Skip to main content
Log in

DnaJs, the critical drivers of Hsp70s: genome-wide screening, characterization and expression of DnaJ family genes in Sorghum bicolor

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The DnaJ/Hsp40s, are important components in the chaperone machine, and play pivotal roles in plant growth, development and stress tolerance. Sorghum, the semi-arid crop, is the drought resilient, model C4 crop. However, no reports of DnaJs have been available. Genome-wide analysis of Sorghum bicolor revealed 113 DnaJ/Hsp40 genes, classified into four groups; 8 genes in SbDnaJ-A class, 10 in SbDnaJ-B, 82 in SbDnaJ-C and 13 in SbDnaJ-D distributed unevenly on all the 10 chromosomes. Chromosomes 1 and 3 were found hot spots with 22 and 20 genes respectively. All genes displayed large number of introns, with an exception of 11 of the SbDnaJ-C which is devoid of introns. Out of 36 paralogous duplications, 7 tandem and 29 segmental duplications were noticed, indicating the major role of segmental duplications in the expansion. Analysis of digital data revealed tissue and stage-specific expressions. Transcriptional profiling of 12 selected genes representing all 4 classes revealed highly significant expression in leaf followed by root tissues. No expression was noticed in stems with an exception of SbDnaJ-C76. The SbDnaJ-A1, D1, and C subgroup genes displayed upregulation in roots, stems and leaves under cold, inferring the involvement of Hsp40s for cellular protection during cold stress. The results demonstrate that C76 and D1 are the candidate genes associated with multiple abiotic stresses. Present research furnishes valuable information about the role of sorghum DnaJs in abiotic stress response and establishes a foundation for understanding the molecular mechanisms associated with plant development and stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available as the supplementary information.

References

  1. Qiu XB, Shao YM, Miao S, Wang L (2006) The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci 63:2560–2570. https://doi.org/10.1007/s00018-006-6192-6

    Article  CAS  PubMed  Google Scholar 

  2. Silver PA, Way JC (1993) Eukaryotic DnaJ homologs and the specificity of Hsp70 activity. Cell 74:5–6. https://doi.org/10.1016/0092-8674(93)90287-z

    Article  CAS  PubMed  Google Scholar 

  3. Fan F, Yang X, Cheng Y, Kang Y, Chai X (2017) The DnaJ gene family in pepper (Capsicum annuum L.): Comprehensive identification, characterization and expression profiles. Front Plant Sci 8:689. https://doi.org/10.3389/fpls.2017.00689

    Article  PubMed  PubMed Central  Google Scholar 

  4. Luo Y, Fang B, Wang W, Yang Y, Rao L, Zhang C (2019) Genome-wide analysis of the rice J-protein family: identification, genomic organization, and expression profiles under multiple stresses. 3 Biotech 9:358. https://doi.org/10.1007/s13205-019-1880-8

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kong F, Deng Y, Wang G, Wang J, Liang X, Meng Q (2014) LeCDJ1, a chloroplast DnaJ protein, facilitates heat tolerance in transgenic tomatoes. J Integr Plant Biol 56:63–74. https://doi.org/10.1111/jipb.12119

    Article  CAS  PubMed  Google Scholar 

  6. Xia Z, Zhang X, Li J, Su X, Liu J (2014) Over expression of a tobacco J-domain protein enhances drought tolerance in transgenic Arabidopsis. Plant Physiol Biochem 83:100–106. https://doi.org/10.1016/j.plaphy.2014.07.023

    Article  CAS  PubMed  Google Scholar 

  7. Rajan VB, D’Silva P (2009) Arabidopsis thaliana J-class heat shock proteins: cellular stress sensors. Funct Integr Genomics 9:433–446. https://doi.org/10.1007/s10142-009-0132-0

    Article  CAS  PubMed  Google Scholar 

  8. Sarkar NK, Thapar U, Kundnani P, Panwar P, Grover A (2013) Functional relevance of J-protein family of rice (Oryza sativa). Cell Stress Chaperones 18:321–331. https://doi.org/10.1007/s12192-012-0384-9

    Article  CAS  PubMed  Google Scholar 

  9. Monaco MK, Stein J, Naithani S, Wei S, Dharmawardhana P, Kumari S, Amarsinghe V, Youens-Clark K, Thomason J, Preece J, Pasternak S, Olson A, Jiao Y, Lu Z, Bolser D, Kerhornou A, Staines D, WaltsB WuG, D’Eustachio P, Haw R, Croft D, Kersey PJ, Stein L, Jaiswal P, Ware D (2014) Gramene 2013: comparative plant genomics resources. Nucleic Acids Res 42(D1):D1193–D1199. https://doi.org/10.1093/nar/gkt1110

    Article  CAS  PubMed  Google Scholar 

  10. Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P (2004) SMART 4.0: towards genomic data integration. Nucleic Acids Res 32D:142–144. https://doi.org/10.1093/nar/gkh088

    Article  Google Scholar 

  11. Nagaraju M, Reddy PS, Anil Kumar S, Kumar A, Rajasheker G, Rao DM, Kavi Kishor PB (2020) Genome-wide identification and transcriptional profiling of small heat shock proten gene family under diverse abiotic stress conditions in Sorghum bicolor (L.). Int J Biol Macromol 142:822–834. https://doi.org/10.1016/j.ijbiomac.2019.10.023

    Article  CAS  PubMed  Google Scholar 

  12. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy Server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607

    Chapter  Google Scholar 

  13. Moller S, Croning MDR, Apweller R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17:646–653. https://doi.org/10.1093/bioinformatics/17.7.646

    Article  CAS  PubMed  Google Scholar 

  14. Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587. https://doi.org/10.1093/nar/gkm259

