Skip to main content

Advertisement

Log in

Resistance to endocrine therapy in HR + and/or HER2 + breast cancer: the most promising predictive biomarkers

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Breast cancer is the most common cancer in women. It is a heterogeneous disease, encompassing different biological subtypes that differ in histological features, outcomes, clinical behaviour and different molecular subtypes. Therapy has progressed substantially over the past years with a reduction both for locoregional and systemic therapy. Endocrine therapies have considerably reduced cancer recurrence and mortality. Despite the major diagnostic and therapeutic innovations, resistance to therapy has become a main challenge, especially in metastatic breast cancer, and became a major factor limiting the use of endocrine therapeutic agents in ER positive breast cancers. Approximately 50% of patients with ER positive metastatic disease achieve a complete or partial response with endocrine therapy. However, in the remaining patients, the benefit is limited due to resistance, intrinsic or acquired, resulting in disease progression and poor outcome.

Tumour heterogeneity as well as acquired genetic changes and therapeutics pressure have been involved in the endocrine therapy resistance. Nowadays, targeted sequencing of genes involved in cancer has provided insights about genomic tumour evolution throughout treatment and resistance driver mutations. Several studies have described multiple alterations in receptor tyrosine kinases, signalling pathways such as Phosphoinositide-3-kinase–protein kinase B/Akt/mTOR (PI3K/Akt/mTOR) and Mitogen-activated protein kinase (MAPK), cell cycle machinery and their implications in endocrine treatment failure.

One of the current concern in cancer is personalized therapy. The focus has been the discovery of new potentially predictive biomarkers capable to identify reliably the most appropriate therapy regimen and which patients will experience disease relapse. The major concern is also to avoid overtreatment/undertreatment and development of resistance.

This review focuses on the most promising predictive biomarkers of resistance in estrogen receptor-positive breast cancer and the emerging role of circulating free-DNA as a powerful tool for longitudinal monitoring of tumour molecular profile throughout treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Globocan. Estimated number of new cases in 2018, Worldwide, all cancers, Females, all ages [Internet]. Vol. 849, Cancer Today. 2018. p. 2018. Available from: http://gco.iarc.fr/today/online-analysis-pie?v=2018&mode=cancer&mode_population=continents&population=900&populations=710&key=total&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=7&group_

  2. Al-thoubaity FK (2020) Molecular classification of breast cancer: a retrospective cohort study. Ann Med Surg 49:44–48

    Google Scholar 

  3. Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P et al (2019) Breast cancer. Nat Rev Dis Prim 5:1–31

    Google Scholar 

  4. Viale G (2012) The current state of breast cancer classification. Ann Oncol 23:207–210

    Google Scholar 

  5. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    CAS  PubMed  Google Scholar 

  6. Szostakowska M, Trębińska-Stryjewska A, Grzybowska EA, Fabisiewicz A (2019) Resistance to endocrine therapy in breast cancer: molecular mechanisms and future goals. Breast Cancer Res Treat 173:489–497

    PubMed  Google Scholar 

  7. Reinert T, Gonçalves R, Bines J (2018) Implications of ESR1 mutations in hormone receptor-positive breast cancer. Curr Treat Options Oncol 19:1–13

    Google Scholar 

  8. Reinert T, Barrios CH (2017) Overall survival and progression-free survival with endocrine therapy for hormone breast cancer : review. Ther Adv Med Oncol 9:693–709

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Reinert T, Barrios CH (2015) Optimal management of hormone receptor positive metastatic breast cancer in 2016. Ther Adv Med Oncol 7:304–320

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hsu JL, Hung M-C (2016) The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer. Cancer Metastasis Rev 35:575–588

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Vernieri C, Milano M, Brambilla M, Mennitto A, Maggi C, Cona MS et al (2019) Resistance mechanisms to anti-HER2 therapies in HER2-positive breast cancer: current knowledge, new research directions and therapeutic perspectives. Crit Rev Oncol Hematol 139:53–66

