Skip to main content
Log in

A review on mechanism of inhibition of advanced glycation end products formation by plant derived polyphenolic compounds

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Advanced glycation end products (AGEs) are naturally occurring biomolecules formed by interaction of reducing sugars with biomolecules such as protein and lipids etc., Long term high blood sugar level and glycation accelerate the formation of AGEs. Unchecked continuous formation and accumulation of AGEs are potential risks for pathogenesis of various chronic diseases. Current mode of antidiabetic therapy is based on synthetic drugs that are often linked with severe adverse effects. Polyphenolic compounds derived from plants are supposed to inhibit glycation and formation of AGEs at multiple levels. Some polyphenolic compounds regulate the blood glucose metabolism by amplification of cell insulin resistance and activation of insulin like growth factor binding protein signaling pathway. Their antioxidant nature and metal chelating activity, ability to trap intermediate dicarbonyl compounds could be possible mechanisms against glycation and AGEs formation and hence, against AGEs induced health complications. Although, few species of polyphenolic compounds are being used in in vitro trials and their in vivo study is still in progress, increasing the area of research in this field may produce a fruitful approach in management of overall diabetic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Younus H, Anwar S (2018) Antiglycating activity of aloe vera gel extract and its activecomponent aloin. JPP 9:115–125

    CAS  Google Scholar 

  2. Younus H, Anwar S (2016) Prevention of non-enzymatic glycosylation (glycation): implication in thetreatment of diabetic complication. Int J Health Sci (Qassim) 10:261–277

    CAS  Google Scholar 

  3. Abbas G, Al-Harrasi SA, Hussain H, Hussain J, Rashid R, Choudhary MI (2016) Antiglycation therapy: discovery of promising antiglycation agents for the management of diabetic complications. Pharm Biol 54:198–206

    CAS  PubMed  Google Scholar 

  4. Zhang Q, Ames JM, Smith RD, Baynes JW, Metz TO (2009) A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease. J Proteome Res 8(2):754–769

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ramkisson JS, Mahomoodally MF, Subratty AH, Ahmed N (2016) Inhibition of glucose- and fructose-mediated protein glycation by infusions and ethanolic extracts of ten culinary herbs and spices. Asian Pac J Trop Biomed 6:492–500

    Google Scholar 

  6. Sadowska-Bartosz I, Bartosz G (2015) Prevention of protein glycation by natural compounds. Molecules 20(2):3309–3334

    PubMed  PubMed Central  Google Scholar 

  7. Rahbar S, Figarola JL (2002) Inhibitors and breakers of advanced glycation endproducts (AGEs): a review. Curr Med Chem Imun Endoc Metab Agents 2:135–161

    CAS  Google Scholar 

  8. Rahbar S, Figarola JL (2003) Novel inhibitors of advanced glycation endproducts. Arch Biochem Biophys 419:63–79

    CAS  PubMed  Google Scholar 

  9. Rhee SY, Kim YS (2018) The role of advanced glycation end products in diabetic vascular complications. Diabetes Metab J 42(3):188–195

    PubMed  PubMed Central  Google Scholar 

  10. Anwar S, Younus H (2017a) Antiglycating potential of ellagic acid against glucose and methylglyoxal induced glycation of superoxide dismutase. J Prote Proteom 8:1–12

    CAS  Google Scholar 

  11. Lapolla A, Traldi P, Fedele D (2005) Importance of measuring products of non-enzymatic glycation of proteins. Clin Biochem 38:103–115

    CAS  PubMed  Google Scholar 

  12. Simm A, Wagner J, Gursinsky T, Nass N, Friedrich I, Schinzel R, Czeslik E, Silber RE, Scheubel RJ (2007) Advanced glycation endproducts: a biomarker for age as an outcome predictor after cardiac surgery? Exp Gerontol 42:668–675

    CAS  PubMed  Google Scholar 

  13. Hanssen NM, Wouters K, Huijberts MS, Gijbels MJ, Sluimer JC, Scheijen JL, Heeneman S, Biessen EA, Daemen MJ, Brownlee M, de Kleijn DP, Stehouwer CD, Pasterkamp G, Schalkwijk CG (2014) Higher levels of advanced glycation endproducts in human carotid atherosclerotic plaques are associated with a rupture-prone phenotype. Eur Heart J 35:1137–1146

