Skip to main content
Log in

Molecular mechanism of down-regulating adipogenic transcription factors in 3T3-L1 adipocyte cells by bioactive anti-adipogenic compounds

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Obesity is growing at an alarming rate, which is characterized by increased adipose tissue. It increases the probability of many health complications, such as diabetes, arthritis, cardiac disease, and cancer. In modern society, with a growing population of obese patients, several individuals have increased insulin resistance. Herbal medicines are known as the oldest method of health care treatment for obesity-related secondary health issues. Several traditional medicinal plants and their effective phytoconstituents have shown anti-diabetic and anti-adipogenic activity. Adipose tissue is a major site for lipid accumulation as well as the whole-body insulin sensitivity region. 3T3-L1 cell line model can achieve adipogenesis. Adipocyte characteristics features such as expression of adipocyte markers and aggregation of lipids are chemically induced in the 3T3-L1 fibroblast cell line. Differentiation of 3T3-L1 is an efficient and convenient way to obtain adipocyte like cells in experimental studies. Peroxisome proliferation activated receptor γ (PPARγ) and Cytosine-Cytosine-Adenosine-Adenosine-Thymidine/Enhancer-binding protein α (CCAAT/Enhancer-binding protein α or C/EBPα) are considered to be regulating adipogenesis at the early stage, while adiponectin and fatty acid synthase (FAS) is responsible for the mature adipocyte formation. Excess accumulation of these adipose tissues and lipids leads to obesity. Thus, investigating adipose tissue development and the underlying molecular mechanism is important in the therapeutical approach. This review describes the cellular mechanism of 3T3-L1 fibroblast cells on potential anti-adipogenic herbal bioactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Van Dam AD, Boon MR, Berbée JFP, Rensen PCN, Van Harmelen V (2017) Targeting white, brown and perivascular adipose tissue in atherosclerosis development. Eur J Pharmacol 816:82–92. https://doi.org/10.1016/j.ejphar.2017.03.051

    Article  CAS  PubMed  Google Scholar 

  2. Praveen KI, Ishan M, Sujatha S, Alwin D (2017) Antihyperglycemic and antihyperlipidemic activity of Jatropha gossypifolia methanolic extract in streptozotocin-nicotinamide induced diabetic rats. Asian J Pharm Clin Res 10:326–330. https://doi.org/10.22159/ajpcr.2017.v10i11.20985

    Article  CAS  Google Scholar 

  3. Praveen KI, Arun J, Sri Snehaa C, Sujatha S (2018) Tannins of Jatropha gossypifolia exert anti-hyperlipidemic effect. Eur Biomed Pharm Sci 5:607–614

    Google Scholar 

  4. Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444:840–846. https://doi.org/10.1038/nature05482

    Article  CAS  PubMed  Google Scholar 

  5. Huang B, Yuan HD, Kim DY, Quan HY, Chung SH (2011) Cinnamaldehyde prevents adipocyte differentiation and adipogenesis via regulation of peroxisome proliferator-activated receptor-γ (PPARγ) and AMP-activated protein kinase (AMPK) pathways. J Agric Food Chem 59:3666–3673. https://doi.org/10.1021/jf104814t

    Article  CAS  PubMed  Google Scholar 

  6. Hsu CL, Lin YJ, Ho CT, Yen GC (2012) Inhibitory effects of garcinol and pterostilbene on cell proliferation and adipogenesis in 3T3-L1 cells. Food Funct 3:49–57. https://doi.org/10.1039/c1fo10209e

    Article  CAS  PubMed  Google Scholar 

  7. Haylett WL, Ferris WF (2019) Adipocyte–progenitor cell communication that influences adipogenesis. Cell Mol Life Sci 77:115–128. https://doi.org/10.1007/s00018-019-03256-5

    Article  CAS  PubMed  Google Scholar 

  8. Eddouks M, Bidi A, El Bouhali B, Hajji L, Zeggwagh NA (2014) Antidiabetic plants improving insulin sensitivity. J Pharm Pharmacol 66:1197–1214. https://doi.org/10.1111/jphp.12243

    Article  CAS  PubMed  Google Scholar 

  9. Shimojo Y, Kosaka K, Shirasawa T (2011) Effect of Ganoderma lucidum extract on adipocyte differentiation and adiponectin gene expression in the murine pre-adipocyte cell line, 3T3-L1. Phyther Res 25:202–207. https://doi.org/10.1002/ptr.3242

    Article  Google Scholar 

  10. Shehzad A, Khan S, Sup Lee Y (2012) Curcumin molecular targets in obesity and obesity-related cancers. Future Oncol 8:179–190. https://doi.org/10.2217/fon.11.145

    Article  CAS  PubMed  Google Scholar 

  11. Jia Y, Wu C, Kim J, Kim B, Lee SJ (2016) Astaxanthin reduces hepatic lipid accumulations in high-fat-fed C57BL/6J mice via activation of peroxisome proliferator-activated receptor (PPAR) alpha and inhibition of PPAR gamma and Akt. J Nutr Biochem 28:9–18. https://doi.org/10.1016/j.jnutbio.2015.09.015

    Article  CAS  PubMed  Google Scholar 

  12. Christiaens V, Van Hul M, Lijnen HR (1820) Scroyen I (2012) CD36 promotes adipocyte differentiation and adipogenesis. Biochim Biophys Acta Gen Subj 2012:949–956. https://doi.org/10.1016/j.bbagen.2012.04.001