    PubMed  Google Scholar 

  12. Clarke R, Tyson JJ, Dixon JM (2015) Endocrine resistance in breast cancer—an overview and update. Mol Cell Endocrinol 418:220–234

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Haque MM, Desai KV (2019) Pathways to endocrine therapy resistance in breast cancer. Front Endocrinol (Lausanne) 10:1–7

    Google Scholar 

  14. Fang H, Huang D, Yang F, Guan X (2018) Potential biomarkers of CDK4/6 inhibitors in hormone receptor-positive advanced breast cancer. Breast Cancer Res Treat 168:287–297

    CAS  PubMed  Google Scholar 

  15. Nicolini A, Ferrari P, Duffy MJ (2018) Prognostic and predictive biomarkers in breast cancer: past, present and future. Semin Cancer Biol 52:56–73

    CAS  PubMed  Google Scholar 

  16. Bertucci F, Ng CKY, Patsouris A, Droin N, Piscuoglio S, Carbuccia N et al (2019) Genomic characterization of metastatic breast cancers. Nature 569(7757):560–564

    CAS  PubMed  Google Scholar 

  17. Selli C, Dixon JM, Sims AH (2016) Accurate prediction of response to endocrine therapy in breast cancer patients: current and future biomarkers. Breast Cancer Res 18:1–10

    Google Scholar 

  18. Juric D, Castel P, Griffith M, Griffith OL, Won HH, Ellis H et al (2015) Convergent loss of PTEN leads to clinical resistance to a PI(3)Kα inhibitor. Nature 518:240–244

    CAS  PubMed  Google Scholar 

  19. Lei JT, Gou X, Seker S, Ellis MJ (2019) ESR1 alterations and metastasis in estrogen receptor positive breast cancer. J Cancer Metastasis Treat 5:1–16

    Google Scholar 

  20. Zundelevich A, Dadiani M, Kahana-Edwin S, Itay A, Sella T, Gadot M et al (2020) ESR1 mutations are frequent in newly diagnosed metastatic and loco-regional recurrence of endocrine-treated breast cancer and carry worse prognosis. Breast Cancer Res 22:1–11

    Google Scholar 

  21. Rani A, Stebbing J, Giamas G, Murphy J (2019) Endocrine resistance in hormone receptor positive breast cancer-from mechanism to therapy. Front Endocrinol (Lausanne) 10:1–32

    Google Scholar 

  22. Hanker AB, Sudhan DR, Arteaga CL (2020) Overcoming endocrine resistance in breast cancer. Cancer Cell 37:496–513

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Brett JO, Spring LM, Bardia A, Wander SA (2021) ESR1 mutation as an emerging clinical biomarker in metastatic hormone receptor-positive breast cancer. Breast Cancer Res 23:1–15

    Google Scholar 

  24. Fanning SW, Mayne CG, Dharmarajan V et al (2016) Estrogen receptor alpha somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation. Elife. https://doi.org/10.7554/eLife.12792

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fiorillo M, Sanchez-Alvarez R, Sotgia F, Lisanti MP (2018) The ER-alpha mutation Y537S confers Tamoxifen-resistance via enhanced mitochondrial metabolism, glycolysis and Rho-GDI/PTEN signaling: Implicating TIGAR in somatic resistance to endocrine therapy. Aging (Albany NY) 10:4000–4023

    CAS  Google Scholar 

  26. Takeshita T, Yamamoto Y, Yamamoto-Ibusuki M, Tomiguchi M, Sueta A, Murakami K et al (2017) Analysis of ESR1 and PIK3CA mutations in plasma cell-free DNA from ER-positive breast cancer patients. Oncotarget 8:52142–52155

    PubMed  PubMed Central  Google Scholar 

  27. Clatot F, Perdrix A, Augusto L, Beaussire L, Delacour J, Calbrix C et al (2016) Kinetics, prognostic and predictive values of ESR1 circulating mutations in metastatic breast cancer patients progressing on aromatase inhibitor. Oncotarget 7:74448–74459