    CAS  PubMed  Google Scholar 

  14. Guilbaud A, Niquet-Leridon C, Boulanger E, Tessier FJ (2016) How can diet affect the accumulation of advanced glycation end products in the human body? Foods 5(84):E84. https://doi.org/10.3390/foods5040084

    Article  CAS  PubMed  Google Scholar 

  15. Peppa M, Vlassara H (2005) Advanced glycation end products and diabetic complications. Hormones 4(1):28–35

    PubMed  Google Scholar 

  16. Koschinsky T, He CJ, Mitsuhashi T, Bucala R, Liu C, Buenting C, Heitmann K, Vlassara H (1997) Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci U S A 94:6474–6479

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Al-Dalaeen AM, Al-Domi HA (2018) Advanced glycation end products: mechanisms in the pathogenesis of type 2 diabetes and its complications. J Res Diabetes Metab 4(1):016–020

    Google Scholar 

  18. Ahmad OAA, El-Bassossy HM, Azhar AS, Tarkhan MM, El-Mas MM (2020) Interference with AGEs formation and AGEs-induced vascular injury mediates curcumin vascular protection in metabolic syndrome. Sci Rep 10:315. https://doi.org/10.1038/s41598-019-57268-z

    Article  CAS  Google Scholar 

  19. Vasdev S, Gill V, Singal P (2007) Role of advanced glycation end products in hypertension and atherosclerosis: therapeutic implications. Cell Biochem Biophys 49:48–63

    CAS  PubMed  Google Scholar 

  20. Yuan Y, Zhao L, Chen Y, Moorhead JF, Varghese Z, Powis SH, Minogue S, Sun Z, Ruan XZ (2011) Advanced glycation end products (AGEs) increase human mesangial foam cell formation by increasing Golgi SCAP glycosylation in vitro. Am J Physiol Renal Physiol 301:F236–F243

    CAS  PubMed  Google Scholar 

  21. Barlovic DP, Soro-Paavonen A, Jandeleit-Dahm KA (2011) RAGE biology, atherosclerosis and diabetes. Clin Sci (Lond) 121:43–55

    CAS  Google Scholar 

  22. Basta G, Schmidt AM, Caterina RD (2004) Advanced glycation end products and vascular inflammation: implications for accelerated atheroscelerosis in diabetes. Cardiovasc Res 63:582–592

    CAS  PubMed  Google Scholar 

  23. Jack M, Wright D (2012) Role of advanced glycation endproducts and glyoxalase I in diabetic peripheral sensory neuropathy. Transl Res 159:355–365

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Shamsaldeen YA, Mackenzie LS, Lione LA, Benham CD (2016) Methylglyoxal, a metabolite increased in diabetes is associated with insulin resistance, vascular dysfunction and neuropathies. Curr Drug Metabol 17:359–367

    CAS  Google Scholar 

  25. Sousa MM, Yan SD, Farnandes R et al (2001) Familial amyloid polyneuropathy: receptor for advanced glycation end products-dependent triggering of neuronal inflammatory and apoptotic pathways. J Neurosci 21:7576–7586

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bolton WK, Cattran DC, Williams ME, Appel GB, Cartwright K, Foiles PG, Freedman BI, Raskin P, Ratner RE, Spinowitz BS, Whittier FC, Wuerth J-P (2004) Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am J Nephrol 24:32–40

    CAS  PubMed  Google Scholar 

  27. Marchelek-Myśliwiec M, Dziedziejko V, Nowosiad-Magda M, Dołęgowska K, Dołęgowska B, Pawlik A, Safranow K, Wiśniewska M, Stępniewska J, Domański M, Ciechanowski K (2019) Chronic kidney disease is associated with increased plasma levels of fibroblast growth factors 19 and 21. Kidney Blood Press Res 44:1207–1218

    PubMed  Google Scholar 

  28. Flyvbjerg A, Khatir DS, Jensen LJ, Dagnaes-Hansen F, Gronbaek H, Rasch R (2004) The involvement of growth hormone (GH), insulin-like growth factors (IGFs) and vascular endothelial growth factor (VEGF) in diabetic kidney disease. Curr Pharm Des 10(27):3385–3394

    CAS  PubMed  Google Scholar 

  29. Kumar Pasupulati A, Chitra PS, Reddy GB (2016) Advanced glycation end products mediated cellular and molecular events in the pathology of diabetic nephropathy. Biomol Concepts 7:293–309

