Skip to main content
Log in

Identification of miR-17, miR-21, miR-27a, miR-106b and miR-222 as endoplasmic reticulum stress-related potential biomarkers in circulation of patients with atherosclerosis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Atherosclerosis and related cardiovascular diseases are among the most common causes of death worldwide. Unfolded protein response, also known as Endoplasmic reticulum stress, has a critical role in many diseases including atherosclerosis. Small non-coding microRNAs (miRNA), which generally suppress gene expression, regulate UPR signalling and they may also be involved in the progression of atherosclerosis. We aim to investigate the expression levels of miR-17, miR-21, miR-27a, miR-106b, miR-222 and CHOP gene in circulation of atherosclerosis patients compared to healthy controls to establish a link between ER stress and atherosclerosis. miRNA containing whole RNA was isolated from blood samples of 25 patients with atherosclerosis and 26 healthy controls. Expression levels of miRNAs and CHOP were measured via Real Time PCR method. miR-17 and miR-106b were significantly increased while miR-21, miR-27a, and miR-222 were significantly decreased in patients compared to controls. CHOP gene was also dramatically and significantly induced in patient samples. miR-17, miR-21, miR-27a, miR-106b, miR-222 and CHOP were significantly differentially expressed in patients with atherosclerosis. Each miRNA and CHOP might regulate atherosclerotic plaque progression and they can be used as a biomarker in the diagnosis and follow-up of atherosclerosis-related cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request without sharing patients’ information.

Abbreviations

ATF6:

Activating transcription factor 6

CAD:

Coronary artery disease

CHOP:

CCAAT-enhancer-binding protein homologous protein

CVDs:

Cardiovascular diseases

ER:

Endoplasmic reticulum

EPCs:

Endothelial progenitor cells

HMGCR:

Hydroxy-3-methylglutaryl- coenzyme A reductase gene

IRE1:

Inositol-requiring enzyme 1

IMA:

Internal mammary arteries

LPL:

Lipoprotein lipase

LDL-C:

Low-density lipoprotein cholesterol

LDL-R:

Low-density lipoprotein receptor

miRNAs:

MicroRNAs

PERK:

Protein kinase RNA-like endoplasmic reticulum kinase

UPR:

Unfolded protein response

UA:

Unstable angina

References

  1. Mendis S (2014) Global status report on noncommunicable diseases 2014, 1st edn. WHO Press, Geneva, pp 1–11

  2. Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473(7347):317–25. https://doi.org/10.1038/nature10146

    Article  CAS  PubMed  Google Scholar 

  3. Tabas I, García-Cardeña G, Owens GK (2015) Recent insights into the cellular biology of atherosclerosis. J Cell Biol 209(1):13–22. https://doi.org/10.1083/jcb.201412052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Berridge MJ (2002) The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 32(5–6):235–49. https://doi.org/10.1016/S0143416002001823

    Article  CAS  PubMed  Google Scholar 

  5. Chaudhari N, Talwar P, Parimisetty A, dHellencourt CL, Ravanan P. (2014) A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front Cell Neurosci 8(JULY):1–15. https://doi.org/10.3389/fncel.2014.00213

    Article  Google Scholar 

  6. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89–102. https://doi.org/10.1038/nrm3270

    Article  CAS  PubMed  Google Scholar 

  7. Tufanli O, Akillilar PT, Acosta-Alvear D, Kocaturk B, Onat UI, Hamid SM et al (2017) Targeting IRE1 with small molecules counteracts progression of atherosclerosis. Proc Natl Acad Sci USA 114(8):E1395-404. https://doi.org/10.1073/pnas.1621188114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hong J, Kim K, Kim JH, Park Y (2017) The role of endoplasmic reticulum stress in cardiovascular disease and exercise. Int J Vasc Med. https://doi.org/10.1155/2017/2049217

    Article  PubMed  PubMed Central  Google Scholar 

  9. Çimen I, Kocatürk B, Koyuncu S, Tufanlı Ö, Onat UI, Yildirim AD et al (2016) Prevention of atherosclerosis by bioactive palmitoleate through suppression of organelle stress and inflammasome activation. Sci Transl Med 8(358):1. https://doi.org/10.1126/scitranslmed.aaf9087

    Article  CAS  Google Scholar 

  10. Chen X, Guo X, Ge Q, Zhao Y, Mu H, Zhang J (2019) ER stress activates the NLRP3 inflammasome: a novel mechanism of atherosclerosis. Oxid Med Cell Longev. https://doi.org/10.1155/2019/3462530

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ren J, Bi Y, Sowers JR, Hetz C, Zhang Y (2021) Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol. https://doi.org/10.1038/s41569-021-00511-w