    PubMed  PubMed Central  Google Scholar 

  28. Zhang K, Hong R, Xu F, Xia W, Kaping L, Qin G et al (2018) Clinical value of circulating ESR1 mutations for patients with metastatic breast cancer: a meta-analysis. Cancer Manag Res 10:2573–2580

    CAS  PubMed  PubMed Central  Google Scholar 

  29. De Santo I, McCartney A, Migliaccio I, Di Leo A, Malorni L (2019) The emerging role of ESR1 mutations in luminal breast cancer as a prognostic and predictive biomarker of response to endocrine therapy. Cancers (Basel) 11:1–15

    Google Scholar 

  30. Allouchery V, Beaussire L, Perdrix A, Sefrioui D, Augusto L, Guillemet C et al (2018) Circulating ESR1 mutations at the end of aromatase inhibitor adjuvant treatment and after relapse in breast cancer patients. Breast Cancer Res 20:1–5

    Google Scholar 

  31. Schiavon G, Hrebien S, Garcia-murillas I, Cutts RJ, Tarazona N, Fenwick K et al (2015) Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer. Sci Transl Med 7:1–19

    Google Scholar 

  32. Gyanchandani R, Kota KJ, Jonnalagadda AR, Minteer T, Knapick BA, Oesterreich S et al (2017) Detection of ESR1 mutations in circulating cell-free DNA from patients with metastatic breast cancer treated with palbociclib and letrozole. Oncotarget 8:66901–66911

    PubMed  Google Scholar 

  33. O’Leary B, Hrebien S, Morden JP, Beaney M, Fribbens C, Huang X et al (2018) Early circulating tumor DNA dynamics and clonal selection with palbociclib and fulvestrant for breast cancer. Nat Commun 9:1–10

    Google Scholar 

  34. Xi J, Ma CX (2020) Sequencing endocrine therapy for metastatic breast cancer: what do we do after disease progression on a CDK4/6 inhibitor? Curr Oncol Rep 22:1–12

    Google Scholar 

  35. Spoerke JM, Gendreau S, Walter K, Qiu J, Wilson TR, Savage H et al (2016) Heterogeneity and clinical significance of ESR1 mutations in ER-positive metastatic breast cancer patients receiving fulvestrant. Nat Commun 7:1–10

    Google Scholar 

  36. Sammons S, Shastry M, Dent S, Anders C, Hamilton E (2020) Practical treatment strategies and future directions after progression while receiving CDK4/6 inhibition and endocrine therapy in advanced HR+/HER2—breast cancer. Clin Breast Cancer 20:1–11

    CAS  PubMed  Google Scholar 

  37. Brufsky AM, Dickler MN (2018) Estrogen receptor-positive breast cancer: exploiting signaling pathways implicated in endocrine resistance. Oncologist 5:528–539

    Google Scholar 

  38. Jhaveri K, Winer EP, Lim E, Fidalgo JA, Bellet M, Mayer IA, Boni V, Patel JM, Bardia A, Garcia JM, Kabos P, Gates M, Chen Y, Fredrickson J, Wang X, Friedman LS, Loi S (2020) A first-in-human phase I study to evaluate the oral selective estrogen receptor degrader (SERD), GDC-9545, in postmenopausal women with estrogen receptor-positive (ER+) HER2-negative (HER2-) metastatic breast cancer. Cancer Res. https://doi.org/10.1158/1538-7445.SABCS19-PD7-05

    Article  Google Scholar 

  39. Paoletti C, Dolce EM, Schiavon G, Darga EP, Carr TH, Geradts J, Hoch M, Klinowska T, Lindemann J, Marshall G, Morgan S, Patel P, Rowlands V, Sathiyayogan N, Aung K, Baird R, Hayes DF (2018) Circulating biomarkers and resistance to endocrine therapy in metastatic breast cancers: correlative results from AZD9496 Oral SERD phase I trial. Clin Cancer Res 24:5860–72

