Skip to main content

Advertisement

Log in

The expression of Terpenoid Indole Alkaloid (TIAs) pathway genes in Catharanthus roseus in response to salicylic acid treatment

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Vinblastine and vincristine are two important anti-cancer drugs that are synthesized by the Terpenoid Indole Alkaloids (TIAs) pathway in periwinkle (Catharanthus roseus). The major challenge in the pharmaceutical industry is the low production rate of these Alkaloids. TIA pathway is affected by elicitors, such as salicylic acid (SA). This study aimed to investigate the expression pattern of some key genes in TIAs pathway under SA treatment. Foliar application of SA (0.01 and 0.1 mM) was used and leaves samples were taken at 0, 12, 18, 24 and 48 h after the treatment. qRT-PCR was used to investigate the expression pattern of Chorismate mutase (Cm), tryptophan decarboxylase (Tdc), Geraniol-10-hydroxylase (G10h), Secologanin synthase (Sls), Strictosidine synthase (Str), Desacetoxyvindoline-4-hydroxylase (D4h) and Deacetylvindoline-4-O-acetyltransferase (Dat) genes, following the SA treatment. The results of this experiment showed that transcript levels of Tdc, G10h, Sls, Str, D4h and Dat genes were significantly up-regulated in both SA concentration treatments. Furthermore, the highest transcript levels of Dat was observed after 48 h of the SA treatments. qRT-PCR results suggests that SA induces transcription of major genes involved in Alkaloids biosynthesis in Catharanthus roseus. It can be concluded that up-regulation of Tdc, G10h, Sls, Str, D4h and Dat genes can result in a higher production rate of Vinblastine and vincristine Alkaloids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AS:

Anthranilate synthase

CM:

Chorismate mutase

DAT:

Deacetylvindoline-4-O-acetyltransferase

D4H:

Desacetoxyvindoline-4-hydroxylase

G10H:

Geraniol-10-hydroxylase

RSP9:

40 s ribosomal protein S9

SA:

Salicylic acid

SLS:

Secologanin synthase

STR:

Strictosidine synthase

TDC:

tryptophan decarboxylase

TIAs:

Terpenoid Indole Alkaloids

References

  1. Sain M, Sharma V (2013) Catharanthus roseus (an anti-cancerous drug yielding plant). A review of potential therapeutic properties. Int J Pure App Biosci 1(6):139–142

    Google Scholar 

  2. Lawal OA, Ogunwande IA, Ibirogba AE, Layode OM, Opoku AR (2015) Chemical constituents of essential oils from Catharanthus roseus (L.) G. Don Grown in Nigeria. J Essent Oil Bearing Plants 18(1):57–63

    Article  CAS  Google Scholar 

  3. Sandeep P, Jagjit K, Raman K, Kuldeep K (2014) Catharanthus roseus: a medicinal plant with potent anti-tumor properties. IntjResAyurveda Pharm 5(6):5

    Google Scholar 

  4. Pandey-Rai S, Mallavarapu GR, Naqvi A, Yadav A, Rai SK, Srivastava S, Singh D, Mishra R, Kumar S (2006) Volatile components of leaves and flowers of periwinkle Catharanthus roseus (L.) G. Don from New Delhi. Flavour Fragr J 21(3):427–430

    Article  CAS  Google Scholar 

  5. Nejat N, Valdiani A, Cahill D, Tan Y-H, Maziah M, Abiri R (2015) Ornamental exterior versus therapeutic interior of Madagascar Periwinkle (Catharanthus roseus): the two faces of a versatile herb. Sci World J. https://doi.org/10.1155/2015/982412

    Article  Google Scholar 

  6. Liu J, Cai J, Wang R, Yang S (2016) Transcriptional regulation and transport of terpenoid indole alkaloid in Catharanthus roseus: exploration of new research directions. Int J Mol Sci 18(1):53

    Article  Google Scholar 

  7. Schluttenhofer C, Pattanaik S, Patra B, Yuan L (2014) Analyses of Catharanthus roseus and Arabidopsis thaliana WRKY transcription factors reveal involvement in jasmonate signaling. BMC Genom 15(1):502