    Article  CAS  Google Scholar 

  13. Laurent G, German NJ, Saha AK, de Boer VCJ, Davies M, Koves TR, Dephoure N, Fischer F, Boanca G, Vaitheesvaran B, Lovitch SB, Sharpe AH, Kurland IJ, Steegborn C, Gygi SP, Muoio DM, Ruderman NB, Haigis MC (2013) SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol Cell 50:686–698. https://doi.org/10.1016/j.molcel.2013.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thyagarajan-sahu A, Lane B, Sliva D (2011) ReishiMax, mushroom based dietary supplement, inhibits adipocyte differentiation, stimulates glucose uptake and activates AMPK. BMC Complement Altern Med 74:1–14. https://doi.org/10.1186/1472-6882-11-74

    Article  CAS  Google Scholar 

  15. Vermote A, Brackman G, Risseeuw MDP et al (2016) Hamamelitannin analogues that modulate quorum sensing as potentiators of antibiotics against staphylococcus aureus. Angew Chem Int Ed 55:6551–6555. https://doi.org/10.1002/anie.201601973

    Article  CAS  Google Scholar 

  16. Novotna A, Doricakova A, Vrzal R, Maurel P, Pavek P, Dvorak Z (2010) Investigation of Orlistat effects on PXR activation and CYP3A4 expression in primary human hepatocytes and human intestinal LS174T cells. Eur J Pharm Sci 41:276–280. https://doi.org/10.1016/j.ejps.2010.06.019

    Article  CAS  PubMed  Google Scholar 

  17. Van Can J, Sloth B, Jensen CB, Flint A, Blaak EE, WHM S (2014) Effects of the once-daily GLP-1 analog liraglutide on gastric emptying, glycemic parameters, appetite and energy metabolism in obese, non-diabetic adults. Int J Obes 38:784–793. https://doi.org/10.1038/ijo.2013.162

    Article  CAS  Google Scholar 

  18. Kumar B, Krishnakumar K, Jaganathan S, Mandal M (2013) Effect of mangiferin and mahanimbine on glucose utilization in 3T3-L1 cells. Pharmacogn Mag 9:72–75. https://doi.org/10.4103/0973-1296.108145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu B, Cook C, Santanam N (2009) The aporphine alkaloid boldine induces adiponectin expression and regulation in 3T3-L1 cells. J Med Food 12:1074–1083. https://doi.org/10.1089/jmf.2008.0230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ilavenil S, Arasu MV, Lee JC, Kim DH, Roh SG, Park HS, Choi GJ, Mayakrishnan V, Choi KC (2014) Trigonelline attenuates the adipocyte differentiation and lipid accumulation in 3T3-L1 cells. Phytomedicine 21:758–765. https://doi.org/10.1016/j.phymed.2013.11.007

    Article  CAS  PubMed  Google Scholar 

  21. Prabhakar PK, Doble M (2011) Effect of natural products on commercial oral antidiabetic drugs in enhancing 2-deoxyglucose uptake by 3T3-L1 adipocytes. Ther Adv Endocrinol Metab 2:103–114. https://doi.org/10.1177/2042018811411356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu Y, Kutscher E, Davies GE (2010) Berberine inhibits SREBP-1-related clozapine and risperidone induced adipogenesis in 3T3-L1 cells. Phyther Res 24:1831–1838. https://doi.org/10.1002/ptr.3204

    Article  CAS  Google Scholar 

  23. Jang YJ, Koo HJ, Sohn EH, Kang SC, Rhee DK, Pyo S (2015) Theobromine inhibits differentiation of 3T3-L1 cells during the early stage of adipogenesis via AMPK and MAPK signaling pathways. Food Funct 6:2365–2374. https://doi.org/10.1039/c5fo00397k

    Article  CAS  PubMed  Google Scholar 

  24. Harmon AW, Harp JB (2001) Differential effects of flavonoids on 3T3-L1 adipogenesis and lipolysis. Am J Phys Cell Physiol 280:807–813. https://doi.org/10.1152/ajpcell.2001.280.4.C807

    Article  Google Scholar 

  25. Ono M, Fujimori K (2011) Antiadipogenic effect of dietary apigenin through activation of AMPK in 3T3-L1 cells. J Agric Food Chem 59:13346–13352. https://doi.org/10.1021/jf203490a

    Article  CAS  PubMed  Google Scholar 

  26. Si YC, Pil JP, Hyun JS, Kim YK, Dong WS, Eui SS, Hyoung HL, Byeong GL, Baik JH, Lee TR (2007) (-)-Catechin suppresses expression of Kruppel-like factor 7 and increases expression and secretion of adiponectin protein in 3T3-L1 cells. Am J Physiol Endocrinol Metab 292:1166–1173. https://doi.org/10.1152/ajpendo.00436.2006

    Article  CAS  Google Scholar 

  27. Lee YJ, Choi HS, Seo MJ, Jeon HJ, Kim KJ, Lee BY (2015) Kaempferol suppresses lipid accumulation by inhibiting early adipogenesis in 3T3-L1 cells and zebrafish. Food Funct 6:2824–2833. https://doi.org/10.1039/c5fo00481k

