Skip to main content

Advertisement

Log in

DNA barcoding and species delimitation of butterflies (Lepidoptera) from Nigeria

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Accurate identification of species is a prerequisite for successful biodiversity management and further genetic studies. Species identification techniques often require both morphological diagnostics and molecular tools, such as DNA barcoding, for correct identification. In particular, the use of the subunit I of the mitochondrial cytochrome c oxidase (COI) gene for DNA barcoding has proven useful in species identification for insects. However, to date, no studies have been carried out on the DNA barcoding of Nigerian butterflies. We evaluated the utility of DNA barcoding applied for the first time to 735 butterfly specimens from southern Nigeria. In total, 699 DNA barcodes, resulting in a record of 116 species belonging to 57 genera, were generated. Our study sample comprised 807 DNA barcodes based on sequences generated from our current study and 108 others retrieved from BOLD. Different molecular analyses, including genetic distance-based evaluation (Neighbor-Joining, Maximum Likelihood and Bayesian trees) and species delimitation tests (TaxonDNA, Automated Barcode Gap Discovery, General Mixed Yule-Coalescent, and Bayesian Poisson Tree Processes) were performed to accurately identify and delineate species. The genetic distance-based analyses resulted in 163 well-separated clusters consisting of 147 described and 16 unidentified species. Our findings indicate that about 90.20% of the butterfly species were explicitly discriminated using DNA barcodes. Also, our field collections reported the first country records of ten butterfly species—Acraea serena, Amauris cf. dannfelti, Aterica galena extensa, Axione tjoane rubescens, Charaxes galleyanus, Papilio lormieri lormeri, Pentila alba, Precis actia, Precis tugela, and Tagiades flesus. Further, DNA barcodes revealed a high mitochondrial intraspecific divergence of more than 3% in Bicyclus vulgaris vulgaris and Colotis evagore. Furthermore, our result revealed an overall high haplotype (gene) diversity (0.9764), suggesting that DNA barcoding can provide information at a population level for Nigerian butterflies. The present study confirms the efficiency of DNA barcoding for identifying butterflies from Nigeria. To gain a better understanding of regional variation in DNA barcodes of this biogeographically complex area, future work should expand the DNA barcode reference library to include all butterfly species from Nigeria as well as surrounding countries. Also, further studies, involving relevant genetic and eco-morphological datasets, are required to understand processes governing mitochondrial intraspecific divergences reported in some species complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gullan PJ, Cranston PS (2004) The insects: an outline of entomology, 3rd edn. Wiley-Blackwell, Hoboken, pp 198–199

    Google Scholar 

  2. Boriani L, Burgio G, Marini M, Genghini M (2005) Faunistic study on butterflies collected in Northern Italy rural landscape. Bull Insectol 58(1):49–56

    Google Scholar 

  3. Bonebrake TC, Ponisio LC, Boggs CL, Ehrlich PR (2010) More than just indicators: a review of tropical butterfly ecology and conservation. Biol Conserv 143:1831–1841

    Google Scholar 

  4. Aiswarya VN, Pradarsika M, Soma AB (2014) Studies on the diversity and abundance of butterfly (Lepidoptera: Rhopalocera) fauna in and around Sarojini Naidu college campus, Kolkata, West Bengal, India. J Entomol Zool Stud 2(4):129–133

    Google Scholar 

  5. Ackery PR, Smith CP, Vane-Wright R (eds) (1995) Carcasson’s African butterflies. an annotated catalogue of the Papilionoidea and Hesperoidea of the Afrotropical region. CSIRO Publishing, Melbourne, p 816

    Google Scholar 

  6. Kristensen NP, Scoble MJ, Karsholt O (2007) Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. Zootaxa 1668:699–747

    Google Scholar 

  7. Emmel TC, Larsen TB (1997) Butterfly diversity in Ghana West Africa. Trop Lepidoptera 8(supplement 3):1–13

    Google Scholar 

  8. Viejo P, Paul L, Curie N (2000) Conservation biology, 1st ed. p 300

  9. African Butterfly Database (2020) Species list of butterflies in Nigeria. https://abdb-africa.org/locality/Nigeria?oid=13. Accessed 5 May 2020