    CAS  PubMed  Google Scholar 

  30. Mostafa AA, Randell EW, Vasdev SC, Gill VD, Han Y, Gadag V, Raouf AA, Said HE (2007) Plasma protein advanced glycation end products, carboxymethyl cysteine, and carboxyethyl cysteine, are elevated and related to nephropathy in patients with diabetes. Mol Cell Biochem 302:35–42

    CAS  PubMed  Google Scholar 

  31. Ahmed N (2005) Advanced glycation endproducts--role in pathology of diabetic complications. Diabetes Res Clin Pract 67:3–21

    CAS  PubMed  Google Scholar 

  32. Yamamoto Y, Kato I, Doi T, Yonekura H, Ohashi S, Takeuchi M, Watanabe T, Yamagishi S, Sakurai S, Takasawa S, Okamoto H, Yamamoto H (2001) Development and prevention of advanced diabetic nephropathy in RAGE-overexpressing mice. J Clin Invest 108:261–268

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Forbes JM, Cooper ME, Thallas V, Burns WC, Thomas MC, Brammar GC, Lee F, Grant SL, Burrell LM, Jerums G, Osicka TM (2002) Reduction of the accumulation of advanced glycation end products by ACE inhibition in experimental diabetic nephropathy. Diabetes 51(11):3274–3282

    CAS  PubMed  Google Scholar 

  34. Brem H, Tomic-Canic M (2007) Cellular and molecular basis of wound healing in diabetes. J Clin Invest 117(5):1219–1222

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Peppa M, Stavroulakis P, Raptis SA (2009) Advanced glycoxidation products and impaired diabetic wound healing. Wound Repair Regen 17(4):461–472

    PubMed  Google Scholar 

  36. Shaikh-Kader A, Houreld NN, Rajendran NK, Abrahamse H (2019) The link between advanced glycation end products and apoptosis in delayed wound healing. Cell Biochem Funct 37:432–442

    CAS  PubMed  Google Scholar 

  37. Owen WF Jr, Hou FF, Stuart RO, Kay J, Boyce J, Chertow GM, Schmidt AM (1998) Beta 2-microglobulin modified with advanced glycation end products modulates collagen synthesis by human fibroblasts. Kidney Inter 53:1365–1373

    CAS  Google Scholar 

  38. Zhu Y, Lan F, Wei J, Chong B, Chen P, Huynh L, Wong N, Liu Y (2011) Influence of dietary advanced glycation end products on wound healing in nondiabetic mice. J Food Sci 76(1):T5–T10

    CAS  PubMed  Google Scholar 

  39. Yamagishi S, Imaizumi T (2005) Diabetic vascular complications: pathophysiology, biochemical basis and potential therapeutic strategy. Curr Pharm Des 11:2279–2299

    CAS  PubMed  Google Scholar 

  40. McCance DDG, Dunn JA et al (1993) Maillard reaction products andtheir relation to complications in insulin-dependent diabetes mellitus. J Clin Invest 91:2470–2478

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Stitt AW, Curtis TM (2011) Diabetes-related adduct formation and retinopathy. J Ocul Biol Dis Infor 4:10–18

    PubMed  PubMed Central  Google Scholar 

  42. Zong H, Ward M, Stitt AW (2011) AGEs, RAGE, and diabetic retinopathy. Curr Diab Rep F11:244–252

    Google Scholar 

  43. Hashim Z, Zarina S (2011) Advanced glycation end products in diabetic and non-diabetic human subjects suffering from cataract. Age (Dordr) 33:377–384

    CAS  Google Scholar 

  44. Nagaraj RH, Linetsky M, Stitt AW (2012) The pathogenic role of Maillard reaction in the aging eye. Amino Acids 42:1205–1220

    CAS  PubMed  Google Scholar 

  45. Farrukh AS, Sharkey E, Creighton D et al (2000) Maillard reactions in lens proteins: methylglyoxal-mediated modifications in the rat lens. Exp Eye Res 70:369–380

    Google Scholar 

  46. Kumar MS, Reddy PY, Kumar PA, Surolia I, Reddy GB (2004) Effect of dicarbonyl-induced browning on alpha-crystallin chaperone- like activity: physiological significance and caveats of in vitro aggregation assays. Biochem J 379:273–282

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gul A, Rahman MA, Hasnain SN, Salim A, Simjee SU (2008) Could oxidative stress associate with age products in cataractogenesis? Curr Eye Res 33:669–675