    Article  CAS  PubMed  Google Scholar 

  28. Chang CJ, Tzeng TF, Liou SS, Chang YS, Liu IM (2012) Myricetin increases hepatic peroxisome proliferator-activated receptor protein expression and decreases plasma lipids and adiposity in rats. Evidence-based Complement Altern Med 2012:1–11. https://doi.org/10.1155/2012/787152

    Article  Google Scholar 

  29. Saito T, Abe D, Sekiya K (2007) Nobiletin enhances differentiation and lipolysis of 3T3-L1 adipocytes. Biochem Biophys Res Commun 357:371–376. https://doi.org/10.1016/j.bbrc.2007.03.169

    Article  CAS  PubMed  Google Scholar 

  30. Yang JY, Della-Fera MA, Rayalam S, Ambati S, Hartzell DL, Park HJ, Baile CA (2008) Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin. Life Sci 82:1032–1039. https://doi.org/10.1016/j.lfs.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  31. Choi I, Park Y, Choi H, Lee EH (2006) Anti-adipogenic activity of rutin in 3T3-L1 cells and mice fed with high-fat diet. BioFactors 26:273–281. https://doi.org/10.1002/biof.5520260405

    Article  CAS  PubMed  Google Scholar 

  32. Soundharrajan I, Kim DH, Srisesharam S, Kuppusamy P, Sivanesan R, Choi KC (2018) Limonene promotes osteoblast differentiation and 2-deoxy-D-glucose uptake through p38MAPK and Akt signaling pathways in C2C12 skeletal muscle cells. Phytomedicine 45:41–48. https://doi.org/10.1016/j.phymed.2018.03.019

    Article  CAS  PubMed  Google Scholar 

  33. Vishnu Prasad CN, Anjana T, Banerji A, Gopalakrishnapillai A (2010) Gallic acid induces GLUT4 translocation and glucose uptake activity in 3T3-L1 cells. FEBS Lett 584:531–536. https://doi.org/10.1016/j.febslet.2009.11.092

    Article  CAS  Google Scholar 

  34. Fan H, Wu D, Tian W, Ma X (2013) Inhibitory effects of tannic acid on fatty acid synthase and 3T3-L1 preadipocyte. Biochim Biophys Acta Mol Cell Biol Lipids 1831:1260–1266. https://doi.org/10.1016/j.bbalip.2013.04.003

    Article  CAS  Google Scholar 

  35. Kameji H, Mochizuki K, Miyoshi N, Goda T (2010) β-carotene accumulation in 3T3-L1 adipocytes inhibits the elevation of reactive oxygen species and the suppression of genes related to insulin sensitivity induced by tumor necrosis factor-α. Nutrition 26:1151–1156. https://doi.org/10.1016/j.nut.2009.09.006

    Article  CAS  PubMed  Google Scholar 

  36. Lee B, Lee M, Lefevre M, Kim HR (2014) Anthocyanins inhibit lipogenesis during adipocyte differentiation of 3T3-L1 preadipocytes. Plant Foods Hum Nutr 69:137–141. https://doi.org/10.1007/s11130-014-0407-z

    Article  CAS  PubMed  Google Scholar 

  37. Kim Y, Lee J (2015) Esculetin, a coumarin derivative, suppresses adipogenesis through modulation of the AMPK pathway in 3T3-L1 adipocytes. J Funct Foods 12:509–515. https://doi.org/10.1016/j.jff.2014.12.004

    Article  CAS  Google Scholar 

  38. Xiao H, Wang J, Yuan L, Xiao C, Wang Y, Liu X (2013) Chicoric acid induces apoptosis in 3T3-L1 preadipocytes through ROS-mediated PI3K/Akt and MAPK signaling pathways. J Agric Food Chem 61:1509–1520. https://doi.org/10.1021/jf3050268

    Article  CAS  PubMed  Google Scholar 

  39. Yang JY, Koo JH, Yoon HY, Lee JH, Park BH, Kim JS, Chi MS, Park JW (2007) Effect of scopoletin on lipoprotein lipase activity in 3T3-L1 adipocytes. Int J Mol Med 20:527–531. https://doi.org/10.3892/ijmm.20.4.527

    Article  PubMed  Google Scholar 

  40. He Y, Li Y, Zhao T, Wang Y, Sun C (2013) Ursolic acid inhibits adipogenesis in 3T3-L1 adipocytes through LKB1/AMPK pathway. PLoS One 8:e70135. https://doi.org/10.1371/journal.pone.0070135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Choi Y, Um SJ, Park T (2013) Indole-3-carbinol directly targets SIRT1 to inhibit adipocyte differentiation. Int J Obes 37:881–884. https://doi.org/10.1038/ijo.2012.158

    Article  CAS  Google Scholar 

  42. Eseberri I, Miranda J, Lasa A, Mosqueda-Solís A, González-Manzano S, Santos-Buelga C, Portillo MP (2019) Effects of quercetin metabolites on triglyceride metabolism of 3T3-L1 preadipocytes and mature adipocytes. Int J Mol Sci 20:1–13. https://doi.org/10.3390/ijms20020264

    Article  CAS  Google Scholar 

  43. Hadrich F, Sayadi S (2018) Apigetrin inhibits adipogenesis in 3T3-L1 cells by downregulating PPARγ and CEBP-α. Lipids Health Dis 17:1–8. https://doi.org/10.1186/s12944-018-0738-0