  10. Tropek R, Jansta P, Lestina D (2013) Acraea wigginsi occidentalis (Bethune-Baker, 1926), a new butterfly for Nigeria, with remarks on its habitat and known distribution (Lepidoptera: Nymphalidae). Shilap 41:163–165

    Google Scholar 

  11. Sáfián S, Pyrcz TW, Brattström O (2016) Two new species of Bebearia Hemming, 1960, as further evidence of centre of endemism of butterflies in Western Nigeria (Lepidoptera: Nymphalidae: Limenitinae). Zootaxa 4175(5):449

    PubMed  Google Scholar 

  12. Pyrcz TW, Sáfián S (2018) A new subspecies of Cymothoe fumana (Westwood, 1850) from Western Nigeria (Lepidoptera: Nymphalidae: Limenitidinae). Metamorphosis 29:5–8

    Google Scholar 

  13. Amusan B, Ojianwuna C, Kehinde T, Akanbi A (2014) Butterfly diversity in Obafemi Awolowo University, Ile-Ife, Southwest Nigeria. Zoologist 12:1–7

    Google Scholar 

  14. Alarape AA, Omifolaji JK, Mwansat GS (2015) Butterfly species diversity and abundance in university of Ibadan Botanical Garden, Nigeria. Open J Ecol 5:352–360

    Google Scholar 

  15. Kemabontal KA, Ebiyon AS, Olaleru F (2015) The Butterfly fauna of three varying habitats in South Western Nigeria. FUTA J Res Sci 1:1–6

    Google Scholar 

  16. Yager GO, Agbidye FS, Okoh AO (2016) Diversity and abundance of butterfly species (lepidoptera) fauna in Federal University of Agriculture, Makurdi Forestry Nursery, Benue State Nigeria. J Res For Wildl Environ 8(3):83–89

    Google Scholar 

  17. Orimaye JO, Ogunyemi OO, Okosodo EF, Ojo VA, Agbelusi TO (2016) Butterfly species diversity in protected and unprotected habitat of Ise Forest Reserve, Ise Ekiti, Ekiti State. Adv Ecol 2016:1–5

    Google Scholar 

  18. Larsen TB (1995) Butterfly research in the Oban Hills, cross River National Park. Calabar: Oban Hills Programme, Second Interim Report

  19. Hebert PDN, Cywinska A, Ball SL, Waard JR (2003) Biological identifications through DNA barcodes. Philos Trans R Soc B 270:313–321

    CAS  Google Scholar 

  20. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Philos Trans R Soc B 101:14812–14817

    CAS  Google Scholar 

  21. Ward RD, Zemlak ST, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc B 360:1847–1857

    CAS  Google Scholar 

  22. Cywinska A, Hunter FF, Hebert PDN (2006) Identifying Canadian mosquito species through DNA barcodes. Med Vet Entomol 20:413–424

    CAS  PubMed  Google Scholar 

  23. Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN (2006) DNA barcodes distinguish species of tropical Lepidoptera. Philos Trans R Soc B 103:968–971

    Google Scholar 

  24. Hajibabaei M, Smith MA, Janzen DH, Rodriguez JJ, Whitefiels JB, Hebert PDN (2006) A minimalist barcode can identify a specimen whose DNA is degraded. Mol Ecol Notes 6:959–964

    CAS  Google Scholar 

  25. Smith MA, Wood DM, Janzen DH, Hallwachs W, Hebert PDN (2007) DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists. Philos Trans R Soc B 104:4967–4972

    CAS  Google Scholar 

  26. Borisenko AV, Burton KL, Ivanova NV, Hanner RH, Hebert PDN (2008) DNA barcoding in surveys of small mammal communities: a field study in Suriname. Mol Ecol Res 8:471–479

    CAS  Google Scholar 

  27. Janzen DH, Hallwachs W, Blandin P, Burns JM et al (2009) Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity. Mol Ecol Res 9(1):1–26

    CAS  Google Scholar 

  28. Kerr KCR, Lijtmear DA, Barriera AS, Hebert PDN, Tubaro PL (2009) Probing evolutionary patterns in neotropical birds through DNA barcodes. PLoS ONE 4:e4379

