Skip to main content
Log in

Changes in morphology and miRNAs expression in small intestines of Shaoxing ducks in response to high temperature

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

During summer days the extreme heat may cause damage to the integrity of animal intestinal barrier. Little information is available concerning morphological changes in the duck intestines in response to high temperature. And the molecular mechanisms underlying the pathogenesis of high temperature-induced intestinal injury remain undefined. MicroRNAs (miRNAs) are known to play key roles in post-transcriptional regulation of gene expression that influences various biological processes. The purpose of this study was to explore the changes in morphology and miRNA expression profiles of the three intestinal segments (duodenum, jejunum and ileum) of ducks in response to high temperature. Sixty female Shaoxing ducks (Anas platyrhynchos), 60 days old, were allocated in two groups, including control ducks kept at 25 °C, and ducks subjected to high ambient temperatures of 30–40 °C for 15 successive days, which mimicked the diurnal temperature variations experienced in hot seasons. Three ducks from each group were executed at the end of feeding experiment, and the samples of three intestinal segments were collected for morphological examination and Illumina deep sequencing analyses. Histopathological examination of the intestinal mucous membrane was performed with HE staining method. The results demonstrated that varying degrees of damage to each intestinal segment were found in heat-treated ducks, and there were more severe injuries in duodenum and jejunum than those in ileum. Illumina high-throughput sequencing and bioinformatic methods were employed in this study to identify the miRNA expression profile of three different intestinal tissues in control and heat-treated ducks. A total of 75,981,636, 88,345,563 and 100,179,422 raw reads were obtained from duodenum, jejunum and ileum, respectively, from which 74,797,633 clean reads in duodenal libraries, 86,406,445 clean reads in jejunal libraries, and 98,518,858 lean reads in ileal libraries were derived after quality control, respectively. And a total of 276 known and 182 novel miRNAs were identified in the three intestinal segments of ducks under control and heat-treated conditions. By comparing the same tissues in different conditions, 16, 18 and 15 miRNAs were found to be significantly differentially expressed between control and heat-treated ducks in duodenum, jejunum and ileum, respectively, of which 1 miRNA was expressed in both the duodenum and jejunum, 2 miRNAs were expressed in both the duodenum and ileum, and 3 miRNAs were found to be expressed in both the jejunum and ileum. In addition, two differentially expressed miRNAs in each comparison were randomly selected and validated by quantitative qRT-PCR. Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that the differentially expressed miRNAs may be involved in the high temperature-induced intestinal injury in ducks. Our work provides the comprehensive miRNA expression profiles of small intestines in the normal and heat-treated ducks. These findings suggest the involvement of specific molecular mechanisms of post-transcriptional regulation to explain the high temperature-induced changes in the duck small intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bouchama A, Knochel JP (2002) Heat stroke. N Engl J Med 346(25):1978–1988. https://doi.org/10.1056/NEJMra011089

    Article  CAS  PubMed  Google Scholar 

  2. Nardone A, Ronchi B, Lacetera N, Ranieri MS, Bernabucci U (2010) Effects of climate changes on animal production and sustainability of livestock systems. Livest Sci 130(1):57–69. https://doi.org/10.1016/j.livsci.2010.02.011

    Article  Google Scholar 

  3. Kamel NN, Ahmed AMH, Mehaisen GMK, Mashaly MM, Abass AO (2017) Depression of leukocyte protein synthesis, immune function and growth performance induced by high environmental temperature in broiler chickens. Int J Biometeorol 61(9):1637–1645. https://doi.org/10.1007/s00484-017-1342-0

    Article  PubMed  Google Scholar 

  4. St-Pierre NR, Cobanov B, Schnitkey G (2003) Economic losses from heat stress by US livestock industries. J Dairy Sci 86(Suppl.):E52–E77. https://doi.org/10.3168/jds.S0022-0302(03)74040-5

    Article  Google Scholar 

  5. Selvam R, Suresh S, Saravanakumar M, Chandrasekaran CV, Prashanth D (2018) Alleviation of heat stress by a polyherbal formulation, Phytocee™: impact on zootechnical parameters, cloacal temperature, and stress markers. Pharmacogn Res 10(1):1–8. https://doi.org/10.4103/pr.pr_138_17

