Skip to main content
Log in

Molecular and morphological discrimination of Chrysanthemum indicum using allele-specific PCR and T-shaped trichome

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Chrysanthemum indicum L. is a traditional oriental medicinal herb prepared as a tea from flowers that have been used in China and South Korea since ancient times. It has a long history in the treatment of hypertension, inflammation, and respiratory diseases. Among Chrysanthemum species, C. indicum has more active chemical components as well as better therapeutic effects, and C. indicum is mostly used for medicinal purposes in South Korea. However, the usage of C. indicum has become problematic over the years due to the abundance of adulterated Chrysanthemum and confusion with morphologically related species such as C. morifolium, C. boreale, and Aster spathulifolius. Thus, here we developed a method for molecular authentication using chloroplast universal region rpoC2 and morphological authentication based on T-shaped trichomes of the adaxial leaf surface. By using a species-specific primer derived from the rpoC2 region, we established a multiplex allele-specific PCR for the discrimination of C. indicum. Amplicons of 675 bp for C. indicum and 1026 bp for other Chrysanthemum species were produced using both rpoC2-specific and common primers. These primers can be used to analyze dried samples of Chrysanthemum. Morphological discrimination was performed using T-shaped trichomes present only on the adaxial leaf surface of C. indicum species, and then molecular markers were utilized to authenticate C. indicum products from adulterant samples available in the market. Our results indicate that these molecular markers in combination with morphological differentiation can serve as an effective tool for identifying C. indicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ganie SH, Upadhyay P, Das S, Prasad Sharma M (2015) Authentication of medicinal plants by DNA markers. Plant Gene 4:83–99. https://doi.org/10.1016/j.plgene.2015.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang F, Zhang FJ, Di CF et al (2014) Identification of Chrysanthemum (Chrysanthemum morifolium) self-incompatibility. Sci World J. https://doi.org/10.1155/2014/625658

    Article  Google Scholar 

  3. Mitiouchkina TY, Dolgov SV (1998) Modification of Chrysanthemum plant and flower architecture by rolC gene from Agrobacterium rhizogenes introduction. Acta Hortic 508:163–172

    Google Scholar 

  4. Cheng W, Li J, You T, Hu C (2005) Anti-inflammatory and immunomodulatory activities of the extracts from the inflorescence of Chrysanthemum indicum Linné. J Ethnopharmacol 101:334–337. https://doi.org/10.1016/j.jep.2005.04.035

    Article  PubMed  Google Scholar 

  5. Jeong SC, Kim SM, Jeong YT, Song CH (2013) Hepatoprotective effect of water extract from Chrysanthemum indicum L. flower. Chinese Med (United Kingdom) 8:1–8. https://doi.org/10.1186/1749-8546-8-7

    Article  Google Scholar 

  6. Luyen BTT, Tai BH, Thao NP et al (2015) Anti-inflammatory components of Chrysanthemum indicum flowers. Bioorganic Med Chem Lett 25:266–269. https://doi.org/10.1016/j.bmcl.2014.11.054

    Article  CAS  Google Scholar 

  7. Shunying Z, Yang Y, Huaidong Y et al (2005) Chemical composition and antimicrobial activity of the essential oils of Chrysanthemum indicum. J Ethnopharmacol 96:151–158. https://doi.org/10.1016/j.jep.2004.08.031

    Article  CAS  PubMed  Google Scholar 

  8. Chang K-M, Choi E-M, Kim G-H (2010) Chemical constituents of Chrysanthemum indicum L. flower oil and effect on osteoblastic MC3T3-E1 cells. Food Sci Biotechnol 19:815–819

    Article  CAS  Google Scholar 

  9. Chang K-M, Kim G-H (2008) Volatile aroma composition of Chrysanthemum indicum L. flower oil. J Food Sci Nutr 13:122–127

    CAS  Google Scholar 

  10. Choi H-S, Kim G-H (2011) Volatile flavor composition of gamguk (Chrysanthemum indicum) flower essential oils. Food Sci Biotechnol 20:319–325