    CAS  PubMed  Google Scholar 

  48. Anwar S, Almatroudi A, Alsahli MA, Khan MA, Khan AA, Rahmani AH (2020) Natural products: implication in cancer prevention and treatment through modulating various biological activities. Anti Cancer Agents Med Chem. https://doi.org/10.2174/1871520620666200705220307

  49. Sharaf H, Matou-Nasri S, Wang Q et al (2015) Advanced glycation endproducts increase proliferation, migration and invasion of the breast cancer cell line MDA-MB-231. Biochim Biophys Acta 1852(3):429–441

    CAS  PubMed  Google Scholar 

  50. van Heijst JW, Niessen HW, Hoekman K, Schalkwijk CG (2005) Advanced glycation end products in human cancer tissues: detection of Nepsilon-(carboxymethyl) lysine and argpyrimidine. Ann N Y Acad Sci 1043:725–733

    PubMed  Google Scholar 

  51. Palimeri S, Palioura E, Diamanti-Kandarakis E (2015) Current perspectives on the health risks associated with the consumption of advanced glycation end products: recommendations for dietary management. Diabetes Metab Syndr Obes 8:415–426

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Pertynska-Marczewska M, Merhi Z (2015) Relationship of advanced glycation end products with cardiovascular disease in menopausal women. Reprod Sci 22(7):774–782

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zieman S, Kass D (2004) Advanced glycation end product cross-linking: pathophysiologic role and therapeutic target in cardiovascular disease. Congest Heart Fail 10(3):144–149

    CAS  PubMed  Google Scholar 

  54. Vitek MP, Bhattacharya K, Glendening JM, Stopa E, Vlassara H, Bucala R et al (1994) Advanced gly-cation end products contribute to amyloidosis in Alzheimer disease. Proc Natl Acad Sci U S A 91:4766–4770

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ko S-Y, Ko H-A, Chu K-H, Shieh T-M, Chi T-C, Chen H-I, Chang W-C, Chang SS (2015) The possible mechanism of advanced glycation end products (AGEs) for Alzheimer’s disease. PLoS One 10(11):e0143345

    PubMed  PubMed Central  Google Scholar 

  56. Sasaki N, Fukatsu R, Tsuzuki K et al (1998) Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases. Am J Pathol 153(4):1149–1155

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Anwar S, Khan MA, Sadaf A, Younus HA (2014) Structural study on the protection of glycation of superoxide dismutase by thymoquinone. Int J Biol Macromol 69:476–481

    CAS  PubMed  Google Scholar 

  58. Nowotny K, Jung T, Höhn A, Weber D, Grune T (2015) Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 5(1):194–222

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Nenna A, Nappi F, Singh SSA, Sutherland FW, Di Domenico F, Chello M, Spadaccio C (2015) Pharmacologic approaches against advanced glycation end products (AGEs) in diabetic cardiovascular disease. Res Cardiovasc Med 4(2):e26949

    PubMed  PubMed Central  Google Scholar 

  60. Thornalley PJ, Yurek-George A, Argirov OK (2000a) Kinetics and mechanism of the reaction of aminoguanidine with the alpha-oxoaldehydes glyoxal, methylglyoxal, and 3- deoxyglucosone under physiological conditions. Biochem Pharmacol 60:55–56

    CAS  PubMed  Google Scholar 

  61. Thornalley PJ, Yurek-George A, Argirov OK (2000b) Kinetics and mechanism of the reaction of aminoguanidine with the alphaoxoaldehydes glyoxal, methylglyoxal, and 3-deoxyglucosone under physiological conditions. Biochem Pharmacol 60:55–65

    CAS  PubMed  Google Scholar 

  62. Hudson BI, Lippman ME (2018) Targeting RAGE signaling in inflammatory disease. Annu Rev Med 69:349–364

    CAS  PubMed  Google Scholar 

  63. Nakamura T, Sacho T, Fujiwara N et al (2010) Atorvastatin reduces proteinuria in non-diabetic chronic kidney disease patients partly via lowering serum levels of advanced glycation end products (AGEs). Oxidative Med Cell Longev 3:304–307

    Google Scholar 

  64. Stadler K, Jenei V, Somogyi A et al (2005) Beneficial effects of aminoguanidine on the cardiovascular system of diabetic rats. Diabetes Metab Res Rev 21:189–196

    CAS  PubMed  Google Scholar 

  65. Battah S, Ahmed N, Thornalley PJ (2002) Kinetics and mechanism of the reaction of metformin with methylglyoxal. Int Cong Ser 1245:355–356