    PubMed  PubMed Central  Google Scholar 

  29. Smith MA, Fernandez-Triana J, Roughley R, Hebert PDN (2009) DNA barcode accumulation curves for understudied taxa and areas. Mol Ecol Res 9:08–216. https://doi.org/10.1111/j.1755-0998.2009.02646

    Article  Google Scholar 

  30. Foottit RG, Maw HEL, von Dohlen CD, Hebert PDN (2008) Species identification of aphids (Insecta: Hemiptera: Aphididae) through DNA barcodes. Mol Ecol Res 8:1189–1201

    CAS  Google Scholar 

  31. Hastings JM, Schultheis PJ, Whitson M et al (2008) DNA barcoding of new world cicada killers (Hymenoptera: Crabronidae). Zootaxa 1713:27–38

    Google Scholar 

  32. Hubert N, Hanner R, Holm E et al (2008) Identifying Canadian freshwater fishes through DNA barcodes. PLoS ONE 3:e2490

    PubMed  PubMed Central  Google Scholar 

  33. Hou ZE, Li Z, Li SQ (2009) Identifying Chinese species of Gammarus (Crustacea: Amphipoda) using DNA barcoding. Curr Zool 55:158–164

    CAS  Google Scholar 

  34. Wong E, Shivji MS, Hanner RH (2009) Identifying sharks with DNA barcodes: assessing the utility of a nucleotide diagnostic approach. Mol Ecol Res 9(1):243–256

    CAS  Google Scholar 

  35. Clare EL, Lim BK, Fenton MB, Hebert PDN (2011) Neotropical bats: estimating species diversity with DNA barcodes. PLoS ONE 6:e22648

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nneji LM, Adeola AC, Wang Y-Y et al (2020) Testing the effectiveness of DNA barcoding for biodiversity assessment of moths from Nigeria. Diversity 12:85

    Google Scholar 

  37. Nneji LM, Adeola AC, Okeyoyin A et al (2019) Assessing the effectiveness of molecular data for species identification and diversity studies of Nigerian herpetofauna. Mitochondrial DNA B. https://doi.org/10.1080/23802359.2018.1561219

    Article  Google Scholar 

  38. Lukhtanov VA, Sourakov A, Zakharov EV, Hebert PDN (2009) DNA barcoding Central Asian butterflies: increasing geographical dimension does not significantly reduce the success of species identification. Mol Ecol Res 9:1302–1310

    Google Scholar 

  39. Dincă V, Zakharov EV, Hebert PDN, Vila R (2011) Complete barcode library for a country’s butterfly fauna reveals high performance for temperate Europe. Philos Trans R Soc B 278:347–355

    Google Scholar 

  40. Gaikwad SS, Ghate HV, Ghaskadbi SS, Patole MS, Shouche YS (2012) DNA barcoding of nymphalid butterflies (Nymphalidae: Lepidoptera) from Western Ghats of India. Mol Biol Rep 39:2375–2383

    CAS  PubMed  Google Scholar 

  41. Huemer P, Mutanen M, Sefc KM, Hebert PDN (2014) Testing DNA barcode performance in 1000 species of European Lepidoptera: large geographic distances have small genetic impacts. PLoS ONE 9(12):e115774

    PubMed  PubMed Central  Google Scholar 

  42. Hausmann A, Haszprunar G, Hebert PDN (2011) DNA barcoding the geometrid fauna of Bavaria (Lepidoptera): successes, surprises, and questions. PLoS ONE 6:e17134

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mutanen M, Hausmann A, Hebert PDN, Landry J-F, de Waard JR, Huemer P (2012) Allopatry as a Gordian knot for taxonomists: patterns of DNA barcode divergence in Arctic-Alpine Lepidoptera. PLoS ONE 7(10):e47214

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dincă V, Montagud S, Talavera G et al (2015) DNA barcode reference library for Iberian butterflies enables a continental-scale preview of potential cryptic diversity. Sci Rep 5:12395

    PubMed  PubMed Central  Google Scholar 

  45. Mutanen M, Kivelä SM, Vos RA, Doorenweerd C, Ratnasingham S, Hausmann A et al (2016) Species-level para- and polyphyly in DNA barcode gene trees: strong operational bias in European Lepidoptera. Syst Biol 65(6):1024–1040