    CAS  PubMed  Google Scholar 

  40. Menyhárt O, Santarpia L, Győrffy B (2015) A comprehensive outline of trastuzumab resistance biomarkers in HER2 overexpressing breast cancer. Curr Cancer Drug Targets 15:665–683

    PubMed  Google Scholar 

  41. Pearson A, Proszek P, Pascual J, Fribbens C, Shamsher MK, Kingston B et al (2020) Inactivating NF1 mutations are enriched in advanced breast cancer and contribute to endocrine therapy resistance. Clin Cancer Res 26:608–622

    CAS  PubMed  Google Scholar 

  42. Razavi P, Chang MT, Xu G, Bandlamudi C, Ross DS, Vasan N et al (2018) The genomic landscape of endocrine-resistant advanced breast cancers. Cancer Cell 34:427–438

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sokol ES, Feng YX, Jin DX, Basudan A, Lee AV, Atkinson JM et al (2019) Loss of function of NF1 is a mechanism of acquired resistance to endocrine therapy in lobular breast cancer. Ann Oncol 30:115–123

    CAS  PubMed  Google Scholar 

  44. O’Leary B, Finn RS, Turner NC (2016) Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol 13:417–430

    PubMed  Google Scholar 

  45. Loibl S, Gianni L (2017) HER2-positive breast cancer. Lancet 389:2415–2429

    CAS  PubMed  Google Scholar 

  46. Luque-Cabal M, García-Teijido P, Fernández-Pérez Y, Sánchez-Lorenzo L, Palacio-Vázquez I (2016) Mechanisms behind the resistance to trastuzumab in HER2-amplified breast cancer and strategies to overcome it. Clin Med Insights Oncol 10:21–30

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Pernas S, Tolaney SM (2019) HER2-positive breast cancer: new therapeutic frontiers and overcoming resistance. Ther Adv Med Oncol 11:1–16

    Google Scholar 

  48. Vasan N, Toska E, Scaltriti M (2019) Overview of the relevance of PI3K pathway in HR-positive breast cancer. Ann Oncol 30:3–11

    Google Scholar 

  49. Keegan NM, Gleeson JP, Hennessy BT, Morris PG (2018) PI3K inhibition to overcome endocrine resistance in breast cancer. Expert Opin Investig Drugs 27:1–15

    CAS  PubMed  Google Scholar 

  50. Collins D, Jacob W, Cejalvo JM, Ceppi M, James I, Weisser M et al (2017) Direct estrogen receptor (ER)/HER family crosstalk mediating sensitivity to lumretuzumab and pertuzumab in ER + breast cancer. PLoS ONE 12:1–16

    Google Scholar 

  51. Nahta R, Regan RMO, Crosstalk TÁ (2012) Therapeutic implications of estrogen receptor signaling in HER2-positive breast cancers. Breast Cancer Res Treat 135:39–48

    CAS  PubMed  Google Scholar 

  52. Kaklamani VG, Richardson AL, Arteaga CL (2019) Exploring biomarkers of phosphoinositide 3-kinase pathway activation in the treatment of hormone receptor positive, human epidermal growth receptor 2 negative advanced breast cancer. Oncologist 24:305–312

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Testa U, Castelli G, Pelosi E (2020) Breast cancer: a molecularly heterogenous disease needing subtype-specific treatments. Med Sci 8:1–103

    Google Scholar 

  54. Verret B, Cortes J, Bachelot T, Andre F, Arnedos M (2019) Efficacy of PI3K inhibitors in advanced breast cancer. Ann Oncol Off J Eur Soc Med Oncol 30:12–20

    Google Scholar 

  55. Schettini F, Buono G, Trivedi MV, De Placido S, Arpino G, Giuliano M (2017) PI3K/mTOR Inhibitors in the treatment of luminal breast cancer. Why When and to whom? Breast Care 12:290–4