    CAS  Google Scholar 

  66. Doraiswamy PM, Finefrock AE (2004) Metals in our minds: therapeutic implications for neurodegenerative disorders. Lancet Neurol 3(7):431–434

    CAS  PubMed  Google Scholar 

  67. Youdim MH, Grünblatt E, Mandel S (1999) The pivotal role of iron in NF-κB activation and nigrostriatal dopaminergic neurodegeneration: prospects for neuroprotection in parkinson’s disease with iron chelators. Ann N Y Acad Sci 890:7–25

    CAS  PubMed  Google Scholar 

  68. Miyata T, Ueda Y, Asahi K, Izuhara Y, Inagi R, Saito A, de Strihou CVY, Kurokawa K (2000) Mechanism of the inhibitory effect of OPB-9195 [(6)-2-Isopropylidenehydrazono-4-oxo-thiazolidin-5-ylacetanilide] on advanced glycation end product and advanced lipoxidation end product formation. J Am Soc Nephrol 11:1719–1725

    CAS  PubMed  Google Scholar 

  69. Reddy VP, Beyaz A (2006) Inhibitors of the Maillard reaction and AGE breakers as therapeutucs for multiple diseases. Drug Discov Today 11:646–654

    CAS  PubMed  Google Scholar 

  70. Kass DA (2003) Getting better without AGE new insights into the diabetic heart. Circ Res 92:704–706

    CAS  PubMed  Google Scholar 

  71. Candido R, Forbes JM, Thomas MC, Thallas V, Dean RG, Burns WC, Tikellis C, Ritchie RH, Twigg SM, Cooper ME, Burrell LM (2003) A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res 92(7):785–792

    CAS  PubMed  Google Scholar 

  72. Arun N, Nalini N (2002) Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rats. Plant Foods Hum Nutr 57(1):41–52

    CAS  PubMed  Google Scholar 

  73. Sajithlal GB, Chithra P, Chandrakasan G (1998) Effect of curcumin on the advanced glycation and cross-linking of collagen in diabetic rats. Biochem Pharmacol 56(12):1607–1614

    CAS  PubMed  Google Scholar 

  74. Wu C-H, Huang SM, Lin J-A, Yin C-C (2011) Inhibition of advanced glycation endproduct formation by foodstuffs. Food Funct 2:224–234

    CAS  PubMed  Google Scholar 

  75. Motomura K, Fujiwara Y, Kiyota N, Tsurushima K, Takeya M, Nohara T, Nagai R, Ikeda T (2009) Astragalosides isolated from the root of astragalus radix inhibit the formation of advanced glycation end products. J Agric Food Chem 57(17):7666–7672

    CAS  PubMed  Google Scholar 

  76. Kang KS, Yamabe N, Kim HY, Park JH, Yokozawa T (2008) Therapeutic potential of 20(S)-ginsenoside Rg(3) against streptozotocin-induced diabetic renal damage in rats. Eur J Pharmacol 591(1–3):266–272

    CAS  PubMed  Google Scholar 

  77. Jain SK, Lim G (2000) Lipoic acid decreases lipid peroxidation and proteinglycosylation and increases (Na+1+ K+1)- and Ca++-ATPase activities in high glucose-treated human erythrocytes. Free Rad Biol Med 29:1122–1128

    CAS  PubMed  Google Scholar 

  78. Jahan H, Chaudhary MI (2015) Glycation, carbonyl stress and AGEs inhibitors: a patent review. Expert Opin Ther Patents 25(11):1–18

    Google Scholar 

  79. Roorda MM (2017) Therapeutic interventions against accumulation of advanced glycation end products (AGEs). Glycat Stress Res 4(2):132–143

    Google Scholar 

  80. Monnier VM, Bautista O, Kenny D et al (1999) Skin collagen glycation, glycoxidation, and crosslinking are lower in subjects with long-term intensive versus con-ventional therapy of type 1 diabetes: relevance of gly-cated collagen products versus HbA1c as markers of diabetic complications. DCCT Skin Collagen Ancillary Study Group. Diabetes Control and Complications Trial. Diabetes 48:870–880

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Espin JC, Garcia-Conesa MT, Tomas-Barberan FA (2007) Nutraceuticals: facts and fiction. Phytochemistry 68:2986–3008