    Article  PubMed  PubMed Central  Google Scholar 

  15. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300. https://doi.org/10.1093/nar/27.1.297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Romauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327. https://doi.org/10.1093/nar/30.1.325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Suyama M, Torrents D, Bork P (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34:W609–W612. https://doi.org/10.1093/nar/gkl315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator v3: a reference expression database for the meta analysis of transcriptomes. Adv Bioinformatics. https://doi.org/10.1155/2008/420747

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinf 13:134. https://doi.org/10.1186/1471-2105-13-134

    Article  CAS  Google Scholar 

  21. Reddy PS, Reddy DS, Sivasakthi K, Bhatnagar-Mathur P, Vadez V, Sharma KK (2016) Evaluation of sorghum [Sorghum bicolor (L.)] reference genes in various tissues and under abiotic stress conditions for quantitative real-time PCR data normalization. Front Plant Sci 7:529. https://doi.org/10.3389/fpls.2016.00529

    Article  Google Scholar 

  22. Pfaffl WM, Horganl WG, Leo D (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 3:900. https://doi.org/10.1093/nar/30.9.e36

    Article  Google Scholar 

  23. Miernyk JA (2001) The J-domain proteins of Arabidopsis thaliana: an unexpectedly large and diverse family of chaperones. Cell Stress Chaperones 6:209–218. https://doi.org/10.1379/1466-1268(2001)006<0209:tjdpoa>2.0.co;2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vembar SS, Jin Y, Brodsky JL, Hendershot LM (2009) The mammalian Hsp40 ERdj3 requires its Hsp70 interaction and substrate binding properties to complement various yeast Hsp40-dependent functions. J Biol Chem 284:32462–32471. https://doi.org/10.1074/jbc.M109.000729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu C, Willmund F, Whitelegge JP, Hawat S, Knapp B, Lodha M, Schroda M (2005) J-domain protein CDJ2 and HSP70B are a plastidic chaperone pair that interacts with vesicle-inducing protein in plastids. Mol Biol Cell 16:1165–1177. https://doi.org/10.1091/mbc.E04-08-0736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Angles F, Castanie-Cornet MP, Slama N, Dinclaux M, Cirinesi A, Portais J, Letisse F, Genevaux P (2017) Multilevel interaction of the DnaK/DnaJ (HSP70/HSP40) stress-responsive chaperone machine with the central metabolism. Sci. Rep 7:1–16. https://doi.org/10.1038/srep41341

    Article  CAS  Google Scholar 

  27. Hu L, Zhang Z, Xiang Z, Yang Z (2016) Exogenous application of citric acid ameliorates the adverse effect of heat stress in tall fescue (Lolium arundinaceum). Front Plant Sci 7:179. https://doi.org/10.3389/fpls.2016.00179

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang G, Kong F, Zhang S, Meng X, Wang Y, Meng Q (2015) A tomato chloroplast-targeted DnaJ protein protects Rubisco activity under heat stress. J Exp Bot 66:3027–3040. https://doi.org/10.1093/jxb/erv102

    Article  CAS  PubMed  Google Scholar 

  29. Valencia-Morales MD, Camas-Reyes JA, Cabrera-Ponce JL, Alvarez-Venegas R (2012) The Arabidopsis thaliana SET-domain containing protein ASHH1/SDG26 interacts with itself and with distinct histone lysine methyltransferases. J Plant Res 125:679–692. https://doi.org/10.1007/s10265-012-0485-7

    Article  CAS  Google Scholar 

  30. Feng K, Yu J, Cheng Y, Ruan M, Wang R, Ye Q, Zhou G, Li Z, Yao Z, Yang Y, Zheng Q, Wan H (2016) The SOD gene family in tomato: identification, phylogenetic relationships, and expression patterns. Front Plant Sci 7:1279. https://doi.org/10.3389/fpls.2016.01279

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MN is thankful to the UGC, New Delhi, for providing fellowship. PBK is thankful to the Vignan’s Foundation for Science, Technology and Research, Guntur for providing Emeritus Fellowship.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

PBK, and DMR designed the experiments. MN implemented and collected the data. MN, AK, and RG performed experiments. MN, PBK, and DMR analyzed the results and prepared the manuscript. MN, AK, and PBK revised the manuscript. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to D. Manohar Rao or P. B. Kavi Kishor.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 125 kb)

Supplementary file2 (PPTX 182 kb)

Supplementary file3 (PPTX 203 kb)

Supplementary file4 (PPTX 355 kb)

Supplementary file5 (PPTX 213 kb)

Supplementary file6 (PPTX 92 kb)

Supplementary file7 (PPTX 277 kb)

Supplementary file8 (PPTX 92 kb)

Supplementary file9 (PPTX 230 kb)

Supplementary file10 (PPTX 352 kb)

Supplementary file11 (PPTX 344 kb)

Supplementary file12 (PPTX 166 kb)

Supplementary file13 (PPTX 307 kb)

Supplementary file14 (PPTX 399 kb)

Supplementary file15 (PPTX 1785 kb)

Supplementary file16 (PPTX 766 kb)

Supplementary file17 (PPTX 765 kb)

Supplementary file18 (DOCX 15 kb)

Supplementary file19 (XLSX 37 kb)

Supplementary file20 (DOC 290 kb)

Supplementary file21 (DOC 431 kb)

Supplementary file22 (DOCX 22 kb)

Supplementary file23 (DOCX 27 kb)

Supplementary file24 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaraju, M., Kumar, A., Rajasheker, G. et al. DnaJs, the critical drivers of Hsp70s: genome-wide screening, characterization and expression of DnaJ family genes in Sorghum bicolor. Mol Biol Rep 47, 7379–7390 (2020). https://doi.org/10.1007/s11033-020-05793-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05793-w

Keywords

Navigation