    Article  PubMed  Google Scholar 

  12. Tsukano H, Gotoh T, Endo M, Miyata K, Tazume H, Kadomatsu T et al (2010) The endoplasmic reticulum stress-C/EBP homologous protein pathway-mediated apoptosis in macrophages contributes to the instability of atherosclerotic plaques. Arterioscler Thromb Vasc Biol 30(10):1925–32. https://doi.org/10.1161/ATVBAHA.110.206094

    Article  CAS  PubMed  Google Scholar 

  13. Sun Y, Zhang D, Liu X, Li X, Liu F, Yu Y et al (2018) Endoplasmic reticulum stress affects lipid metabolism in atherosclerosis via CHOP activation and over-expression of miR-33. Cell Physiol Biochem. 48(5):1995–2010. https://doi.org/10.1159/000492522

    Article  CAS  PubMed  Google Scholar 

  14. Jauhiainen A, Thomsen C, Strömbom L, Grundevik P, Andersson C, Danielsson A et al (2012) Distinct cytoplasmic and nuclear functions of the stress induced protein DDIT3/CHOP/GADD153. PLoS One 7(4):e33208. https://doi.org/10.1371/journal.pone.0033208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Van Rooij E, Olson EN (2007) MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest 117(9):2369–76. https://doi.org/10.1172/JCI33099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee RC, Feinbaum RL, Ambros V, The C (1993) elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  17. Byrd AE, Brewer JW (2013) Micro(RNA)managing endoplasmic reticulum stress. IUBMB Life 65(5):373–81. https://doi.org/10.1002/iub.1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maurel M, Chevet E, Faraldi M, Gomarasca M, Sansoni V, Perego S et al (2011) Normalization strategy is critical for the outcome of miRNA expression analyses in the rat heart. Sci Rep 8(1):1–9. https://doi.org/10.1152/ajpcell.00061.2013 

    Article  CAS  Google Scholar 

  19. Bildirici AE, Arslan S, Özbilüm Şahin N, Berkan Ö, Beton O, Yilmaz MB (2018) MicroRNA-221/222 expression in atherosclerotic coronary artery plaque versus internal mammarian artery and in peripheral blood samples. Biomarkers 23(7):670–675. https://doi.org/10.1080/1354750X.2018.1474260 

    Article  CAS  PubMed  Google Scholar 

  20. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–97

    Article  CAS  PubMed  Google Scholar 

  21. Belmont P, Chen W, Thuerauf D, Glembotski C (2012) Regulation of microRNA expression in the heart by the ATF6 branch of the ER stress response. J Mol Cell Cardiol 52(5):1176–82. https://doi.org/10.1016/j.yjmcc.2012.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen M, Ma G, Yue Y, Wei Y, Li Q, Tong Z et al (2014) Downregulation of the miR-30 family microRNAs contributes to endoplasmic reticulum stress in cardiac muscle and vascular smooth muscle cells. Int J Cardiol 173(1):65–73. https://doi.org/10.1016/j.ijcard.2014.02.007

    Article  PubMed  Google Scholar 

  23. Upton JP, Wang L, Han D, Wang ES, Huskey NE, Lim L, Truitt M, McManus MT, Ruggero D, Goga A, Papa FR, Oakes SA (2012) IRE1α cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science 338:818–22. https://doi.org/10.1126/science.1226191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gupta S, Read DE, Deepti A, Cawley K, Gupta A, Oommen D et al (2012) Perk-dependent repression of miR-106b-25 cluster is required for ER stress-induced apoptosis. Cell Death Dis 3(6):e333-10. https://doi.org/10.1038/cddis.2012.74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chhabra R, Dubey R, Saini N (2011) Gene expression profiling indicate role of ER stress in miR-23a∼27a∼24–2 cluster induced apoptosis in HEK293T cells. RNA Biol. https://doi.org/10.4161/rna.8.4.15583

    Article  PubMed  Google Scholar 

  26. Dai R, Li J, Liu Y, Yan D, Chen S, Duan C et al (2010) MiR-221/222 suppression protects against endoplasmic reticulum stress-induced apoptosis via p27 Kip1- and MEK/ERK-mediated cell cycle regulation. Biol Chem 391(7):791–801. https://doi.org/10.1515/BC.2010.072

    Article  CAS  PubMed  Google Scholar 

  27. Jia LX, Zhang WM, Li TT, Liu Y, Piao CM, Ma YC et al (2017) ER stress dependent microparticles derived from smooth muscle cells promote endothelial dysfunction during thoracic aortic aneurysm and dissection. Clin Sci 131(12):1287–99. https://doi.org/10.1042/CS20170252