    CAS  PubMed  Google Scholar 

  82. Rahmani AH, Aly SM, Ali H, Babiker AY, Srikar S, Khan AA (2014) Therapeutic effects of date fruits (Phoenix dactylifera) in the prevention of diseases via modulation of anti-inflammatory, anti-oxidant and anti-tumour activity. Int J Clin Exp Med 7(3):483–491

    PubMed  PubMed Central  Google Scholar 

  83. Rahmani AH, Alsahly MA, Aly SM, Khan MA, Aldebasi YH (2018) Role of curcumin in disease prevention and treatment. Adv Biomed Res 7:38

    PubMed  PubMed Central  Google Scholar 

  84. Rahmani AH, Alsahli MA, Almatroodi SA (2017) Active constituents of pomegranates (Punica granatum) as potential candidates in the management of health through modulation of biological activities. Pharm J 9(5):689–695

    CAS  Google Scholar 

  85. Rahmani AH (2015) Cassia fistula Linn: potential candidate in the health management. Pharm Res 7(3):217–224

    Google Scholar 

  86. Perera HKI, Handuwalage CS (2015) Analysis of glycation induced protein cross-linking inhibitory effects of some antidiabetic plants and spices. BMC Complement Altern Med 15:1–9

    Google Scholar 

  87. Anwar S, Almatroudi A, Allemailem KS, Joseph RJ, Khan AA, Rahmani AH (2020) Protective effects of ginger extract against glycation and oxidative stress induced health complications: an in vitro study. Processes 8:468

    CAS  Google Scholar 

  88. Khan MA, Anwar S, Aljarbou AN, Al-Orainy M, Aldebasi YH, Islam S, Younus H (2014) Protective effect of thymoquinone on glucose ormethylglyoxal-induced glycation of superoxidedismutase. Int J Biol Macromol 65:16–20

    CAS  PubMed  Google Scholar 

  89. Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidat Med Cellular Longev 2:270–278

    Google Scholar 

  91. Odjakova M, Popova E, Sharif MA, Mironova R (2012) Plant-derived agents with anti-glycation activity. In: Petrescu S (ed) Glycosylation. IntechOpen, Rijeka. https://doi.org/10.5772/48186

    Chapter  Google Scholar 

  92. Saxena M, Saxena J, Pradhan A (2012) Flavnoids and phenolic acids as antioxidants in plants and human health. Int J Pharm Rev Res 16(2):130–134

    CAS  Google Scholar 

  93. Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2:1231–1246

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Adisakwattana S (2017) Cinnamic acid and its derivatives: mechanisms for prevention and management of diabetes and its complications. Nutrients 3:163. https://doi.org/10.3390/nu9020163

    Article  CAS  Google Scholar 

  95. Gugliucci A, Bastos DHM, Schulze J, Souza MFF (2009) Caffeic and chlorogenic acids in Ilex paraguariensis extracts are the main inhibitors of AGE generation by methylglyoxal in model proteins. Fitoterapia 80:339–344

    CAS  PubMed  Google Scholar 

  96. Dominguez LJ, Sowers JR (2005) Metabolic syndrome therapy: prevention of vascular injury by antidiabetic agents. Curr Hypertens Rep 7:110–116

    CAS  PubMed  Google Scholar 

  97. Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:16

    Google Scholar 

  98. Kaurinovic B, Vastag D (2019) Flavonoids and phenolic acids as potential natural antioxidants. In: Shalaby E (ed) Antioxidants. IntechOpen, London. https://doi.org/10.5772/intechopen.83731

    Chapter  Google Scholar 

  99. Abad JM, Bermejo P, Villar A (1995) The activity of flavonoids extracted from Tanacetum microphyllum DC. (Compositae) on soybean lipoxygenase and prostaglandin synthetase. Gen Pharmacol 26:815–819

    CAS  PubMed  Google Scholar 

  100. Boonmuen N, Gong P, Ali Z, Chittiboyina AG, Khan I, Doerge DR et al (2016) Licorice root components in dietary supplements are selective estrogen receptor modulators with a spectrum of estrogenic and anti-estrogenic activities. Steroids 105:42–49

    CAS  PubMed  Google Scholar 

  101. Wu C-H, Yen G-C (2005) Inhibitory effect of naturally occurring flavonoids on the formation of advanced glycation endproducts. J Agric Food Chem 53(8):3167–3173