    PubMed  PubMed Central  Google Scholar 

  56. Araki K, Miyoshi Y (2018) Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer. Breast Cancer 25:392–401

    PubMed  Google Scholar 

  57. van Geelen CT, Savas P, Teo ZL, Luen SJ, Weng C-F, Ko Y-A et al (2020) Clinical implications of prospective genomic profiling of metastatic breast cancer patients. Breast Cancer Res 22:1–13

    Google Scholar 

  58. Arthur LM, Turnbull AK, Renshaw L, Keys J, Thomas JS, Wilson TR et al (2014) Changes in PIK3CA mutation status are not associated with recurrence, metastatic disease or progression in endocrine-treated breast cancer. Breast Cancer Res Treat 147:211–219

    CAS  PubMed  Google Scholar 

  59. Jacot W, Dalenc F, Lopez-Crapez E, Chaltiel L, Durigova A, Gros N et al (2019) PIK3CA mutations early persistence in cell-free tumor DNA as a negative prognostic factor in metastatic breast cancer patients treated with hormonal therapy. Breast Cancer Res Treat 177:659–667

    CAS  PubMed  Google Scholar 

  60. Brandão M, Caparica R, Eiger D, de Azambuja E (2019) Biomarkers of response and resistance to PI3K inhibitors in estrogen receptor-positive breast cancer patients and combination therapies involving PI3K inhibitors. Ann Oncol 30:27–42

    Google Scholar 

  61. Arsenic R, Treue D, Lehmann A, Hummel M, Dietel M, Denkert C et al (2015) Comparison of targeted next-generation sequencing and Sanger sequencing for the detection of PIK3CA mutations in breast cancer. BMC Clin Pathol 15:1–9

    Google Scholar 

  62. Paul MR, Pan T, Pant DK, Shih NN, Chen Y, Harvey KL et al (2020) Genomic landscape of metastatic breast cancer identifies preferentially dysregulated pathways and targets. J Clin Invest 130:4252–4265

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P et al (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534:55–62

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kruger DT, Beelen KJ, Opdam M, Sanders J, van der Noort V, Boven E et al (2018) Hierarchical clustering of activated proteins in the PI3K and MAPK pathways in ER-positive, HER2-negative breast cancer with potential therapeutic consequences. Br J Cancer 119:832–839

    CAS  PubMed  PubMed Central  Google Scholar 

  65. André F, Hurvitz S, Fasolo A, Tseng L-M, Jerusalem G, Wilks S et al (2016) Molecular alterations and everolimus efficacy in human epidermal growth factor receptor 2–overexpressing metastatic breast cancers: combined exploratory biomarker analysis from BOLERO-1 and BOLERO-3. J Clin Oncol 34:2115–2124

    PubMed  Google Scholar 

  66. Jankowitz RC, Oesterreich S, Lee AV, Davidson NE (2017) New strategies in metastatic hormone receptor-positive breast cancer: searching for biomarkers to tailor endocrine and other targeted therapies. Clin Cancer Res 23:1126–1131

    CAS  PubMed  Google Scholar 

  67. Mosele F, Stefanovska B, Lusque A, Tran Dien A, Garberis I, Droin N et al (2020) Outcome and molecular landscape of patients with PIK3CA-mutated metastatic breast cancer. Ann Oncol 31:377–386

    CAS  PubMed  Google Scholar 

  68. FDA approves first PI3K inhibitor for breast cancer | FDA [Internet]. [cited 2020 Sep 8]. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-pi3k-inhibitor-breast-cancer

  69. Tzanikou E, Lianidou E (2020) The potential of ctDNA analysis in breast cancer. Crit Rev Clin Lab Sci 57:54–72

    CAS  PubMed  Google Scholar 

  70. Lynce F, Shajahan-Haq AN, Swain SM (2018) CDK4/6 inhibitors in breast cancer therapy: current practice and future opportunities. Pharmacol Ther 191:65–73