    Article  CAS  Google Scholar 

  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25(4):402–8

    Article  CAS  PubMed  Google Scholar 

  29. Vlachos IS, Hatzigeorgiou AG (2017) Functional analysis of miRNAs using the DIANA tools online suite. Methods Mol Biol 1517:25–50. https://doi.org/10.1007/978-1-4939-6563-2_2

    Article  CAS  PubMed  Google Scholar 

  30. Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife. https://doi.org/10.7554/eLife.05005

    Article  PubMed  PubMed Central  Google Scholar 

  31. An JH, Chen ZY, Ma QL, Wang HJ, Zhang JQ, Shi FW (2019) LncRNA SNHG16 promoted proliferation and inflammatory response of macrophages through miR-17–5p/NF-κB signaling pathway in patients with atherosclerosis. Eur Rev Med Pharmacol Sci 23(19):8665–8677. https://doi.org/10.26355/eurrev_201910_19184

    Article  PubMed  Google Scholar 

  32. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C et al (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107(5):677–84. https://doi.org/10.1161/CIRCRESAHA.109.215566

    Article  CAS  PubMed  Google Scholar 

  33. Brown MS, Goldstein JL (1976) Familial hypercholesterolemia: a genetic defect in the low-density lipoprotein receptor. N Engl J Med 294(25):1386–90. https://doi.org/10.1056/NEJM197606172942509

    Article  CAS  PubMed  Google Scholar 

  34. Chen J, Xu L, Hu Q, Yang S, Zhang B, Jiang H (2015) MiR-17-5p as circulating biomarkers for the severity of coronary atherosclerosis in coronary artery disease. Int J Cardiol 197:123–124. https://doi.org/10.1016/j.ijcard.2015.06.037

    Article  PubMed  Google Scholar 

  35. Semo J, Chernin G, Jonas M, Shimoni S, George J (2019) Deletion of the Mir-106b~ 25 microRNA cluster attenuates atherosclerosis in apolipoprotein e knockout mice. Lipids Health Dis 18(1):1–9. https://doi.org/10.1186/s12944-019-1155-8

    Article  CAS  Google Scholar 

  36. Han H, Qu G, Han C, Wang Y, Sun T, Li F et al (2015) MiR-34a, miR-21 and miR-23a as potential biomarkers for coronary artery disease: a pilot microarray study and confirmation in a 32 patient cohort. Exp Mol Med 47(2):e138-7. https://doi.org/10.1038/emm.2014.81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ren J, Zhang J, Xu N, Han G, Geng Q, Song J et al (2013) Signature of circulating MicroRNAs as potential biomarkers in vulnerable coronary artery disease. PLoS ONE. https://doi.org/10.1371/journal.pone.0080738

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhou J, Shao G, Chen X, Yang X, Huang X, Peng P et al (2016) MiRNA 206 and miRNA 574–5p are highly expression in coronary artery disease. Biosci Rep. 36(1):1–7. https://doi.org/10.1042/BSR20150206

    Article  CAS  Google Scholar 

  39. Dentelli P, Rosso A, Orso F, Olgasi C, Taverna D, Brizzi MF (2010) MicroRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression. Arterioscler Thromb Vasc Biol 30(8):1562–8. https://doi.org/10.1161/ATVBAHA.110.206201

    Article  CAS  PubMed  Google Scholar 

  40. Chamorro-Jorganes A, Araldi E, Suárez Y (2013) MicroRNAs as pharmacological targets in endothelial cell function and dysfunction. Pharmacol Res 75:15–27. https://doi.org/10.1016/j.phrs.2013.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Minami Y, Satoh M, Maesawa C, Takahashi Y, Tabuchi T, Itoh T et al (2009) Effect of atorvastatin on microRNA 221/222 expression in endothelial progenitor cells obtained from patients with coronary artery disease. Eur J Clin Invest 39(5):359–67. https://doi.org/10.1111/j.1365-2362.2009.02110

    Article  CAS  PubMed  Google Scholar 

  42. Canfrán-Duque A, Rotllan N, Zhang X, Fernández-Fuertes M, Ramírez-Hidalgo C, Araldi E et al (2017) Macrophage deficiency of miR-21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis. EMBO Mol Med 9(9):1244–62. https://doi.org/10.15252/emmm.201607492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jin H, Li DY, Chernogubova E, Sun C, Busch A, Eken SM et al (2018) Local delivery of miR-21 stabilizes fibrous caps in vulnerable atherosclerotic lesions. Mol Ther 26(4):1040–55. https://doi.org/10.1016/j.ymthe.2018.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Raitoharju E, Lyytikäinen LP, Levula M, Oksala N, Mennander A, Tarkka M et al (2011) MiR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the tampere vascular study. Atherosclerosis 219(1):211–7. https://doi.org/10.1016/j.atherosclerosis.2011.07.020