    PubMed  PubMed Central  Google Scholar 

  46. Terborgh J (2002) Making parks work: strategies for preserving tropical nature. Island Press, Washington DC, p 65

    Google Scholar 

  47. Larsen TB (2005) Butterflies of West Africa. Apollo Books, Svendborg

    Google Scholar 

  48. Ivanova NV, Grainger CM (2007a) CCDB protocols, COI amplification. https://www.dnabarcoding.ca/CCDB-DOCS/CCDB_amplification.pdf. Accessed 15 July 2020

  49. Ivanova NV, Grainger CM (2007b) CCDB protocols, sequencing. https://www.dnabarcoding.ca/CCDB_DOCS/CCDB_Sequencing.pdf. Accessed 15 July 2020

  50. Ivanova NV, Grainger CM (2007c) CCDB protocols, primer sets. https://www.dnabarcoding.ca/CCDB_DOCS/CCDB_Amplification.pdf. Accessed 15 July 2020

  51. Ivanova NV, DeWaard JR, Hebert PDN (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol Ecol Notes 6:998–1002

    CAS  Google Scholar 

  52. Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN (2007) Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes 7:544–548

    CAS  Google Scholar 

  53. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Strutzenberger P, Brehm G, Fiedler K (2011) DNA barcoding-based species delimitation increases species count of Eois (Geometridae) moths in a well-studied tropical mountain forest by up to 50%. Insect Sci 18:1744–7917

    Google Scholar 

  55. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    CAS  PubMed  Google Scholar 

  56. Kim M, Xinlong W, Kim JM et al (2010) Phylogenetic relationships of true butterflies (Lepidoptera: Papilionoidea) inferred from COI, 16S rRNA and EF-1α sequences. Mol Cells 30:409–425

    CAS  PubMed  Google Scholar 

  57. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    PubMed  Google Scholar 

  58. Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808

    PubMed  Google Scholar 

  59. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    CAS  PubMed  Google Scholar 

  60. Ronquist F et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    PubMed  PubMed Central  Google Scholar 

  61. Miller MA, Pfeiffer W, Schwartz T (2012) The CIPRES science gateway: enabling high-impact science for phylogenetics researchers with limited resources. In: Proceedings of the 1st conference of the extreme science and engineering discovery environment: Bridging from the extreme to the campus and beyond. Association for Computing Machinery, USA, pp 1–8

  62. Rambaut A (2012) Figtree v 1.4.0. https://tree.bio.ed.ac.uk/software/figtree/

  63. Meier R, Kwong S, Vaidya G, Ng PKL (2006) DNA Barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Syst Biol 55:715–55728

    PubMed  Google Scholar 

  64. Puillandre N, Lambert A, Brouillet S, Achaz G (2011) ABGD, Automatic barcode discovery for primary species delimitation. Mol Ecol 21:211864–211877

    Google Scholar 

  65. Saddhe AA, Jamdade RA, Kumar K (2017) Evaluation of multilocus marker efficacy for delineating mangrove species of West Coast India. PLoS ONE 12:e0183245

    PubMed  PubMed Central  Google Scholar 

  66. Nee S (2006) Birth-death models in macroevolution. Ann Rev Ecol Evol Syst 37:1–17

    Google Scholar 

  67. Gernhard T (2008) The conditioned reconstructed process. J Theor Biol 253(4):769–778

    PubMed  Google Scholar 

  68. Drummond AJ, Rambaut A (2007) Beast: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    PubMed  PubMed Central  Google Scholar 

  69. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with beauti and the beast 1.7. Mol Biol Evol 29:1969–1973

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rambaut A, Drummond AJ (2009) Tracer version 1.5 [computer program]. https://beast.bio.ed.ac.uk

  71. Rambaut A, Drummond AJ (2010) TreeAnnotator version 1.6.1 [computer program]. https://beast.bio.ed.ac.uk

  72. Paradis E, Claude J, Strimmer K (2004) APE: analysis of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    CAS  PubMed  Google Scholar 

  73. Ezard T, Fujisawa Tand Barraclough TG (2009). splits: SPecies' LImits by Threshold Statistics. R package version. 1.0–14/r31. https://R-Forge.R-project.org/projects/splits/

