Skip to main content
Log in

Phenolic compounds, antioxidant capacity and antimutagenic activity in different growth stages of in vitro raised plants of Origanum vulgare L.

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Efficient micropropagation procedure was developed for Origanum vulgare, a high-value culinary herb, and the phytochemicals, phenolic content, antioxidant and antimutagenic activity of leaf and stem, derived from different growing stages were analyzed. The agar solidified Murashige and Skoog (MS) medium supplemented with a combination of 6-benzylaminopurine and α-naphthaleneacetic acid was optimized as best shoot-multiplication-medium. Shoots were rooted best on 1/2 strength MS medium supplemented with 50 µM indole-3-butyric acid (IBA). The plantlets were successfully acclimatized ex vitro in a soil, sand and farmyard manure mixture (2:1:1 v/v/v) with 100% survival rate in greenhouse. The total anthocyanin and total phenolic content were observed significantly higher in leaves of in vitro-raised plants. However, total tannin, flavonoid and antioxidant activity remained higher in leaves of mother plant maintained under ployhouse condition. All the plant extracts have shown significant antimutagenic activity except in vitro-growing plants. A total of 13 polyphenolic compounds were detected in different extracts using high performance liquid chromatography. Among these, catechin was detected maximum in in vitro-growing cultures and chlorogenic acid in leaves of mother plant. These findings will help the farmers, medicinal plant growers, and industries for mass multiplication and effective extraction of phytochemicals from O. vulgare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AAE:

Ascorbic acid equivalent

ABTS:

2,2-Azinobis (3-ethylbenzothiazoline-6-sulphonic acid)

asl:

Above mean sea level

BAP:

6-Benzylaminopurine

CN:

Cyanidin 3-glucoside

DPPH:

2,2-Diphenyl-1-picryhydrazyl

DAD:

Diode-array detection

GA3 :

Gibberellic acid

GAE:

Gallic acid equivalent

HPLC:

High performance liquid chromatography

IBA:

Indole-3-butyric acid

IL:

In vitro-raised plant leaf

IS:

In vitro-raised plant stem

IVG:

In vitro-growing cultures

MPL:

Mother plant leaf

MPS:

Mother plant stem

MS:

Murashige and Skoog

NAA:

α-Naphthaleneacetic acid

PBS:

Phosphate-buffered saline

PGRs:

Plant growth regulators

TAE:

Tannic acid equivalent

TBE:

Tris borate ethylenediaminetetraacetic acid

QE:

Quercetin equivalent

µM:

Micro mole

References

  1. Ietswaart JH (1980) A taxonomic revision of the genus Origanum. In: (Labiatae), Leiden Botanical series, vol 4. Leiden University Press, The Hague

    Google Scholar 

  2. Sahin F, Güllüce M, Daferera D, Sökmen A, Sökmen M, Polissiou M, Agar G, Özer H (2004) Biological activities of the essential oils and methanol extract of Origanum vulgare spp. vulgare in the Eastern Anatolia region of Turkey. Food Control 15:549–557. https://doi.org/10.1016/j.foodcont.2003.08.009

    Article  CAS  Google Scholar 

  3. Samant SS, Dhar U, Palni LMS (1998) Medicinal plants of Indian Himalaya. In: Diversity distribution potential values. Gyanodaya Prakashan, Nainital

    Google Scholar 

  4. Raina AP, Negi KS (2014) Chemical diversity among different accessions of Origanum vulgare L. ssp. vulgare collected from Central Himalayan region of Uttarakhand, India. J Essent Oil Res 26:420–426. https://doi.org/10.1080/10412905.2014.948969

    Article  CAS  Google Scholar 

  5. Kulisic T, Radoni A, Katalinic V, Milos M (2004) Use of different methods for testing antioxidative activity of Oregano essential oil. Food Chem 85:633–640. https://doi.org/10.1016/j.foodchem.2003.07.024

    Article  CAS  Google Scholar 

  6. Bakkali F, Averbbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chemical Toxicology 46:446–475. https://doi.org/10.1016/j.fct.2007.09.106

    Article  CAS  PubMed  Google Scholar 

  7. Verma RS, Padalia RC, Chauhan A, Verma RK, Yadav AK, Singh HP (2010) Chemical diversity in Indian oregano (Origanum vulgare L.). Chem Biodivers 7:2054–2064. https://doi.org/10.1002/cbdv.200900419

    Article  CAS  PubMed  Google Scholar 

  8. Prakash B, Singh P, Yadav S, Singh SC, Dubey NK (2013) Safety profile assessment and efficacy of chemically characterized Cinnamomum glaucescens essential oil against storage fungi, insect, aflatoxin secretion and as antioxidant. Food Chem Toxicol 53:160–167. https://doi.org/10.1016/j.fct.2012.11.044