    Article  CAS  Google Scholar 

  11. Tsuji-Naito K, Saeki H, Hamano M (2009) Inhibitory effects of Chrysanthemum species extracts on formation of advanced glycation end products. Food Chem 116:854–859

    Article  CAS  Google Scholar 

  12. Dmitruk M, Weryszko-Chmielewska E (2010) Morphological differentiation and distribution of non-glandular and glandular trichomes on Dracocephalum moldavicum L. shoots. Acta Agrobot 63(1):11–22

    Google Scholar 

  13. Meo AA, Khan MA (2006) Pollen morphology as an aid to the identification of Chrysanthemum species (Compositae-Anthemideae) from Pakistan. Pakistan J Bot 38:29

    Google Scholar 

  14. Sumitomo K, Nishijima T, Onozaki T, Shibata M (2006) Density, length and development of non-glandular trichome on the leaves of wild chrysanthemums and Chrysanthemum cultivars. Hortic Res 5(4):351–356

    Article  Google Scholar 

  15. Bhatt A, Naidoo Y, Nicholas A (2010) An investigation of the glandular and non-glandular foliar trichomes of Orthosiphon labiatus NE Br.[Lamiaceae]. New Zeal J Bot 48:153–161

    Article  Google Scholar 

  16. Dalin P, Ågren J, Björkman C et al (2008) Leaf trichome formation and plant resistance to herbivory. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, Dordrecht, pp 89–105

    Chapter  Google Scholar 

  17. He J, Chen F, Chen S et al (2011) Chrysanthemum leaf epidermal surface morphology and antioxidant and defense enzyme activity in response to aphid infestation. J Plant Physiol 168:687–693

    Article  CAS  Google Scholar 

  18. Buitenhuis R, Shipp L, Scott-Dupree C et al (2014) Host plant effects on the behaviour and performance of Amblyseius swirskii (Acari: Phytoseiidae). Exp Appl Acarol 62:171–180. https://doi.org/10.1007/s10493-013-9735-1

    Article  PubMed  Google Scholar 

  19. Mircea CC, Cioancă O, Draghia L, Hăncianu M (2015) Morphological characteristics, phenolic and terpenoid profiles in garden Chrysanthemum grown in different nutritional conditions. Not Bot Horti Agrobot Cluj-Napoca 43:371–379

    Article  CAS  Google Scholar 

  20. Seethapathy GS, Raclariu-Manolica AC, Anmarkrud JA et al (2019) DNA metabarcoding authentication of ayurvedic herbal products on the european market raises concerns of quality and fidelity. Front Plant Sci 10:1–11. https://doi.org/10.3389/fpls.2019.00068

    Article  Google Scholar 

  21. Kim WJ, Moon BC, Yang S et al (2016) Rapid authentication of the herbal medicine plant species Aralia continentalis Kitag. and Angelica biserrata C.Q. Yuan and R.H. Shan using ITS2 sequences and multiplex-SCAR markers. Molecules. https://doi.org/10.3390/molecules21030270

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen X, Liao B, Song J et al (2013) A fast SNP identification and analysis of intraspecific variation in the medicinal Panax species based on DNA barcoding. Gene 530:39–43. https://doi.org/10.1016/j.gene.2013.07.097

    Article  CAS  PubMed  Google Scholar 

  23. Lee OR, Kim M-K, Yang D-C (2012) Authentication of medicinal plants by SNP-based multiplex PCR. In: Sucher N, Hennell J, Carles M (eds) Plant DNA Fingerprinting and Barcoding. Methods in molecular biology (Methods and Protocols), vol 862. Humana Press, New York, pp 135–147

    Chapter  Google Scholar 

  24. Wang H, Kim MK, Kim YJ et al (2012) Molecular authentication of the Oriental medicines Pericarpium Citri Reticulatae and Citri Unshius Pericarpium using SNP markers. Gene 494:92–95. https://doi.org/10.1016/j.gene.2011.11.026