    Article  CAS  PubMed  Google Scholar 

  45. Cengiz M, Yavuzer S, Klçkran Avc B, Yürüyen M, Yavuzer H, Dikici SA et al (2015) Circulating miR-21 and eNOS in subclinical atherosclerosis in patients with hypertension. Clin Exp Hypertens 37(8):643–9. https://doi.org/10.3109/10641963.2015.1036064

    Article  CAS  PubMed  Google Scholar 

  46. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103(7):2257–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Khan A, Agarwal H, Reddy SS, Arige V, Natarajan B, Gupta V et al (2020) MicroRNA-27a is a key modulator of cholesterol biosynthesis. Mol Cell Biol. https://doi.org/10.1128/mcb.00470-19

    Article  PubMed  PubMed Central  Google Scholar 

  48. Xie W, Li L, Zhang M, Cheng HP, Gong D, Lv YC et al (2016) MicroRNA-27 prevents atherosclerosis by suppressing lipoprotein lipase-induced lipid accumulation and inflammatory response in apolipoprotein E knockout mice. PLoS ONE 11(6):1–20. https://doi.org/10.1371/journal.pone.0157085

    Article  CAS  Google Scholar 

  49. Vegter EL, Ovchinnikova ES, van Veldhuisen DJ, Jaarsma T, Berezikov E, van der Meer P et al (2017) Low circulating microRNA levels in heart failure patients are associated with atherosclerotic disease and cardiovascular-related rehospitalizations. Clin Res Cardiol 106(8):598–609. https://doi.org/10.1007/s00392-017-1096-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Minamino T, Kitakaze M (2010) ER stress in cardiovascular disease. J Mol Cell Cardiol 48(6):1105–10. https://doi.org/10.1016/j.yjmcc.2009.10.026

    Article  CAS  PubMed  Google Scholar 

  51. Thorp E, Li G, Seimon TA, Kuriakose G, Ron D, Tabas I (2009) Reduced apoptosis and plaque necrosis in advanced atherosclerotic lesions of Apoe−/− and Ldlr−/− mice lacking CHOP. Cell Metab 9(5):474–81. https://doi.org/10.1016/j.cmet.2009.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Myoishi M, Hao H, Minamino T, Watanabe K, Nishihira K, Hatakeyama K et al (2007) Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation 116(11):1226–33

    Article  PubMed  Google Scholar 

  53. Solley S, Zappa F, Acosta-Alvear D (2020) Regulation of the mammalian cell cycle by the unfolded protein response. FASEB J 34:1–1. https://doi.org/10.1096/fasebj.2020.34.s1.08710

    Article  Google Scholar 

  54. Qu L, Koromilas AE (2004) Control of tumor suppressor p53 function by endoplasmic reticulum stress. Cell Cycle 3(5):567–70

    Article  CAS  PubMed  Google Scholar 

  55. Engel T, Sanz-Rodgriguez A, Jimenez-Mateos EM, Concannon CG, Jimenez-Pacheco A, Moran C et al (2013) CHOP regulates the p53-MDM2 axis and is required for neuronal survival after seizures. Brain 136(2):577–92. https://doi.org/10.1093/brain/aws337

    Article  PubMed  Google Scholar 

  56. Park W-J, Park J-W (2020) The role of sphingolipids in endoplasmic reticulum stress. FEBS Lett 594(22):3632–51. https://doi.org/10.1002/1873-3468.13863

    Article  CAS  PubMed  Google Scholar 

  57. Yu Z, Peng Q, Huang Y (2019) Potential therapeutic targets for atherosclerosis in sphingolipid metabolism Sphingolipids metabolism overview of sphingolipid biosynthesis. Clin Sci 133:763–776. https://doi.org/10.1042/CS20180911

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Scientific Research Projects Coordination Unit of Yuksek Ihtisas University under Grant Number 2018/01.001.

Author information

Authors and Affiliations

Authors

Contributions

Design and implementation of the research: PTA and DC. Performed the experiments: PTA and DC. Analysed the data: PTA and DC. Wrote the paper: PTA and DC. Both authors have read and approved the final version of the manuscript and they have met the criteria for authorship.

Corresponding author

Correspondence to Pelin Telkoparan-Akillilar.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The ethical approval was taken from The Yuksek Ihtisas Hospital Ethics Committee (File number: 2018-8663) meeting the criteria outlined in the Declaration of Helsinki and all participants signed written informed consent.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telkoparan-Akillilar, P., Cevik, D. Identification of miR-17, miR-21, miR-27a, miR-106b and miR-222 as endoplasmic reticulum stress-related potential biomarkers in circulation of patients with atherosclerosis. Mol Biol Rep 48, 3503–3513 (2021). https://doi.org/10.1007/s11033-021-06352-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06352-7

Keywords

Navigation