    Article  CAS  PubMed  Google Scholar 

  9. Deng W, Fang X, Wu J (1997) Flavonoids function as antioxidants: by scavenging reactive oxygen species or by chelating iron? Radiat Phys Chem 50:271–276. https://doi.org/10.1016/S0969-806X

    Article  CAS  Google Scholar 

  10. Zhang XL, Guo YS, Wang CH, Li GQ, Xu JJ, Chung HY, Wang GC (2014) Phenolic compounds from Origanum vulgare and their antioxidant and antiviral activities. Food Chem 152:300–306. https://doi.org/10.1016/j.foodchem.2013.11.153

    Article  CAS  PubMed  Google Scholar 

  11. Bhattacharyya P, Kumaria S, Diengdoh R, Tandon P (2014) Genetic stability and phytochemical analysis of the in vitro regenerated plants of Dendrobium nobile Lindl., an endangered medicinal orchid. Meta Gene 2:489–504. https://doi.org/10.1016/j.mgene.2014.06.003

    Article  PubMed  PubMed Central  Google Scholar 

  12. Koldaş S, Demirtas I, Ozen T, Demirci MA, Behçet L (2015) Phytochemical screening, anticancer and antioxidant activities of Origanum vulgare L. ssp. viride (Boiss.) Hayek, a plant of traditional usage. J Sci Food Agric 95:786–798. https://doi.org/10.1002/jsfa.6903

    Article  CAS  PubMed  Google Scholar 

  13. Halliwell B (2008) Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch Biochem Biophys 476:107–112. https://doi.org/10.1016/j.abb.2008.01.028

    Article  CAS  PubMed  Google Scholar 

  14. Lamiaceae (2015) Essential oil diversity of European Origanum vulgare L. Phytochemistry 119:32–40. https://doi.org/10.1016/j.phytochem.2015.09.008

    Article  Google Scholar 

  15. Goleniowski ME, Flamarique C, Bima P (2003) Micropropagation of oregano (Origanum vulgare × applii) from meristem tips. In Vitro Cell Dev Biol 39:125–128. https://doi.org/10.1079/IVP2002361

    Article  Google Scholar 

  16. Jeong BR, Sivanesan I (2016) Micropropagation, berberine content and antitumor activity of Jeffersonia dubia (Maxim.) Benth et Hook. Plant Cell Tissue Organ Cult 124:453–458. https://doi.org/10.1007/s11240-015-0898-9

    Article  CAS  Google Scholar 

  17. Bose B, Kumaria S, Choudhury H, Tandon P (2016) Assessment of genetic homogeneity and analysis of phytomedicinal potential in micropropagated plants of Nardostachys jatamansi, a critically endangered, medicinal plant of alpine Himalayas. Plant Cell Tissue Organ Cult 124:331–349. https://doi.org/10.1007/s11240-015-0897-x

    Article  Google Scholar 

  18. Lattanzio V, Cardinali A, Ruta C, Fortunato IM, Lattanzio VM, Linsalata V, Cicco N (2009) Relationship of secondary metabolism to growth in oregano (Origanum vulgare L.) shoot cultures under nutritional stress. Environ Exp Bot, 65, 54–62. https://doi.org/10.1016/j.envexpbot.2008.09.002

    Article  CAS  Google Scholar 

  19. Moreno-Fortunato I, Avato P (2008) Plant development and synthesis of essential oils in micropropagatede and mycorrhiza inoculated plants of Origanum vulgare L. ssp. hirtum (Link) Ietswaart. Plant Cell Tissue Organ Culture 93:139–149. https://doi.org/10.1007/s11240-008-9353-5

    Article  CAS  Google Scholar 

  20. Yildirim MU (2013) Micropropagation of Origanum acutidens (HAND.-MAZZ.) IETSWAART using stem node explants. Sci World J. https://doi.org/10.1155/2013/276464

    Article  Google Scholar 

  21. Pandey A, Tamta S (2014) In vitro propagation of the important tasar oak (Quercus serrata Thunb.) by casein hydrolysate promoted high frequency shoot proliferation. J Sustain For 33:590–603. https://doi.org/10.1080/10549811.2014.912587

    Article  Google Scholar 

  22. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am JEnol Viticult 16:144–158

    CAS  Google Scholar 

  23. Nwinuka N, Ibeh G, Ekeke G (2005) Proximate composition and levels of some toxicants in four commonly consumed spices. J Appl Sci Environ Manag 9:150–155