    CAS  PubMed  Google Scholar 

  102. Sasaki K, Chiba S, Yoshizaki F (2014) Effect of natural flavonoids, stilbenes and caffeic acid oligomers on protein glycation. Biomed Rep 2(5):628–632

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Li X, Zheng T, Sang S, Lv L (2014) Quercetin inhibits advanced glycation end product formation by trapping methylglyoxal and glyoxal. J Agric Food Chem 62(50):12152–12158

    CAS  PubMed  Google Scholar 

  104. Baur JA, Sinclair DA (2005) Therapeutic potential of resveratrol: the in vivo evidence, Nature reviews. Nat Rev Drug Discov 5:493–506

    Google Scholar 

  105. Oliveira LDLD, Carvalho MV, Melo L (2014) Health promoting and sensory properties of phenolic compounds in food. Revista Ceres 61:764–779

    Google Scholar 

  106. Yeh W-J, Hsiaa S-M, Leeb W-H, Wu C-H (2017) Polyphenols with antiglycation activity and mechanisms of action: a review of recent findings. J Food Drug Anal 25:1–9

    Google Scholar 

  107. Wang B, Liu T, Wu Z, Zhang L, Sun J, Wang X (2018) Synthesis and biological evaluation of stilbene derivatives coupled to NO donors as potentialantidiabetic agents. J Enzyme Inhib Med Chem 33(1):416–423

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Pérez-Gutierrez RM (2013) Inhibition of advanced glycation end products formation by stilbeneand phenanthrene derivatives from Prosthecheamichuacana in vitro and in vivo. Bol Latinoam Caribe Plant Med Aromat 12(1):69–80

    Google Scholar 

  109. Imran M, Ahmad N, Anjum FM, Khan MK, Mushtaq Z, Nadeem M, Hussain S (2015) Potential protective properties of flax lignan secoisolariciresinol diglucoside. Nutr J 14:71. https://doi.org/10.1186/s12937-015-0059-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Huang W-Y, Cai Y-Z, Zhang Y (2009) Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer 62:1–20

    Google Scholar 

  111. Panahi Y, Khalili N, Sahebi E, Namazi S, Karimian MS, Majeed M, Sahebkar A (2017) Antioxidant effects of curcuminoids in patients with type 2diabetes mellitus: a randomized controlled trial. Inflammopharmacology. https://doi.org/10.1007/s10787-016-0301-4

  112. Rohini K, Srikumar PS (2014) Therapeutic role of coumarins and coumarin-related compounds. J Thermodyn Catal 5:130

    Google Scholar 

  113. Mirunalini S, Krishnaveni M (2011) Coumarin: a plant derived polyphenol with wide biomedical applications. Int J PharmTech Res 3:1693–1696

    CAS  Google Scholar 

  114. Yao Y, Zhao X, Xin J, Wu Y, Li H (2018) Coumarins improved type 2 diabetes induced by high-fat diet and streptozotocin in mice via antioxidation. Can J Physiol Pharma 96:765–771

    CAS  Google Scholar 

  115. Khangoli S, Abdul Majid FA, Berwary NJA, Ahmad F, Abd Aziz RB (2016) The mechanisms of inhibition of advanced glycation end products formation through polyphenols in hyperglycemic condition. Planta Med 82:32–45

    Google Scholar 

  116. Dembinska-Kiec A, Mykkänen O, Kiec-Wilk B, Mykkänen H (2008) Antioxidant phytochemicals against type 2 diabetes. Br J Nutr 99:ES109–ES117

    PubMed  Google Scholar 

  117. Obanda DN, Hernandez A, Ribnicky D, Yu Y, Zhang XH, Wang ZQ, Cefalu WT (2012) Bioactives of Artemisia dracunculus L. mitigate the role of ceramides in attenuating insulin signaling in rat skeletal muscle cells. Diabetes 61:597–605

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Taher M, Abdul Majid FA, Sarmidi MR (2004) Cinnamtannin B1 activity on adipocytes formation. Med J Malaysia 59:97–98

    PubMed  Google Scholar 

  119. Zhao HL, Sui Y, Qiao CF et al (2012) Sustained antidiabetic effects of a berberine-containing Chinese herbal medicine through regulation of hepatic gene expression. Diabetes 61:933–943

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Seo K-I, Choi MS, Jung UJ, Kim HJ, Yeo J, Jeon SM, Lee MK (2008) Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice. Mol Nutr Food Res 52:995–1004