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Cristofanilli M, Turner NC, Bondarenko I, Ro J, Im S, Masuda N et al (2016) Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phas. Lancet Oncol 17:425–439

    CAS  PubMed  Google Scholar 

  72. McCartney A, Migliaccio I, Bonechi M, Biagioni C, Romagnoli D, De Luca F et al (2019) Mechanisms of resistance to CDK4/6 inhibitors: potential implications and biomarkers for clinical practice. Front Oncol 9:1–8

    Google Scholar 

  73. Costa C, Ye W, Ly A, Hosono Y, Murchi E, Walmsley CS et al (2020) Pten loss mediates clinical cross-resistance to CDK4/6 and PI3Kα inhibitors in breast cancer. Cancer Discov 10:72–85

    CAS  PubMed  Google Scholar 

  74. Razavi P, Dickler MN, Shah PD, Toy W, Brown DN, Won HH et al (2020) Alterations in PTEN and ESR1 promote clinical resistance to alpelisib plus aromatase inhibitors. Nat Cancer 1:382–393

    PubMed  PubMed Central  Google Scholar 

  75. Skandalis SS, Afratis N, Smirlaki G, Nikitovic D, Theocharis AD, Tzanakakis GN et al (2014) Cross-talk between estradiol receptor and EGFR/IGF-IR signaling pathways in estrogen-responsive breast cancers : Focus on the role and impact of proteoglycans. Matrix Biol 35:182–193

    CAS  PubMed  Google Scholar 

  76. Zhao Y, Zheng X, Zheng Y et al (2021) Extracellular matrix : emerging roles and potential therapeutic targets for breast cancer. Front Oncol 11:1–14

    Google Scholar 

  77. Saha T, Solomon J, Samson A, Gil-Henn H (2021) Invasion and metastasis as a central hallmark of breast cancer. J Clin Med 10:1–12

    CAS  Google Scholar 

  78. Afratis NA, Bouris P, Skandalis SS et al (2017) IGF-IR cooperates with ERα to inhibit breast cancer cell aggressiveness by regulating the expression and localisation of ECM molecules. Sci Rep 7:1–12

    Google Scholar 

  79. Bouris P, Skandalis SS, Piperigkou Z et al (2015) Estrogen receptor alpha mediates epithelial to mesenchymal transition, expression of specific matrix effectors and functional properties of breast cancer cells. Matrix Biol 43:42–60

    CAS  PubMed  Google Scholar 

  80. Chen C, Gupta P, Parashar D et al (2020) ERBB3-induced furin promotes the progression and metastasis of ovarian cancer via the IGF1R/STAT3 signaling axis. Oncogene 36:2921–2933

    Google Scholar 

  81. Ianza A, Sirico M, Bernocchi O et al (2021) Role of the IGF-1 Axis in Overcoming Resistance in Breast Cancer. Front Cell Development Biol 9:1–9

    Google Scholar 

  82. Bendell JC, Jones SF, Hart L, Spigel DR, Lane CM, Earwood C et al (2015) A phase Ib study of linsitinib (OSI-906), a dual inhibitor of IGF-1R and IR tyrosine kinase, in combination with everolimus as treatment for patients with refractory metastatic colorectal cancer. Investig New Drugs 33:187–193

    CAS  Google Scholar 

  83. Barata P, Cooney M, Tyler A, Wright J, Dreicer R, Garcia JA (2018) A phase 2 study of OSI-906 (linsitinib, an insulin-like growth factor receptor-1 inhibitor) in patients with asymptomatic or mildly symptomatic (non-opioid requiring) metastatic castrate resistant prostate cancer (CRPC). Investig New Drugs 36:451–457

    CAS  Google Scholar 

  84. von Mehren M, George S, Heinrich MC, Schuetze SM, Yap JT, Yu JQ et al (2020) Linsitinib (OSI-906) for the treatment of adult and pediatric wild-type gastrointestinal stromal tumors, a SARC phase II study. Clin Cancer Res 26:1837–1845