    Article  CAS  Google Scholar 

  6. Lara LJ, Rostagno MH (2013) Impact of heat stress on poultry production. Animals (Basel) 3(2):356–369. https://doi.org/10.3390/ani3020356

    Article  Google Scholar 

  7. Zhao S, Su Y, Deng J, Zhang C (2011) Effects of heat stress on meat-type ducks and its preventive and control measures (Chinese). China Anim Health Insp 28(8):64–66

    Google Scholar 

  8. Cario E, Gerken G, Podolsky DK (2002) “For whom the bell tolls!”—innate defense mechanisms and survival strategies of the intestinal epithelium against lumenal pathogens. Z Gastroenterol 40(12):983–990. https://doi.org/10.1055/s-2002-36159

    Article  CAS  PubMed  Google Scholar 

  9. Yu J, Yin P, Liu F, Cheng G, Guo K, Lu A, Zhu X, Luan W, Xu J (2010) Effect of heat stress on the porcine small intestine: a morphological and gene expression study. Comp Biochem Physiol A 156(1):119–128. https://doi.org/10.1016/j.cbpa.2010.01.008

    Article  CAS  Google Scholar 

  10. Hall DM, Buettner GR, Oberley LW, Xu L, Matthes RD, Gisolfi CV (2001) Mechanisms of circulatory and intestinal barrier dysfunction during whole body hyperthermia. Am J Physiol Heart Circ Physiol 280(2):H509–H521. https://doi.org/10.1152/ajpheart.2001.280.2.H509

    Article  CAS  PubMed  Google Scholar 

  11. Alhenaky A, Abdelqader A, Abuajamieh M, Al-Fataftah AR (2017) The effect of heat stress on intestinal integrity and Salmonella invasion in broiler birds. J Therm Biol 70(Pt B):9–14. https://doi.org/10.1016/j.jtherbio.2017.10.015

    Article  CAS  PubMed  Google Scholar 

  12. Vancamelbeke M, Vermeire S (2017) The intestinal barrier: a fundamental role in health and disease. Expert Rev Gastroenterol Hepatol 11(9):821–834. https://doi.org/10.1080/17474124.2017.1343143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lambert GP (2009) Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects. J Anim Sci 87(14 Suppl):E101–E108. https://doi.org/10.2527/jas.2008-1339

    Article  CAS  PubMed  Google Scholar 

  14. Mani V, Weber TE, Baumgard LH, Gabler NK (2012) Growth and Development Symposium: endotoxin, inflammation, and intestinal function in livestock. J Anim Sci 90(5):1452–1465. https://doi.org/10.2527/jas.2011-4627

    Article  CAS  PubMed  Google Scholar 

  15. Lin ZL, Tan SJ, Cheng MH, Zhao CY, Yu WK, He YL, Li J, Li N (2017) Lipid-rich enteral nutrition controls intestinal inflammation, improves intestinal motility and mucosal barrier damage in a rat model of intestinal ischemia/reperfusion injury. J Surg Res 213:75–83. https://doi.org/10.1016/j.jss.2017.02.007

    Article  CAS  PubMed  Google Scholar 

  16. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. https://doi.org/10.1016/S0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  17. Sengar GS, Deb R, Singh U, Raja TV, Kant R, Sajjanar B, Alex R, Alyethodi RR, Kumar A, Kumar S, Singh R, Jakhesara SJ, Joshi CG (2018) Differential expression of microRNAs associated with thermal stress in Frieswal (Bos taurus × Bos indicus) crossbred dairy cattle. Cell Stress Chaperones 23(1):155–170. https://doi.org/10.1007/s12192-017-0833-6

    Article  CAS  PubMed  Google Scholar 

  18. Zhang B, Wang Q, Pan X (2007) MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol 210(2):279–289. https://doi.org/10.1002/jcp.20869

    Article  CAS  PubMed  Google Scholar 

  19. Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10(10):704–714. https://doi.org/10.1038/nrg2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harfe BD (2005) MicroRNAs in vertebrate development. Curr Opin Genet Dev 15(4):410–415. https://doi.org/10.1016/j.gde.2005.06.012