    CAS  PubMed  Google Scholar 

  121. Korkina LG, Afanas’ev IB (1997) Antioxidant and chelating properties of flavonoids. Adv Pharmacol 38:151–163

    CAS  PubMed  Google Scholar 

  122. Elliott AJ, Scheiber SA, Thomas C, Pardini RS (1992) Inhibition of glutathione reductase by flavonoids: a structure-activity study. Biochem Pharmacol 44:1603–1608

    CAS  PubMed  Google Scholar 

  123. Ferrali M, Signorini C, Caciotti B, Sugherini L, Ciccoli L, Giachetti D, Comporti M (1997) Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity. FEBS Lett 416:123–129

    CAS  PubMed  Google Scholar 

  124. Cao G, Sofic E, Prior RL (1997) Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Rad Biol Med 22:749–760

    CAS  PubMed  Google Scholar 

  125. Zheng Y, Li XK, Wang Y, Cai L (2008) The role of zinc, copper and iron in the pathogenesis of diabetes and diabetic complications: therapeutic effects by chelators. Hemoglobin 32:135–145

    CAS  PubMed  Google Scholar 

  126. Yamaguchi F, Ariga T, Yoshimura Y, Nakazawa H (2000) Antioxidative and anti-glycation activity of garcinol from Garcinia indica fruit rind. J Agric Food Chem 48:180–185

    CAS  PubMed  Google Scholar 

  127. Arora A, Nair MG, Strasburg GM (1998) Structure-activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radic Biol Med 24:1355–1363

    CAS  PubMed  Google Scholar 

  128. Brownlee M, Cerami A, Vlassara H (1988) Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 318:1315–1321

    CAS  PubMed  Google Scholar 

  129. Hu TY, Liu CL, Chyau CC, Hu ML (2012) Trapping of methylglyoxal by curcumin in cell-free systems and in human umbilical vein endothelial cells. J Agric Food Chem 60:8190–8196

    CAS  PubMed  Google Scholar 

  130. Hallam KM, Li Q, Ananthakrishnan R, Kalea A, Zou YS, Vedantham S, Schmidt AM, Yan SF, Ramasamy R (2010) Aldose reductase and AGE-RAGE pathways: central roles in the pathogenesis of vascular dysfunctionin aging rats. Aging Cell 9:776–784

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Stocker R, Keaney JF (2004) Role of oxidative modifications in atherosclerosis. Physiol Rev 84:1381–1478

    CAS  Google Scholar 

  132. Al-Muammar MN, Khan F (2012) Obesity: the preventive role of the pomegranate (Punica granatum). Nutrition 28:595–604

    CAS  PubMed  Google Scholar 

  133. Peng X, Cheng KW, Ma J, Chen B, Ho CT, Lo C, Chen F, Wang M (2008) Cinnamon bark proanthocyanidins as reactive carbonyl scavengers to prevent the formation of advanced glycation endproducts. J Agric Food Chem 56:1907–1911

    CAS  PubMed  Google Scholar 

  134. Martins N, Ferreira ICFR, Barros L (2016) In vivo antioxidant activity of phenolic compounds: facts and gaps. Trends Food Sci Technol 48:1–12

    CAS  Google Scholar 

  135. Peng X, Ma J, Chen F, Wang M (2011) Naturally occurring inhibitors against the formation of advanced glycation end-products. Food Funct 2:289–301

    CAS  PubMed  Google Scholar 

  136. Mizutani K, Ikeda K, Yamori Y (2000) Resveratrol inhibits AGEs-induced proliferation and collagen synthesis activity in vascular smooth muscle cells from stroke-prone spontaneously hypertensive rats. Biochem Biophys Res Commun 274:61–67

    CAS  PubMed  Google Scholar 

  137. Holst B, Williamson G (2008) Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Curr Opin Biotechnol 19:73–82

    CAS  PubMed  Google Scholar 

  138. Kuerban AK, Moselhy SS, AlMulaiky YQ, Razvi SS, Hasan MN, Abulnaja KO, Kumosani TA, L-Al-Malki A (2017) Natural compounds that inhibit protein glycation: a review for recent findings. Indo Am J P Sci 4(11):4027–4042

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arshad Husain Rahmani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anwar, S., Khan, S., Almatroudi, A. et al. A review on mechanism of inhibition of advanced glycation end products formation by plant derived polyphenolic compounds. Mol Biol Rep 48, 787–805 (2021). https://doi.org/10.1007/s11033-020-06084-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06084-0

Keywords

Navigation