    Article  CAS  PubMed  Google Scholar 

  25. Serino G, Maliga P (1998) RNA polymerase subunits encoded by the plastid rpo genes are not shared with the nucleus-encoded plastid enzyme. Plant Physiol 117:1165–1170. https://doi.org/10.1104/pp.117.4.1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16(22):10881–10890

    Article  CAS  Google Scholar 

  27. Hall TA (2011) A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. In: Nucleic Acids Symp. Ser. https://www.google.com/search?q=bio+edit+software+citation&rlz=1C1RUCY_enKR789KR789&oq=bio+edit+software+citat&aqs=chrome.1.69i57j33.13979j0j7&sourceid=chrome&ie=UTF-8.

  28. Elvin MA, Kelley RB, Drew BT (2019) Trichome morphology relates to taxonomic diversity in Monardella (Lamiaceae) in the lower Snake River Watershed of Idaho and Oregon, USA: taxonomic studies in Monardella (Lamiaceae) VI. J Torrey Bot Soc. https://doi.org/10.3159/TORREY-D-18-00059.1

    Article  Google Scholar 

  29. Riddick EW, Simmons AM (2014) Do plant trichomes cause more harm than good to predatory insects? Pest Manag Sci 70:1655–1665

    Article  CAS  Google Scholar 

  30. Stavrinides MC, Skirvin DJ (2003) The effect of chrysanthemum leaf trichome density and prey spatial distribution on predation of Tetranychus urticae (Acari: Tetranychidae) by Phytoseiulus persimilis (Acari: Phytoseiidae). Bull Entomol Res 93:343–350. https://doi.org/10.1079/ber2003243

    Article  PubMed  Google Scholar 

  31. Abid S, Mohanan P, Kaliraj L et al (2019) Development of species-specific chloroplast markers for the authentication of Gynostemma pentaphyllum and their distribution in the Korean peninsula. Fitoterapia 138:104295. https://doi.org/10.1016/j.fitote.2019.104295

    Article  CAS  PubMed  Google Scholar 

  32. Kim SJ, Lee CH, Kim J, Kim KS (2014) Phylogenetic analysis of Korean native Chrysanthemum species based on morphological characteristics. Sci Hortic (Amsterdam) 175:278–289. https://doi.org/10.1016/j.scienta.2014.06.018

    Article  Google Scholar 

  33. Klie M, Schie S, Linde M, Debener T (2014) The type of ploidy of chrysanthemum is not black or white: a comparison of a molecular approach to published cytological methods. Front Plant Sci 5:1–8. https://doi.org/10.3389/fpls.2014.00479

    Article  Google Scholar 

  34. Zhang Y, Wang C, Ma HZ, Dai SL (2013) Assessing the genetic diversity of Chrysanthemum cultivars with microsatellites. J Am Soc Hortic Sci 138:479–486. https://doi.org/10.21273/jashs.138.6.479

    Article  CAS  Google Scholar 

  35. Mohanan P, Hurh J, Kim SO et al (2019) Chloroplast DNA-derived markers for the authentication of oriental medicinal Rubus species and mistaken identity of bokbunja in the local markets of Korea. Plant Biotechnol Rep 13:305–314. https://doi.org/10.1007/s11816-019-00540-5

    Article  Google Scholar 

  36. Fang W, Meinhardt LW, Tan H et al (2016) Identification of the varietal origin of processed loose-leaf tea based on analysis of a single leaf by SNP nanofluidic array. Crop J. https://doi.org/10.1016/j.cj.2016.02.001

    Article  Google Scholar 

Download references

Funding

This study was supported by a grant from the Korea Institute of Planning & Evaluation for Technology in Food, Agriculture, Forestry & Fisheries (KIPET NO: 119111-01), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deok Chun Yang or Seok-Kyu Jung.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This chapter does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abid, S., Kaliraj, L., Arif, M.H. et al. Molecular and morphological discrimination of Chrysanthemum indicum using allele-specific PCR and T-shaped trichome. Mol Biol Rep 47, 7699–7708 (2020). https://doi.org/10.1007/s11033-020-05844-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05844-2

Keywords

Navigation