    Article  CAS  PubMed  Google Scholar 

  21. Yan S, Jiao K (2016) Functions of miRNAs during mammalian heart development. Int J Mol Sci. https://doi.org/10.3390/ijms17050789

    Article  PubMed  PubMed Central  Google Scholar 

  22. McKenna LB, Schug J, Vourekas A, McKenna JB, Bramswig NC, Friedman JR, Kaestner KH (2010) MicroRNAs control intestinal epithelial differentiation, architecture, and barrier function. Gastroenterology 139(5):1654–1664. https://doi.org/10.1053/j.gastro.2010.07.040

    Article  CAS  PubMed  Google Scholar 

  23. Engin AB (2017) MicroRNA and adipogenesis. Adv Exp Med Biol 960:489–509. https://doi.org/10.1007/978-3-319-48382-5_21

    Article  CAS  PubMed  Google Scholar 

  24. Sherrard R, Luehr S, Holzkamp H, McJunkin K, Memar N, Conradt B (2017) miRNAs cooperate in apoptosis regulation during C. elegans development. Genes Dev 31(2):209–222. https://doi.org/10.1101/gad.288555.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Geiger J, Dalgaard LT (2017) Interplay of mitochondrial metabolism and microRNAs. Cell Mol Life Sci 74(4):631–646. https://doi.org/10.1007/s00018-016-2342-7

    Article  CAS  PubMed  Google Scholar 

  26. Andreassen R, Høyheim B (2017) miRNAs associated with immune response in teleost fish. Dev Comp Immunol 75:77–85. https://doi.org/10.1016/j.dci.2017.02.023

    Article  CAS  PubMed  Google Scholar 

  27. Papageorgiou N, Tousoulis D, Androulakis E, Siasos G, Briasoulis A, Vogiatzi G, Kampoli AM, Tsiamis E, Tentolouris C, Stefanadis C (2012) The role of microRNAs in cardiovascular disease. Curr Med Chem 19(16):2605–2610. https://doi.org/10.2174/092986712800493048

    Article  CAS  PubMed  Google Scholar 

  28. Di Leva G, Garofalo M, Croce CM (2014) MicroRNAs in cancer. Annu Rev Pathol 9:287–314. https://doi.org/10.1146/annurev-pathol-012513-104715

    Article  CAS  PubMed  Google Scholar 

  29. Mendell JT, Olson EN (2012) MicroRNAs in stress signaling and human disease. Cell 148(6):1172–1187. https://doi.org/10.1016/j.cell.2012.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li Y, Wen S, Yao X, Liu W, Shen J, Deng W, Tang J, Li C, Liu K (2017) MicroRNA-378 protects against intestinal ischemia/reperfusion injury via a mechanism involving the inhibition of intestinal mucosal cell apoptosis. Cell Death Dis 8(10):e3127. https://doi.org/10.1038/cddis.2017.508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 22(−Delta C (T)) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  32. Kenney MJ, Musch TI (2004) Senescence alters blood flow responses to acute heat stress. Am J Physiol Heart Circ Physiol 286(4):H1480–H1485. https://doi.org/10.1152/ajpheart.00857.2003

    Article  CAS  PubMed  Google Scholar 

  33. Tuboly E, Futakuchi M, Varga G, Érces D, Tőkés T, Mészáros A, Kaszaki J, Suzui M, Imai M, Okada A, Okada N, Boros M, Okada H (2016) C5a inhibitor protects against ischemia/reperfusion injury in rat small intestine. Microbiol Immunol 60(1):35–46. https://doi.org/10.1111/13480421.12338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Santos RR, Awati A, Roubos-van den Hil PJ, Tersteeg-Zijderveld MH, Koolmees PA, Fink-Gremmels J (2015) Quantitative histo-morphometric analysis of heat-stress-related damage in the small intestines of broiler chickens. Avian Pathol 44(1):19–22. https://doi.org/10.1080/03079457.2014.988122