  74. Hendrich L, Morinière J, Haszprunar G, Hebert PDN, Hausmann A, Kohler F et al (2015) A comprehensive DNA barcode database for Central European beetles with a focus on Germany: adding more than 3,500 identified species to BOLD. Mol Ecol Res 15:795–818

    CAS  Google Scholar 

  75. Morinière J, Hendrich L, Hausmann A, Hebert P, Haszprunar G et al (2014) Barcoding Fauna Bavarica: 78% of the Neuropterida fauna barcoded! PLoS ONE 9(10):e109719

    PubMed  PubMed Central  Google Scholar 

  76. Lavinia PD, Nuñez Bustos E, Kopuchian C, Lijtmaer DA, Garcia NC, Hebert PDN, Tubaro PL (2017) Barcoding the butterflies of southern South America: species delimitation efficacy, cryptic diversity and geographic patterns of divergence. PLoS ONE 12:0186845

    Google Scholar 

  77. Yang M, Zhai Q, Yang Z, Zhang Y (2015) DNA barcoding Satyrine butterflies (Lepidoptera: Nymphalidae) in China. Mitochondrial DNA 27(4):2523–2528

    PubMed  Google Scholar 

  78. Marín MA, Cadavid IC, Valdés L et al (2016) DNA barcoding of an Assembly of Montane Andean butterflies (Satyrinae): geographical scale and identification performance. Neotrop Entomol 46:514–523

    Google Scholar 

  79. Busvine JR (1980) Cryptic species of insect disease vectors and their importance. Endeavour 4:108–112

    CAS  PubMed  Google Scholar 

  80. Della Torre A, Costantini C, Besansky NJ, Caccone A, Petrarca V, Powell JR, Coluzzi M (2002) Molecular and ecological aspects of incipient speciation within Anopheles gambiae: the glass is half full. Science 289:115–117

    Google Scholar 

  81. Clark AR, Armstrong KF, Carmichael AE, Milne JR, Raghu S, Roderick GK, Yeates DK (2005) Invasive phytophagous pests arising through a recent tropical evolutionary radiation: the Bactrocera dorsalis complex of fruit bies. Ann Rev Entomol 50:293–319

    Google Scholar 

  82. Ball SL, Armstrong KF (2006) DNA barcodes for insect pest identification: a test case with tussock moths (Lepidoptera: Lymantriidae). Can J For Res 36:337–350

    CAS  Google Scholar 

  83. Blagoev GA, Nikolova NI, Sobel CN, Hebert PDN, Adamowicz SJ (2013) Spiders (Araneae) of Churchill, Manitoba: DNA barcodes and morphology reveal high species diversity and new Canadian records. BMC Ecol 13:44–44

    PubMed  PubMed Central  Google Scholar 

  84. Raso L, Sint D, Rief A, Kaufman R, Traugott M (2014) Molecular identification of adult and juvenile Linyphiid and Theridiid spiders in Alpine Glacier Foreland communities. PLoS ONE 9:101755

    Google Scholar 

  85. Dona J, Diaz-Real J, Mironov S, Bazaga P, Serrano D, Jovani R (2015) DNA barcoding and mini barcoding as a powerful tool for feather mite studies. Mol Ecol Res 15:1216–1225

    CAS  Google Scholar 

  86. Xu X, Liu F, Chen J, Li D, Kuntner M (2015) Integrative taxonomy of the primitively segmented spider genus Ganthela (Araneae: Mesothelae: Liphistiidae): DNA barcoding gap agrees with morphology. Zool J Linn Soc 175:288–306

    Google Scholar 

  87. Ashfaq M, Ara J, Noor AR, Hebert PDN, Mansoor S (2011) Molecular phylogenetic analysis of a scale insect (Drosicha mangiferae; Hemiptera: Monophlebidae) infesting mango orchards in Pakistan. Eur J Entomol 108:553–559

    Google Scholar 

  88. Ashfaq M, Akhtar S, Khan AM, Adamowicz SJ, Hebert PDN (2013) DNA barcode analysis of butterfly species from Pakistan points towards regional endemism. Mol Ecol Resour 13(5):832–843

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Carew ME, Pettigrove V, Cox RL, Hoffmann AA (2007) DNA identification of urban Tanytarsinichironomids (Diptera: Chironomidae). J N Am Benthol Soc 26:587–600

    Google Scholar 

  90. Williams MC (2020) Afrotropical butterflies. https://www.lepsocafrica.org/?p=publications&s=atb

Download references

Acknowledgements

We are grateful to field assistants at the Cross River National Park Nigeria, for their help during sampling. The authors wish to thank Deme Gideon Gyma and Daniel Bassey for their assistance during the field survey.