    Google Scholar 

  24. Chang C, Yang M, Wen H, Chern J (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10:178–182

    CAS  Google Scholar 

  25. Lee J, Drust RW, Wrolstad RE (2005) Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants and wines by the pH differential method: Collaborative study. J AOAC Int 88:1269–1278

    CAS  PubMed  Google Scholar 

  26. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30. https://doi.org/10.1016/S0023-6438

    Article  CAS  Google Scholar 

  27. Belwal T, Dhyani P, Bhatt ID, Rawal RS, Pande V (2016) Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM). Food Chem 207:115–124. https://doi.org/10.1016/j.foodchem.2016.03.081

    Article  CAS  PubMed  Google Scholar 

  28. Pandey A, Sekar KC, Tamta S, Rawal RS (2017) Assessment of phytochemicals, antioxidant and antimutagenic activity in micropropagated plants of Quercus serrata, a high value tree species of Himalaya. Plant Biosyst. https://doi.org/10.1080/11263504.2017.1395372

    Article  Google Scholar 

  29. Pandey A, Belwal T, Sekar KC, Bhatt ID, Rawal RS (2018) Optimization of ultrasonic-assisted extraction (UAE) of phenolics and antioxidant compounds from rhizomes of Rheum moorcroftianum using response surface methodology (RSM). Ind Crops Prod 119:218–225. https://doi.org/10.1016/j.indcrop.2018.04.019

    Article  CAS  Google Scholar 

  30. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 5:473–497. https://doi.org/10.1111/j.1399-3054.1962.

    Article  Google Scholar 

  31. Snedecor GW, Cochran WG (1967) Statistical methods. University Press, Iowa State p 12

    Google Scholar 

  32. Girija S, Kavitha S, Deepavathi S (2006) Direct multiple shoot regeneration from shoot tip and nodal explants of Ocimum sanctum L. (Tulsi): a medicinal herb. Plant Cell Biotechnol Mol Biol 7:23–28

    CAS  Google Scholar 

  33. Gaikwad NK, Moon UR, Bhadoria PS, Mitra A (2015) In vitro propagation of Canscora decussata Schult. and comparative assessment of anti-cholinesterase and antioxidant capacities of wild-harnessed and in vitro-grown plant extracts. Plant Cell Tissue Organ Cult 122:509–516. https://doi.org/10.1007/s11240-015-0770-y

    Article  Google Scholar 

  34. Shekhawat MS, Manokari M (2016) In vitro propagation, micromorphological studies and ex vitro rooting of cannon ball tree (Couroupita guianensis aubl.): a multipurpose threatened species. Physiol Mol Biol Plant 22:131–142. https://doi.org/10.1007/s12298-015-0335-x

    Article  Google Scholar 

  35. Pandey A, Brijwal L, Tamta S (2013) In vitro propagation and phytochemical assessment of Berberis chitria: an important medicinal shrub of Kumaun Himalaya, India. J Med Plant Res 7:930–937. https://doi.org/10.5897/JMPR13.4435

    Article  CAS  Google Scholar 

  36. Brijwal L, Pandey A, Tamta S (2015) In vitro propagation of the endangered species Berberis aristata DC. via leaf-derived callus. In Vitro Cell Dev Biol 51:637–647. https://doi.org/10.1007/s11627-015-9716-7

    Article  CAS  Google Scholar 

  37. Purkayastha J, Sugla T, Paul A, Solleti SK, Mazumdar P, Basu A, Mohommad A, Ahmed Z, Sahoo L (2010) Efficient in vitro plant regeneration from shoot apices and gene transfer by particle bombardment in Jatropha curcas. Biol Plant 54:13–20. https://doi.org/10.1007/s10535-010-0003-5

    Article  CAS  Google Scholar 

  38. Arney SE, Mancinelli P (1966) The basic action of gibberellic acid in elongation of ‘Meteor’pea stems. New Phytol 65:161–175. https://doi.org/10.1111/j.1469-8137.1966.tb06349.x

    Article  CAS  Google Scholar 

  39. Nordstrom A, Tarkowski P, Tarkowska D, Norbaek R, Astot C, Dolezal K, Sandberg G (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin–cytokinin-regulated development. Proc Natl Acad Sci USA 101:8039–8044. https://doi.org/10.1073/pnas.0402504101

    Article  PubMed  Google Scholar 

  40. Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Sandberg G (2005) Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell 17:1090–1104. https://doi.org/10.1105/tpc.104.029272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of auxin in regulating Arabidopsis flower development. Planta 22:315–328. https://doi.org/10.1007/s00425-005-0088-9