    Article  CAS  Google Scholar 

  44. An Y, Zhang Y, Li C, Qian Q, He W, Wang T (2011) Inhibitory effects of flavonoids from Abelmoschus manihot flowers on triglyceride accumulation in 3T3-L1 adipocytes. Fitoterapia 82:595–600. https://doi.org/10.1016/j.fitote.2011.01.010

    Article  CAS  PubMed  Google Scholar 

  45. Lee SH, Kim KY, Ryu SY, Yoon Y, Hahm DH, Kang SA, Cho SH, Lim JS, Moon EY, Yoon SR, Lee HG, Yoon DY, Yang Y (2010) Asarone inhibits adipogenesis and stimulates lipolysis in 3T3-L1 adipocytes. Cell Mol Biol 56:1215–1222. https://doi.org/10.1170/138

    Article  CAS  Google Scholar 

  46. Yahagi T, Daikonya A, Kitanaka S (2012) Flavonol acylglycosides from flower of Albizia julibrissin and their inhibitory effects on lipid accumulation in 3T3-L1 cells. Chem Pharm Bull 60:129–136. https://doi.org/10.1248/cpb.60.129

    Article  CAS  Google Scholar 

  47. Tu PTB, Tawata S (2014) Anti-obesity effects of hispidin and alpinia zerumbet bioactives in 3t3-l1adipocytes. Molecules 19:16656–16671. https://doi.org/10.3390/molecules191016656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hwang-Il D, Won KJ, Kim DY, Kim B, Lee HM (2017) Cinnamyl alcohol, the bioactive component of chestnut flower absolute, inhibits adipocyte differentiation in 3T3-L1 cells by downregulating adipogenic transcription factors. Am J Chin Med 45:833–846. https://doi.org/10.1142/S0192415X17500446

    Article  CAS  Google Scholar 

  49. Lee MJ, Rao YK, Chen K, Lee YC, Tzeng YM (2009) Effect of flavonol glycosides from Cinnamomum osmophloeum leaves on adiponectin secretion and phosphorylation of insulin receptor-β in 3T3-L1 adipocytes. J Ethnopharmacol 126:79–85. https://doi.org/10.1016/j.jep.2009.08.006

    Article  CAS  PubMed  Google Scholar 

  50. Choi JS, Kim JH, Ali MY, Min BS, Kim GD, Jung HA (2014) Coptis chinensis alkaloids exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBP-α and PPAR-γ. Fitoterapia 98:199–208. https://doi.org/10.1016/j.fitote.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  51. Fang ZJ, Shen SN, Wang JM, Wu YJ, Zhou CX, Mo JX, Lin LG, Gan LS (2019) Triterpenoids from Cyclocarya paliurus that enhance glucose uptake in 3T3-L1 adipocytes. Molecules 24:1–14. https://doi.org/10.3390/molecules24010187

    Article  CAS  Google Scholar 

  52. Yang ZG, Jia LN, Shen Y, Ohmura A, Kitanaka S (2011) Inhibitory effects of constituents from Euphorbia lunulata on differentiation of 3T3-L1 cells and nitric oxide production in RAW264.7 cells. Molecules 16:8305–8318. https://doi.org/10.3390/molecules16108305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee I, Kim H, Youn U, Kim J, Min B, Jung H, Na M, Hattori M, Bae K (2010) Effect of lanostane triterpenes from the fruiting bodies of Ganoderma lucidum on adipocyte differentiation in 3T3-L1 cells. Planta Med 76:1558–1563. https://doi.org/10.1055/s-0030-1249827

    Article  CAS  PubMed  Google Scholar 

  54. Taher M, Mohamed Amiroudine MZA, Tengku Zakaria TMFS, Susanti D, Ichwan SJA, Kaderi MA, Ahmed QU, Zakaria ZA (2015) α-mangostin improves glucose uptake and inhibits adipocytes differentiation in 3T3-L1 cells via PPAR γ, GLUT4, and leptin expressions. Evidence-based Complement Altern Med 2015:1–9. https://doi.org/10.1155/2015/740238

    Article  Google Scholar 

  55. Kim HK, Kim JN, Han SN, Nam JH, Na HN, Ha TJ (2012) Black soybean anthocyanins inhibit adipocyte differentiation in 3T3-L1 cells. Nutr Res 32:770–777. https://doi.org/10.1016/j.nutres.2012.06.008

    Article  CAS  PubMed  Google Scholar 

  56. Lee M, Lee HH, Lee JK, Ye SK, Kim SH, Sung SH (2013) Anti-adipogenic activity of compounds isolated from Idesia polycarpa on 3T3-L1 cells. Bioorg Med Chem Lett 23:3170–3174. https://doi.org/10.1016/j.bmcl.2013.04.011

    Article  CAS  PubMed  Google Scholar 

  57. Gosmann G, Barlette AG, Dhamer T, Arçari DP, Santos JC, de Camargo ER, Acedo S, Gambero A, Gnoatto SCB, Ribeiro ML (2012) Phenolic compounds from Maté (Ilex paraguariensis) Inhibit Adipogenesis in 3T3-L1 preadipocytes. Plant Foods Hum Nutr 67:156–161. https://doi.org/10.1007/s11130-012-0289-x

