org/10.1007/s11033-012-2318-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2318-0

Keywords

Navigation