    Article  Google Scholar 

  8. Sun J, Manmathan H, Sun C, Peebles CA (2016) Examining the transcriptional response of overexpressing anthranilate synthase in the hairy roots of an important medicinal plant Catharanthus roseus by RNA-sEq. BMC Plant Biol 16(1):108

    Article  Google Scholar 

  9. Sun J (2016) Metabolic engineering and elucidation of the terpenoid indole alkaloid pathway in Catharanthus roseus hairy roots. Colorado State University: Libraries, Fort Collins

    Book  Google Scholar 

  10. Carqueijeiro I, Noronha H, Duarte P, Gerós H, Sottomayor M (2013) Vacuolar transport of the medicinal alkaloids from Catharanthus roseus is mediated by a proton-driven antiport. Plant Physiol 162(3):1486–1496

    Article  CAS  Google Scholar 

  11. Mokhaberi A, Ahmadi J, Mafakheri S (2015) The expression profile of D4H and DAT genes in Catharanthus roseus in response to drought, salinity and salicylic acid. Iran J Genet Plant Breed 2(2):38–46

    Google Scholar 

  12. Wang Q, Xing S, Pan Q, Yuan F, Zhao J, Tian Y, Chen Y, Wang G, Tang K (2012) Development of efficient Catharanthus roseus regeneration and transformation system using Agrobacterium tumefaciens and hypocotyls as explants. BMC Biotechnol 12(1):34

    Article  Google Scholar 

  13. Pan Q, Chen Y, Wang Q, Yuan F, Xing S, Tian Y, Zhao J, Sun X, Tang K (2010) Effect of plant growth regulators on the biosynthesis of vinblastine, vindoline and catharanthine in Catharanthus roseus. Plant Growth Regul 60(2):133–141

    Article  CAS  Google Scholar 

  14. De Luca V, Marineau C, Brisson N (1989) Molecular cloning and analysis of cDNA encoding a plant tryptophan decarboxylase: comparison with animal dopa decarboxylases. Proc Nat Acad Sci 86(8):2582–2586

    Article  Google Scholar 

  15. Shukla AK, Khanuja SP (2013) Catharanthus roseus: the metabolome that represents a unique reservoir of medicinally important alkaloids under precise genomic regulation. OMICS Applications in Crop Science. CRC Press, Boca Raton, pp 345–404

    Google Scholar 

  16. Almagro L, Fernández-Pérez F, Pedreño M (2015) Indole alkaloids from Catharanthus roseus: bioproduction and their effect on human health. Molecules 20(2):2973–3000

    Article  Google Scholar 

  17. Zhu J, Wang M, Wen W, Yu R (2015) Biosynthesis and regulation of terpenoid indole alkaloids in Catharanthus roseus. Pharmacogn Rev 9(17):24

    Article  CAS  Google Scholar 

  18. Khandan-Mirkohi A, Khalili Halbi M, Salami SA, Lesani H (2017) Improving effects of mild cold stress and salicylic acid on growth and physiology of periwinkle (Catharanthus roseus Don.). Int J Hortic Sci Technol 4(1):67–78

    CAS  Google Scholar 

  19. Mustafa NR (2007) Retrobiosynthetic study of salicylic acid in Catharanthus roseus cell suspension cultures. Department of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden

    Google Scholar 

  20. Idrees M, Naeem M, Aftab T, Khan MMA (2011) Salicylic acid mitigates salinity stress by improving antioxidant defence system and enhances vincristine and vinblastine alkaloids production in periwinkle [Catharanthus roseus (L.) G. Don]. Acta Physiol Plant 33(3):987–999

    Article  CAS  Google Scholar 

  21. Idrees M, Naeem M, Aftab T, Khan MMA (2013) Salicylic acid restrains nickel toxicity, improves antioxidant defence system and enhances the production of anticancer alkaloids in Catharanthus roseus (L.). J Hazard Mater 252:367–374

    Article  Google Scholar 

  22. Idrees M, Khan MMA, Naeem M, Aftab T, Hashmi N, Alam M (2011) Modulation of defence responses by improving photosynthetic activity, antioxidative metabolism, and vincristine and vinblastine accumulation in Catharanthus roseus (L.) G. Don through salicylic acid under water stress. Russ Agric Sci 37(6):474–482