    Article  CAS  PubMed  Google Scholar 

  58. Bai N, He K, Roller M, Zheng B, Chen X, Shao Z, Peng T, Zheng Q (2008) Active compounds from Lagerstroemia speciosa, insulin-like glucose uptake-stimulatory/inhibitory and adipocyte differentiation-inhibitory activities in 3T3-L1 cells. J Agric Food Chem 56:11668–11674. https://doi.org/10.1021/jf802152z

    Article  CAS  PubMed  Google Scholar 

  59. Zhang Y, Qian Q, Ge D, Li Y, Wang X, Chen Q, Gao X, Wang T (2011) Identification of benzophenone C-glucosides from mango tree leaves and their inhibitory effect on triglyceride accumulation in 3T3-L1 adipocytes. J Agric Food Chem 59:11526–11533. https://doi.org/10.1021/jf2028494

    Article  CAS  PubMed  Google Scholar 

  60. Shyni GL, Sasidharan K, Francis SK, Das AA, Nair MS, Raghu KG (2016) Licarin B from Myristica fragrans improves insulin sensitivity via PPARγ and activation of GLUT4 in the IRS-1/PI3K/AKT pathway in 3T3-L1 adipocytes. RSC Adv 6:79859–79870. https://doi.org/10.1039/c6ra13055k

    Article  CAS  Google Scholar 

  61. Lee SH, Kim B, Oh MJ, Yoon J, Kim HY, Lee KJ, Lee JD, Choi KY (2011) Persicaria hydropiper (L.) spach and its flavonoid components, isoquercitrin and isorhamnetin, activate the Wnt/-βcatenin pathway and inhibit adipocyte differentiation of 3T3-L1 cells. Phyther Res 25:1629–1635. https://doi.org/10.1002/ptr.3469

    Article  CAS  Google Scholar 

  62. Kim J, Lee I, Seo J, Jung M, Kim Y, Yim N, Bae K (2010) Vitexin, orientin and other flavonoids from Spirodela polyrhiza inhibit adipogenesis in 3T3-L1 cells. Phyther Res 24:1543–1548. https://doi.org/10.1002/ptr.3186

    Article  CAS  Google Scholar 

  63. Manaharan T, Ming CH, Palanisamy UD (2013) Syzygium aqueum leaf extract and its bioactive compounds enhances pre-adipocyte differentiation and 2-NBDG uptake in 3T3-L1 cells. Food Chem 136:354–363. https://doi.org/10.1016/j.foodchem.2012.08.056

    Article  CAS  PubMed  Google Scholar 

  64. Kim SO, Park JY, Jeon SY, Yang CH, Kim MR (2015) Saikosaponin a, an active compound of Radix Bupleuri, attenuates inflammation in hypertrophied 3T3-L1 adipocytes via ERK/NF-κB signaling pathways. Int J Mol Med 35:1126–1132. https://doi.org/10.3892/ijmm.2015.2093

    Article  CAS  PubMed  Google Scholar 

  65. Kim KJ, Lee BY (2012) Fucoidan from the sporophyll of Undaria pinnatifida suppresses adipocyte differentiation by inhibition of inflammation-related cytokines in 3T3-L1 cells. Nutr Res 32:439–447. https://doi.org/10.1016/j.nutres.2012.04.003

    Article  CAS  PubMed  Google Scholar 

  66. Wu SJ, Ng LT, Wang GH, Huang YJ, Chen JL, Sun FM (2010) Chlorophyll a, an active anti-proliferative compound of Ludwigia octovalvis, activates the CD95 (APO-1/CD95) system and AMPK pathway in 3T3-L1 cells. Food Chem Toxicol 48:716–721. https://doi.org/10.1016/j.fct.2009.12.001

    Article  CAS  PubMed  Google Scholar 

  67. Kwon TH, Wu YX, Kim JS, Woo JH, Park KT, Kwon OJ, Seo HJ, Kim T, Park NH (2015) 6,6′-Bieckol inhibits adipocyte differentiation through downregulation of adipogenesis and lipogenesis in 3T3-L1 cells. J Sci Food Agric 95:1830–1837. https://doi.org/10.1002/jsfa.6881

    Article  CAS  PubMed  Google Scholar 

  68. Kang MC, Ding Y, Kim EA, Choi YK, De Araujo T, Heo SJ, Lee SH (2017) Indole derivatives isolated from brown alga Sargassum thunbergii inhibit adipogenesis through AMPK activation in 3T3-L1 preadipocytes. Mar Drugs 15:1–10. https://doi.org/10.3390/md15040119

    Article  CAS  Google Scholar 

  69. Kim HJ, Yoon BK, Park H, Seok JW, Choi H, Yu JH, Choi Y, Song SJ, Kim A, Kim JW (2016) Caffeine inhibits adipogenesis through modulation of mitotic clonal expansion and the AKT/GSK3 pathway in 3T3-L1 adipocytes. BMB Rep 49:111–115. https://doi.org/10.5483/BMBRep.2016.49.2.128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wu Q, Sun S, Li S, Qiao Y (2014) Biochemical and biophysical research communications cycloastragenol, a triterpene aglycone derived from Radix astragali, suppresses the accumulation of cytoplasmic lipid droplet in 3T3-L1 adipocytes. Biochem Biophys Res Commun 450:306–311. https://doi.org/10.1016/j.bbrc.2014.05.117