    Article  CAS  PubMed  Google Scholar 

  35. Di Pietro V, Ragusa M, Davies D, Su Z, Hazeldine J, Lazzarino G, Hill LJ, Crombie N, Foster M, Purrello M, Logan A, Belli A (2017) MicroRNAs as novel biomarkers for the diagnosis and prognosis of mild and severe traumatic brain injury. J Neurotrauma 34(11):1948–1956. https://doi.org/10.1089/neu.2016.4857

    Article  PubMed  Google Scholar 

  36. Okuda DT (2017) Are miRNAs appropriate biomarkers for radiologic measures of tissue injury in multiple sclerosis? JAMA Neurol 74(3):260–261. https://doi.org/10.1001/jamaneurol.2016.5384

    Article  PubMed  Google Scholar 

  37. He S, Hou X, Xu X, Wan C, Yin P, Liu X, Chen Y, Shu B, Liu F, Xu J (2015) Quantitative proteomic analysis reveals heat stress-induced injury in rat small intestine via activation of the MAPK and NF-κB signaling pathways. Mol BioSyst 11(3):826–834. https://doi.org/10.1039/c4mb00495g

    Article  CAS  PubMed  Google Scholar 

  38. Zhang D, Wang Y, Ji Z, Wang Z (2016) Identification and differential expression of microRNAs associated with fat deposition in the liver of Wistar rats with nonalcoholic fatty liver disease. Gene 585(1):1–8. https://doi.org/10.1016/j.gene.2016.03.011

    Article  CAS  PubMed  Google Scholar 

  39. Qi X, Wang T, Xue Q, Li Z, Yang B, Wang J (2018) MicroRNA expression profiling of goat peripheral blood mononuclear cells in response to peste des petits ruminants virus infection. Vet Res 49(1):62. https://doi.org/10.1186/s13567-018-0565-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ouyang H, He X, Li G, Xu H, Jia X, Nie Q, Zhang X (2015) Deep sequencing analysis of miRNA expression in breast muscle of fast-growing and slow-growing broilers. Int J Mol Sci 16(7):16242–16262. https://doi.org/10.3390/ijms160716242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu J, He K, Ren T, Lou Y, Zhao A (2016) High-throughput sequencing reveals differential expression of miRNAs in prehierarchal follicles of laying and brooding geese. Physiol Genomics 48(7):455–463. https://doi.org/10.1152/physiolgenomics.00011.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sui CJ, Xu F, Shen WF, Dai BH, Lu JJ, Zhang MF, Yang JM (2016) MicroRNA-147 suppresses human hepatocellular carcinoma proliferation migration and chemosensitivity by inhibiting HOXC6. Am J Cancer Res 6(12):2787–2798

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Leblanc N, Harquail J, Crapoulet N, Ouellette RJ, Robichaud GA (2018) Pax-5 inhibits breast cancer proliferation through MiR-215 up-regulation. Anticancer Res 38(9):5013–5026. https://doi.org/10.21873/anticanres.12820

    Article  CAS  PubMed  Google Scholar 

  44. Han L, Dong Z, Liu N, Xie F, Wang N (2017) Maternally expressed gene 3 (MEG3) enhances PC12 cell hypoxia injury by targeting MiR-147. Cell Physiol Biochem 43(6):2457–2469. https://doi.org/10.1159/000484452

    Article  CAS  PubMed  Google Scholar 

  45. Ge X, Huang S, Gao H, Han Z, Chen F, Zhang S, Wang Z, Kang C, Jiang R, Yue S, Lei P, Zhang J (2016) miR-21-5p alleviates leakage of injured brain microvascular endothelial barrier in vitro through suppressing inflammation and apoptosis. Brain Res 1650:31–40. https://doi.org/10.1016/j.brainres.2016.07.015

    Article  CAS  PubMed  Google Scholar 

  46. Nakaoka T, Saito Y, Shimamoto Y, Muramatsu T, Kimura M, Kanai Y, Saito H (2017) Cluster microRNAs miR-194 and miR-215 suppress the tumorigenicity of intestinal tumor organoids. Cancer Sci 108(4):678–684. https://doi.org/10.1111/cas.13165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang Y, Xu G, Han J, Xu T (2016) miR-200a-3p regulates TLR1 expression in bacterial challenged miiuy croaker. Dev Comp Immunol 63:181–186. https://doi.org/10.1016/j.dci.2016.06.004