    Google Scholar 

  85. Portman N, Alexandrou S, Carson E, Wang S, Lim E, Caldon CE (2019) Overcoming CDK4/6 inhibitor resistance in ER-positive breast cancer. Endocr Relat Cancer 26:R15-30

    CAS  PubMed  Google Scholar 

  86. Niu Y, Xu J, Sun T (2019) Cyclin-dependent kinases 4/6 inhibitors in breast cancer: current status, resistance, and combination strategies. J Cancer 10:5504–5517

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Shah M, Nunes MR, Stearns V (2018) CDK4/6 inhibitors: game changers in the management of hormone receptor-positive advanced breast cancer? Oncology (Williston Park) 32:216–222

    Google Scholar 

  88. Condorelli R, Spring L, O’Shaughnessy J, Lacroix L, Bailleux C, Scott V et al (2018) Polyclonal RB1 mutations and acquired resistance to CDK 4/6 inhibitors in patients with metastatic breast cancer. Ann Oncol 29:640–645

    CAS  PubMed  Google Scholar 

  89. Johnson J, Thijssen B, Mcdermott U, Garnett M, Lodewyk FA (2016) Targeting the RB-E2F pathway in breast cancer. Oncogene 35:4829–4835

    CAS  PubMed  PubMed Central  Google Scholar 

  90. O’Leary B, Cutts RJ, Liu Y, Hrebien S, Huang X, Fenwick K et al (2018) The genetic landscape and clonal evolution of breast cancer resistance to palbociclib plus fulvestrant in the PALOMA-3 trial. Cancer Discov 8:1390–1403

    PubMed  PubMed Central  Google Scholar 

  91. Li Z, Razavi P, Li Q, Toy W, Liu B, Ping C et al (2018) Loss of the FAT1 tumor suppressor promotes resistance to CDK4/6 inhibitors via the Hippo pathway Zhiqiang. Cancer Cell 34:893–905

    PubMed  PubMed Central  Google Scholar 

  92. McCartney A, Bonechi M, De Luca F, Biagioni C, Curigliano G, Moretti E et al (2020) Plasma thymidine kinase activity as a biomarker in patients with luminal metastatic breast cancer treated with palbociclib within the TREnd trial. Clin Cancer Res 26:2131–2139

    CAS  PubMed  Google Scholar 

  93. Bonechi M, Galardi F, Biagioni C, De Luca F, Bergqvist M, Neumüller M et al (2018) Plasma thymidine kinase-1 activity predicts outcome in patients with hormone receptor positive and HER2 negative metastatic breast cancer treated with endocrine therapy. Oncotarget 9:16389–16399

    PubMed  PubMed Central  Google Scholar 

  94. Ma CX, Gao F, Luo J, Northfelt DW, Goetz M, Forero A et al (2017) NeoPalAna: neoadjuvant palbociclib, a cyclin-dependent kinase 4/6 inhibitor, and anastrozole for clinical stage 2 or 3 estrogen receptor-positive breast cancer. Clin Cancer Res 23:4055–4065

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Turner NC, Liu Y, Zhu Z, Loi S, Colleoni M, Loibl S et al (2019) Cyclin E1 expression and palbociclib efficacy in previously treated hormone receptor-positive metastatic breast cancer. J Clin Oncol 37:1169–1178

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Guarducci C, Bonechi M, Benelli M, Biagioni C, Boccalini G, Romagnoli D et al (2018) Cyclin E1 and Rb modulation as common events at time of resistance to palbociclib in hormone receptor-positive breast cancer. npj Breast Cancer. 4:1–10

    CAS  Google Scholar 

  97. Wu Y, Zhang Y, Pi H, Sheng Y (2020) Current therapeutic progress of CDK4/6 inhibitors in breast cancer. Cancer Manag Res 12:3477–3487