    Article  CAS  PubMed  Google Scholar 

  71. Ma C, Wang J, Chu H, Zhang X, Wang Z, Wang H, Li G (2014) Purification and characterization of aporphine alkaloids from leaves of nelumbo nucifera gaertn and their effects on glucose consumption in 3T3-L1 adipocytes. Int J Mol Sci 15:3481–3494. https://doi.org/10.3390/ijms15033481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Susantia D, Amiroudineb MZAM, Rezalic MF, Taherb M (2013) Friedelin and lanosterol from Garcinia prainiana stimulated glucose uptake and adipocytes differentiation in 3T3-L1 adipocytes. Nat Prod Res 27:417–424. https://doi.org/10.1080/14786419.2012.725399

    Article  CAS  Google Scholar 

  73. Chen L, Li QY, Shi XJ, Mao SL, Du YL (2013) 6-hydroxydaidzein enhances adipocyte differentiation and glucose uptake in 3T3-L1 cells. J Agric Food Chem 61:10714–10719. https://doi.org/10.1021/jf402694m

    Article  CAS  PubMed  Google Scholar 

  74. Shyni GL, Kavitha S, Indu S, Arya AD, Anusree SS, Vineetha VP, Vandana S, Sundaresan A, Raghu KG (2014) Chebulagic acid from Terminalia chebula enhances insulin mediated glucose uptake in 3T3-L1 adipocytes via PPARγ signaling pathway. BioFactors 40:646–657. https://doi.org/10.1002/biof.1193

    Article  CAS  PubMed  Google Scholar 

  75. Sung HY, Kang SW, Kim JL, Li J, Lee ES, Gong JH, Han SJ, Kang YH (2010) Oleanolic acid reduces markers of differentiation in 3T3-L1 adipocytes. Nutr Res 30:831–839. https://doi.org/10.1016/j.nutres.2010.10.001

    Article  CAS  PubMed  Google Scholar 

  76. Park E, Kim J, Yeo S, Kim G, Ko EH, Lee SW, Li WY, Choi CW, Jeong SY (2018) Antiadipogenic effects of loganic acid in 3T3-L1 preadipocytes and ovariectomized mice. Molecules 23:1–11. https://doi.org/10.3390/molecules23071663

    Article  CAS  Google Scholar 

  77. Wei CK, Tsai YH, Korinek M, Hung PH, El-Shazly M, Cheng-Bin Y, Wu YC, Hsieh TJ, Chang FR (2017) 6-paradol and 6-shogaol, the pungent compounds of ginger, promote glucose utilization in adipocytes and myotubes, and 6-paradol reduces blood glucose in high-fat diet-fed mice. Int J Mol Sci 18:1–18. https://doi.org/10.3390/ijms18010168

    Article  CAS  Google Scholar 

  78. Rohm B, Holik AK, Kretschy N, Somoza MM, Ley JP, Widder S, Krammer GE, Marko D, Somoza V (2015) Nonivamide enhances miRNA let-7d expression and decreases adipogenesis PPARγ expression in 3T3-L1 cells. J Cell Biochem 116:1153–1163. https://doi.org/10.1002/jcb.25052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mazibuko SE, Joubert E, Johnson R, Louw J, Opoku AR, Muller CJF (2015) Aspalathin improves glucose and lipid metabolism in 3T3-L1 adipocytes exposed to palmitate. Mol Nutr Food Res 59:2199–2208. https://doi.org/10.1002/mnfr.201500258

    Article  CAS  PubMed  Google Scholar 

  80. Jin T, Kim OY, Shin MJ, Choi EY, Lee SS, Han YS, Chung JH (2014) Fisetin up-regulates the expression of adiponectin in 3t3-l1 adipocytes via the activation of silent mating type information regulation 2 homologue 1 (SIRT1)-deacetylase and peroxisome proliferator-activated receptors (PPARs). J Agric Food Chem 62:10468–10474. https://doi.org/10.1021/jf502849j

    Article  CAS  PubMed  Google Scholar 

  81. Gaya M, Repetto V, Toneatto J, Anesini C, Piwien-Pilipuk G, Moreno S (2013) Antiadipogenic effect of carnosic acid, a natural compound present in Rosmarinus officinalis, is exerted through the C/EBPs and PPARγ pathways at the onset of the differentiation program. Biochim Biophys Acta Gen Subj 1830:3796–3806. https://doi.org/10.1016/j.bbagen.2013.03.021

    Article  CAS  Google Scholar 

  82. He Y, Niu W, Xia C, Cao B (2016) Daidzein reduces the proliferation and adiposeness of 3T3-L1 preadipocytes via regulating adipogenic gene expression. J Funct Foods 22:446–453. https://doi.org/10.1016/j.jff.2016.01.044

    Article  CAS  Google Scholar 

  83. Rao Y, Liu H, Gao L, Yu H, Tan J, Ou T, Huang S, Gu L, Ye J, Huang Z (2015) Bioorganic & medicinal chemistry discovery of natural alkaloid bouchardatine as a novel inhibitor of adipogenesis/lipogenesis in 3T3-L1 adipocytes. Bioorg Med Chem 23:1–9. https://doi.org/10.1016/j.bmc.2015.05.057