    Article  CAS  Google Scholar 

  42. Aloni R, Langhans M, Aloni E, Dreieicher E, Ullrich CI (2005) Root-synthesized cytokinin in Arabidopsis is distributed in the shoot by the transpiration stream. J Exp Bot 56:1535–1544. https://doi.org/10.1093/jxb/eri148

    Article  CAS  PubMed  Google Scholar 

  43. Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893.https://doi.org/10.1093/aob/mcl027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yesil-Celiktas O, Nartop P, Gurel A, Bedir E, Vardar-Sukan F (2007) Determination of phenolic content and antioxidant activity of extracts obtained from Rosmarinus officinalis’ calli. J Plant Physiol 164:1536–1542. https://doi.org/10.1016/j.jplph.2007.05.013

    Article  CAS  PubMed  Google Scholar 

  45. Furmanowa M, Skopińska-Rozewska E, Rogala E, Hartwich M (1998) Rhodiola rosea in vitro culture-phytochemical analysis and antioxidant action. Acta Soc Bot Pol 67:69–73. https://doi.org/10.5586/asbp.1998.009

    Article  CAS  Google Scholar 

  46. Misawa N, Masamoto K, Hori T, Ohtani T, Boger P, Sandmann G (1994) Expression of an Erwinia phytoene desaturase gene not only confers multiple resistance to herbicides interfering with carotenoid biosynthesis but also alters xanthophyll metabolism in transgenic plants. Plant J 6:481–489. https://doi.org/10.1046/j.1365-313X.1994.6040481.x

    Article  CAS  Google Scholar 

  47. Brewer MS (2011) Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr Rev Food Sci Food Saf 10:221–247. https://doi.org/10.1111/j.1541-4337.2011.00156.x

    Article  CAS  Google Scholar 

  48. Surveswaran S, Cai YZ, Xing J, Corke H, Sun M (2010) Antioxidant properties and principal phenolic phytochemicals of Indian medicinal plants from Asclepiadoideae and Periplocoideae. Nat Prod Res 24:206–221. https://doi.org/10.1080/14786410802228827

    Article  CAS  PubMed  Google Scholar 

  49. Khateeb WA, Hussein E, Qouta L, Alu’datt M, Al-shara B, Abu-zaiton A (2012) In vitro propagation and characterization of phenolic content along with antioxidant and antimicrobial activities of Cichorium pumilum Jacq. Plant Cell Tissue Organ Cult 110:103–110. https://doi.org/10.1007/s11240-012-0134-9

    Article  CAS  Google Scholar 

  50. Rehman RU, Chaudhary MF, Khawar KM, Lu G, Mannan A, Zia M (2014) In vitro propagation of Caralluma tuberculata and evaluation of antioxidant potential. Biologia 69:341–349. https://doi.org/10.2478/s11756-013-0322-z

    Article  CAS  Google Scholar 

  51. Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57:715S–724S. https://doi.org/10.1093/ajcn/57.5.715S

    Article  CAS  PubMed  Google Scholar 

  52. Amarowicz R (2007) Tannins: the new natural antioxidants? Eur J Lipid Sci Technol 109:549–551. https://doi.org/10.1002/ejlt.200700145

    Article  CAS  Google Scholar 

  53. Karamac M, Kosinska A, Amarowicz R (2006) Chelating of Fe(II), Zn(II) and Cu(II) by tannin fractions separated from hazelnuts, walnuts and almonds. Bromatologia i Chemia Toksykologiczna 39:257–260

    Google Scholar 

  54. Cataldo F (2014) Hydrogen peroxide photolysis with different UV light sources including a new UV-LED light source. New Front Chem 23:99–110

    Google Scholar 

Download references

Acknowledgements

Authors thank Director G. B. Pant National Institute of Himalayan Environment and Sustainable Development, for his encouragement and facilities. Authors also thank Head, Department of Biotechnology, Bhimtal Campus, Kumaun University Nainital for facilities and encouragement during the initial stage of experimentation. Colleagues of Biodiversity Conservation and Management theme are thanked for cooperation and help during the study. Anonymous reviewers are gratefully acknowledged for providing useful inputs to improve the manuscript draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aseesh Pandey.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 417 KB)

Supplementary material 2 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A., Belwal, T., Tamta, S. et al. Phenolic compounds, antioxidant capacity and antimutagenic activity in different growth stages of in vitro raised plants of Origanum vulgare L.. Mol Biol Rep 46, 2231–2241 (2019). https://doi.org/10.1007/s11033-019-04678-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04678-x

Keywords

Navigation