    Article  Google Scholar 

  23. Kaur J, Singh A, Pathak T, Kumar K (2017) Role of PGRs in anticancer alkaloids (Vincristine and Vinblastine) production. Catharanthus roseus. Springer, Cham, pp 309–319

    Chapter  Google Scholar 

  24. Idrees M, Naeem M, KHAN MMA (2010) The superiority of cv ‘rosea’over cv ‘alba’of periwinkle (Catharanthus roseus L.) in alkaloid production and other physiological attributes. Turk J Biol 34(1):81–88

    CAS  Google Scholar 

  25. Roepke J, Salim V, Wu M, Thamm AM, Murata J, Ploss K, Boland W, De Luca V (2010) Vinca drug components accumulate exclusively in leaf exudates of Madagascar periwinkle. Proc Nat Acad Sci 107(34):15287–15292

    Article  CAS  Google Scholar 

  26. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9):e36–e36

    Article  Google Scholar 

  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 – ∆∆CT method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  28. War AR, Paulraj MG, War MY, Ignacimuthu S (2011) Role of salicylic acid in induction of plant defense system in chickpea (Cicer arietinum L.). Plant Signal Behav 6 (11):1787–1792

  29. Hassoon AS, Abduljabbar IA (2019) Review on the role of salicylic acid in plants. In: Sustainable crop production. IntechOpen

  30. Pan Q, Wang Q, Yuan F, Xing S, Zhao J, Choi YH, Verpoorte R, Tian Y, Wang G, Tang K (2012) Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics. PloS one 7(8):e43038

    Article  CAS  Google Scholar 

  31. Mustafa NR, Verpoorte R (2007) Phenolic compounds in Catharanthus roseus. Phytochem Rev 6(2–3):243–258

    Article  CAS  Google Scholar 

  32. Pandey SS, Singh S, Babu CV, Shanker K, Srivastava N, Shukla AK, Kalra A (2016) Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis. Sci Rep 6:26583

    Article  CAS  Google Scholar 

  33. Wei S (2010) Methyl jasmonic acid induced expression pattern of terpenoid indole alkaloid pathway genes in Catharanthus roseus seedlings. Plant Growth Regul 61(3):243–251

    Article  CAS  Google Scholar 

  34. Almagro L, Gutierrez J, Pedreño MA, Sottomayor M (2014) Synergistic and additive influence of cyclodextrins and methyl jasmonate on the expression of the terpenoid indole alkaloid pathway genes and metabolites in Catharanthus roseus cell cultures. Plant Cell Tissue Organ Cult 119(3):543–551

    Article  CAS  Google Scholar 

  35. Papon N, Bremer J, Vansiri A, Andreu F, Rideau M, Crèche J (2005) Cytokinin and ethylene control indole alkaloid production at the level of the MEP/terpenoid pathway in Catharanthus roseus suspension cells. Planta Med 71(06):572–574

    Article  CAS  Google Scholar 

  36. de Bernonville TD, Foureau E, Parage C, Lanoue A, Clastre M, Londono MA, Oudin A, Houillé B, Papon N, Besseau S (2015) Characterization of a second secologanin synthase isoform producing both secologanin and secoxyloganin allows enhanced de novo assembly of a Catharanthus roseus transcriptome. BMC Genom 16(1):619

    Article  Google Scholar 

  37. Khataee E, Karimi F, Razavi K (2019) Alkaloids production and antioxidant properties in Catharanthus roseus (L.) G. Don. shoots and study of alkaloid biosynthesis-related gene expression levels in response to methyl jasmonate and putrescine treatments as eco-friendly elicitors. Biologia Futura 70(1):38–46

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

NS conducted the experiments; FN-F conceived the idea and wrote the manuscript; AS, ASS helped in designing some experiments; MS edited the manuscript.

Corresponding author

Correspondence to Farhad Nazarian-Firouzabadi.

Ethics declarations

Conflict of interest

Authors declare no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, N., Nazarian-Firouzabadi, F., Shafeinia, A. et al. The expression of Terpenoid Indole Alkaloid (TIAs) pathway genes in Catharanthus roseus in response to salicylic acid treatment. Mol Biol Rep 47, 7009–7016 (2020). https://doi.org/10.1007/s11033-020-05759-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05759-y

Keywords

Navigation