    Article  CAS  Google Scholar 

  84. Lee MH, Chen YY, Tsai JW, Wang SC, Watanabe T, Tsai YC (2011) Inhibitory effect of β-asarone, a component of Acorus calamus essential oil, on inhibition of adipogenesis in 3T3-L1 cells. Food Chem 126:1–7. https://doi.org/10.1016/j.foodchem.2010.08.052

    Article  CAS  Google Scholar 

  85. Cheong LY, Suk S, Thimmegowda NR, Chung MY, Yang H, Seo SG, Shwetha B, Kim JE, Kwon JY, Kim BY, Lee KW (2015) Hirsutenone directly targets PI3K and ERK to inhibit adipogenesis in 3T3-L1 preadipocytes. J Cell Biochem 116:1361–1370. https://doi.org/10.1002/jcb.25093

    Article  CAS  PubMed  Google Scholar 

  86. Taher M, Amiroudine MZAM, Jaffri JM, Amri MS, Susanti D, Hamid SA, Rezali MF, Hassan CM, Read RW, Ahmed QU, Ahmad F (2017) A lignan with glucose uptake activity in 3T3-L1 adipocytes from the stem bark of Knema patentinervia. Pak J Pharm Sci 30:1335–1339

    CAS  PubMed  Google Scholar 

  87. Lee SG, Kim JS, Min K, Kwon TK, Nam JO (2018) Hispidulin inhibits adipogenesis in 3T3-L1 adipocytes through PPARγ pathway. Chem Biol Interact 293:89–93. https://doi.org/10.1016/j.cbi.2018.07.027

    Article  CAS  PubMed  Google Scholar 

  88. Mohd-Radzman NH, Ismail WIW, Jaapar SS, Adam Z, Adam A (2013) Stevioside from Stevia rebaudiana Bertoni increases insulin sensitivity in 3T3-L1 adipocytes. Evidence-based Complement Altern Med 2013:1–8. https://doi.org/10.1155/2013/938081

    Article  Google Scholar 

  89. Wu SJ (2015) Osthole attenuates inflammatory responses and regulates the expression of inflammatory mediators in HepG2 cells grown in differentiated medium from 3T3-L1 preadipocytes. J Med Food 18:972–979. https://doi.org/10.1089/jmf.2014.3314

    Article  CAS  PubMed  Google Scholar 

  90. Sangeetha KN, Sujatha S, Muthusamy VS, Anand S, Nithya N, Velmurugan D, Balakrishnan A, Lakshmi BS (2010) 3β-taraxerol of mangifera indica, a PI3K dependent dual activator of glucose transport and glycogen synthesis in 3T3-L1 adipocytes. Biochim Biophys Acta Gen Subj 1800:359–366. https://doi.org/10.1016/j.bbagen.2009.12.002

    Article  CAS  Google Scholar 

  91. Agrawal R, Sethiya NK, Mishra SH (2013) Antidiabetic activity of alkaloids of Aerva lanata roots on streptozotocin-nicotinamide induced type-II diabetes in rats. Pharm Biol 51:635–642. https://doi.org/10.3109/13880209.2012.761244

    Article  CAS  PubMed  Google Scholar 

  92. Kim SH, Shin EJ, Kim-Do E, Bayaraa T, Frost SC, Hyun CK (2007) Berberine activates GLUT1-mediated glucose uptake in 3T3-L1 adipocytes. Biol Pharm Bull 30:2120–2125. https://doi.org/10.1248/bpb.30.2120

    Article  CAS  PubMed  Google Scholar 

  93. Kwak DH, Lee JH, Kim DG, Kim T, Lee KJ, Ma JY (2013) Inhibitory effects of hwangryunhaedok-tang in 3T3-L1 adipogenesis by regulation of Raf/MEK1/ERK1/2 pathway and PDK1/Akt phosphorylation. Evidence-based Complement Altern Med 2013:1–12. https://doi.org/10.1155/2013/413906

    Article  Google Scholar 

  94. Park UH, Jeong HS, Jo EY, Park T, Yoon SK, Kim EJ, Jeong JC, Um SJ (2012) Piperine, a component of black pepper, inhibits adipogenesis by antagonizing PPARγ activity in 3T3-L1 cells. J Agric Food Chem 60:3853–3860. https://doi.org/10.1021/jf204514a

    Article  CAS  PubMed  Google Scholar 

  95. Andarwulan N, Batari R, Sandrasari DA, Bolling B, Wijaya H (2010) Flavonoid content and antioxidant activity of vegetables from Indonesia. Food Chem 121:1231–1235. https://doi.org/10.1016/j.foodchem.2010.01.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Moon J, Do HJ, Kim OY, Shin MJ (2013) Antiobesity effects of quercetin-rich onion peel extract on the differentiation of 3T3-L1 preadipocytes and the adipogenesis in high fat-fed rats. Food Chem Toxicol 58:347–354. https://doi.org/10.1016/j.fct.2013.05.006

    Article  CAS  PubMed  Google Scholar 

  97. Park HS, Kim SH, Kim YS, Ryu SY, Hwang JT, Yang HJ, Kim GH, Kwon DY, Kim MS (2009) Luteolin inhibits adipogenic differentiation by regulating PPARc activation. BioFactors 35:373–379. https://doi.org/10.1002/biof.38