    Article  CAS  PubMed  Google Scholar 

  48. Shi T, Hua Q, Ma Z, Lv Q (2017) Downregulation of miR-200a-3p induced by hepatitis B Virus X (HBx) Protein promotes cell proliferation and invasion in HBV-infection-associated hepatocarcinoma. Pathol Res Pract 213(12):1464–1469. https://doi.org/10.1016/j.prp.2017.10.020

    Article  CAS  PubMed  Google Scholar 

  49. Krishna MS, Aneesh Kumar A, Abdul Jaleel KA (2018) Time-dependent alterations in mRNA, protein and microRNA during in vitro adipogenesis. Mol Cell Biochem 448(1–2):1–8. https://doi.org/10.1007/s11010-018-3307-y

    Article  CAS  PubMed  Google Scholar 

  50. Zhu Y, Wu G, Yan W, Zhan H, Sun P (2017) miR-146b-5p regulates cell growth, invasion, and metabolism by targeting PDHB in colorectal cancer. Am J Cancer Res 7(5):1136–1150

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Xi T, Jin F, Zhu Y, Wang J, Tang L, Wang Y, Liebeskind DS, He Z (2017) MicroRNA-126-3p attenuates blood–brain barrier disruption, cerebral edema and neuronal injury following intracerebral hemorrhage by regulating PIK3R2 and Akt. Biochem Biophys Res Commun 494(1–2):144–151. https://doi.org/10.1016/j.bbrc.2017.10.064

    Article  CAS  PubMed  Google Scholar 

  52. Xiang G, Cheng Y (2018) MiR-126-3p inhibits ovarian cancer proliferation and invasion via targeting PLXNB2. Reprod Biol 18(3):218–224. https://doi.org/10.1016/j.repbio.2018.07.005

    Article  PubMed  Google Scholar 

  53. Wang S, Han H, Hu Y, Yang W, Lv Y, Wang L, Zhang L, Ji J (2018) MicroRNA-130a-3p suppresses cell migration and invasion by inhibition of TBL1XR1-mediated EMT in human gastric carcinoma. Mol Carcinog 57(3):383–392. https://doi.org/10.1002/mc.22762

    Article  CAS  PubMed  Google Scholar 

  54. Ou J, Kou L, Liang L, Tang C (2017) MiR-375 attenuates injury of cerebral ischemia/reperfusion via targetting Ctgf. Biosci Rep. https://doi.org/10.1042/BSR20171242

    Article  PubMed  PubMed Central  Google Scholar 

  55. Duan Z, Choy E, Harmon D, Liu X, Susa M, Mankin H, Hornicek F (2011) MicroRNA-199a-3p is downregulated in human osteosarcoma and regulates cell proliferation and migration. Mol Cancer Ther 10(8):1337–1345. https://doi.org/10.1158/1535-7163.MCT-11-0096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Han SP, Yap AS (2012) The cytoskeleton and classical cadherin adhesions. Subcell Biochem 60:111–135. https://doi.org/10.1007/978-94-007-4186-7_6

    Article  CAS  PubMed  Google Scholar 

  57. Accili D, Arden KC (2004) FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117(4):421–426

    Article  CAS  PubMed  Google Scholar 

  58. Ingham PW, Nakano Y, Seger C (2011) Mechanisms and functions of Hedgehog signalling across the metazoa. Nat Rev Genet 12(6):393–406. https://doi.org/10.1038/nrg2984

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 31402066), the National Waterfowl Industry Technology System of China (Grant No. CARS-42-6) and the Basic Public Welfare Research Program of Zhejiang Province (Grant No. LGN18C170003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhi Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 744 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Li, G., Bu, X. et al. Changes in morphology and miRNAs expression in small intestines of Shaoxing ducks in response to high temperature. Mol Biol Rep 46, 3843–3856 (2019). https://doi.org/10.1007/s11033-019-04827-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04827-2

Keywords

Navigation