Funding

This work was supported by the Whitley Wildlife Conservation Trust, Sino-Africa Joint Research Centre, Chinese Academy of Sciences (SAJC201611), National Natural Science Foundation of China (31750110480), and the Animal Branch of the Germplasm Bank of Wild Species, Chinese Academy of Sciences (the Large Research Infrastructure Funding).

Author information

Authors and Affiliations

Authors

Contributions

LMN and ACA designed and supervised the project. LMN, AOA, OA, YM., SOO, ICN, and AOA collected the samples. LMN, ACA, and YYW performed the molecular laboratory works. LMN and MMR performed genetic analyses. CSO provided technical assistance. LMN wrote the initial draft of the manuscript. ACA revised the initial draft of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lotanna Micah Nneji or Adeniyi Charles Adeola.

Ethics declarations

Conflict of interest

All authors have declare that no conflicts of interest exist.

Ethical approval

Permission to collect animal specimens (NPH/GEN/121/XXV/461) from Cross River National Park was obtained from the National Park Service Headquarter, Abuja, Nigeria.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 100 kb)

Electronic supplementary material 2 (DOCX 26 kb)

Electronic supplementary material 3 (DOCX 16 kb)

Electronic supplementary material 4 (DOCX 31 kb)

Electronic supplementary material 5 (DOCX 34 kb)

11033_2020_5984_MOESM6_ESM.pdf

Electronic supplementary material 6 (PDF 4196 kb). Figure S1: The Neighbor-Joining tree used in the identification of the newly collected butterfly species from Cross River National Park, Nigeria, Note = queried sequences are highlighted in red. The Neighbor-Joining trees were constructed using BOLD web interphase

11033_2020_5984_MOESM7_ESM.pdf

Electronic supplementary material 7 (PDF 1469 kb). Figure S2: Bootstrap neighbour-joining tree of all 807 individuals of butterflies from Nigeria used in the analysis, estimated on the basis of Kimura 2-parameter

11033_2020_5984_MOESM8_ESM.pdf

Electronic supplementary material 8 (PDF 381 kb). Figure S3: The Maximum likelihood (ML) tree based on the GTR + G model and obtained using the 304 unique COI haplotypes of Nigerian butterflies. Numbers above or below branches correspond to bootstrap support based on 1,000 pseudoreplicates

11033_2020_5984_MOESM9_ESM.pdf

Electronic supplementary material 9 (PDF 352 kb). The Bayesian Inference tree based on the 304 unique COI haplotypes of Nigerian butterflies

11033_2020_5984_MOESM10_ESM.pdf

Electronic supplementary material 10 (PDF 631 kb). (A) The initial and (b) recursive partitions of the ABGD tree-based identification based on Simple distance method using the 304 unique COI haplotypes of Nigerian butterflies

11033_2020_5984_MOESM11_ESM.pdf

Electronic supplementary material 11 (PDF 655 kb). (A) The initial and (b) recursive partitions of the ABGD tree-based identification based on JC method using the 304 unique COI haplotypes of Nigerian butterflies

11033_2020_5984_MOESM12_ESM.pdf

Electronic supplementary material 12 (PDF 547 kb). (A) The initial and (b) recursive partitions of the ABGD tree-based identification based on Kimura method using the 304 unique COI haplotypes of Nigerian butterflies

11033_2020_5984_MOESM13_ESM.pdf

Electronic supplementary material 13 (PDF 595 kb). The bPTP tree-based identification based on (A) Bayesian Inference and (2) Maximum Likelihood trees using the 304 unique COI haplotypes of Nigerian butterflies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nneji, L.M., Adeola, A.C., Ayoola, A.O. et al. DNA barcoding and species delimitation of butterflies (Lepidoptera) from Nigeria. Mol Biol Rep 47, 9441–9457 (2020). https://doi.org/10.1007/s11033-020-05984-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05984-5

Keywords

Navigation