    Article  CAS  PubMed  Google Scholar 

  98. Choi EJ, Jung JY, Kim GH (2014) Genistein inhibits the proliferation and differentiation of MCF-7 and 3T3-L1 cells via the regulation of ERα expression and induction of apoptosis. Exp Ther Med 8:454–458. https://doi.org/10.3892/etm.2014.1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shin E, Choi KM, Yoo HS, Lee CK, Hwang BY, Lee MK (2010) Inhibitory effects of coumarins from the stem barks of fraxinus rhynchophylla on adipocyte differentiation in 3T3-L1 cells. Biol Pharm Bull 33:1610–1614. https://doi.org/10.1248/bpb.33.1610

    Article  CAS  PubMed  Google Scholar 

  100. Kim MA, Kang K, Lee HJ, Kim M, Kim CY, Nho CW (2014) Apigenin isolated from Daphne genkwa Siebold et Zucc. inhibits 3T3-L1 preadipocyte differentiation through a modulation of mitotic clonal expansion. Life Sci 101:64–72. https://doi.org/10.1016/j.lfs.2014.02.012

    Article  CAS  PubMed  Google Scholar 

  101. Lin D, Xiao M, Zhao J, Li Z, Xing B, Li X, Kong M, Li L, Zhang Q, Liu Y, Chen H, Qin W, Wu H, Chen S (2016) An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 21:1–19. https://doi.org/10.3390/molecules21101374

    Article  CAS  Google Scholar 

  102. Juman S, Yasui N, Okuda H, Ueda A, Negishi H, Miki T, Ikeda K (2011) Caffeic acid phenethyl ester suppresses the production of adipocytokines, leptin, tumor necrosis factor-alpha and resistin, during differentiation to adipocytes in 3T3-L1 cells. Biol Pharm Bull 34:490–494. https://doi.org/10.1248/bpb.34.490

    Article  CAS  PubMed  Google Scholar 

  103. Alonso-Castro AJ, Miranda-Torres AC, González-Chávez MM, Salazar-Olivo LA (2008) Cecropia obtusifolia Bertol and its active compound, chlorogenic acid, stimulate 2-NBDglucose uptake in both insulin-sensitive and insulin-resistant 3T3 adipocytes. J Ethnopharmacol 120:458–464. https://doi.org/10.1016/j.jep.2008.09.019

    Article  CAS  PubMed  Google Scholar 

  104. Be Tu PT, Chompoo J, Tawata S (2015) Hispidin and related herbal compounds from Alpinia zerumbet inhibit both PAK1-dependent melanogenesis in melanocytes and reactive oxygen species (ROS) production in adipocytes. Drug Discovery Ther 9:197–204. https://doi.org/10.5582/ddt.2015.01038

    Article  CAS  Google Scholar 

  105. Ilavenil S, Kim DH, Srigopalram S, Kuppusamy P, Valan Arasu M, Lee KD, Lee JC, Song YH, Jeong-Il Y, Choi KC (2017) Ferulic acid in Lolium multiflorum inhibits adipogenesis in 3T3-L1 cells and reduced high-fat-diet-induced obesity in Swiss albino mice via regulating p38MAPK and p44/42 signal pathways. J Funct Foods 37:293–302. https://doi.org/10.1016/j.jff.2017.08.002

    Article  CAS  Google Scholar 

  106. Li C, Zhou L (2015) Inhibitory effect 6-gingerol on adipogenesis through activation of the Wnt/β-catenin signaling pathway in 3T3-L1 adipocytes. Toxicol In Vitro 30:394–401. https://doi.org/10.1016/j.tiv.2015.09.023

    Article  CAS  PubMed  Google Scholar 

  107. Kim HL, Jung Y, Park J, Youn DH, Kang JW, Lim S, Lee BS, Jeong MY, Choe SK, Park R, Ahn KS, Um JY (2017) Farnesol has an anti-obesity effect in high-fat diet-induced obese mice and induces the development of beige adipocytes in human adipose tissue derived-mesenchymal stem cells. Front Pharmacol 8:1–9. https://doi.org/10.3389/fphar.2017.00654

    Article  CAS  Google Scholar 

  108. Mir SA, Shah MA, Ganai SA et al (2019) Understanding the role of active components from plant sources in obesity management. J Saudi Soc Agric Sci 18:168–176. https://doi.org/10.1016/j.jssas.2017.04.003

    Article  Google Scholar 

  109. Praveen KI, Ajay G, Sri Snehaa C, Christy L, Saraswathi NT, Mariadhas VA, Naif Abdullah AD, Aziz A, Jesu A (2020) Molecular process of glucose uptake and glycogen storage due to hamamelitannin via insulin signalling cascade in glucose metabolism. Mol Biol Rep 47(9):6727–6740

    Article  Google Scholar 

Download references

Acknowledgements

Universiti Putra Malaysia contribution to the research is made possible through research Grant No. LRGS/1/2019/UPM/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesu Arockiaraj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guru, A., Issac, P.K., Velayutham, M. et al. Molecular mechanism of down-regulating adipogenic transcription factors in 3T3-L1 adipocyte cells by bioactive anti-adipogenic compounds. Mol Biol Rep 48, 743–761 (2021). https://doi.org/10.1007/s11033-020-06036-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06036-8

Keywords

Navigation