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Bagegni N, Thomas S, Liu N, Luo J, Hoog J, Northfelt DW et al (2017) Serum thymidine kinase 1 activity as a pharmacodynamic marker of cyclin-dependent kinase 4/6 inhibition in patients with early-stage breast cancer receiving neoadjuvant palbociclib. Breast Cancer Res 19:1–11

    Google Scholar 

  99. McCartney A, Biagioni C, Schiavon G, Bergqvist M, Mattsson K, Migliaccio I et al (2019) Prognostic role of serum thymidine kinase 1 activity in patients with hormone receptor–positive metastatic breast cancer: analysis of the randomised phase III evaluation of faslodex versus exemestane clinical trial (EFECT). Eur J Cancer 114:55–66

    CAS  PubMed  Google Scholar 

  100. Saba R, Alsayed A, Zacny J, Dudek AZ (2016) The role of forkhead box protein M1 in breast cancer progression and resistance to therapy. Int J Breast Cancer 2016:1–9

    Google Scholar 

  101. Sanders DA, Ross-Innes C, Beraldi D et al (2013) Genome-wide mapping of FOXM1 binding reveals co-binding with estrogen receptor alpha in breast cancer cells. Genome Biol 14:1–16

    Google Scholar 

  102. Millour J, Constantinidou D, Stavropoulou AV, Wilson MSC et al (2010) FOXM1 is a transcriptional target of ERα and has a critical role in breast cancer endocrine sensitivity and resistance. Oncogene 29:2983–2995

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ahn H, Sim J, Abdul R et al (2015) Increased expression of forkhead Box M1 is associated with aggressive phenotype and poor prognosis in estrogen receptor- positive breast cancer. J Korean Med Sci 30:390–397

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Madureira PA, Varshochi R, Constantinidou D et al (2006) The forkhead box M1 protein regulates the transcription of the estrogen receptor α in breast cancer cells. J Biol Chem 281:25167–25176

    CAS  PubMed  Google Scholar 

  105. Bergamaschi A, Madak-Erdogan Z, Kim YJ et al (2014) The forkhead transcription factor FOXM1 promotes endocrine resistance and invasiveness in estrogen receptor-positive breast cancer by expansion of stem-like cancer cells. Breast Cancer Res 16:1–18

    Google Scholar 

  106. Lu XF, De Zeng, Liang W-Q et al (2015) FoxM1 is a promising candidate target in the treatment of breast cancer. Oncotarget 9:842–852

    Google Scholar 

  107. Bergamaschi A, Katzenellenbogen BS (2012) Tamoxifen down-regulation of miR-451 increases 14-3-3ζ and promotes breast cancer cell survival and endocrine resistance. Oncogene 31:39–47

    CAS  PubMed  Google Scholar 

  108. Joshi S, Yang J, Wang Q, Li P, Wang H et al (2017) 14-3-3ζ loss impedes oncogene-induced mammary tumorigenesis and metastasis by attenuating oncogenic signaling. Am J Res 7:1654–1664

    CAS  Google Scholar 

  109. Bergamaschi A, Christensen BL, Katzenellenbogen BS (2011) Reversal of endocrine resistance in breast cancer: interrelationships among 14-3-3ζ, FOXM1, and a gene signature associated with mitosis. Breast Cancer Res 13:1–14

    Google Scholar 

  110. Parashar D, Nair B, Geethadevi A et al (2020) Peritoneal spread of ovarian cancer harbors therapeutic vulnerabilities regulated by FOXM1 and EGFR/ERBB2 signaling. Cancer Res 80:5554–5568

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Li G, Zhao L, Li W, Fan K, Qian W (2014) Feedback activation of STAT3 mediates trastuzumab resistance via upregulation of MUC1 and MUC4 expression. Oncotarget 5:8317–8329

    PubMed  PubMed Central  Google Scholar 

  112. Sonnenblick A, Brohée S, Fumagalli D, Vincent D, Venet D, Ignatiadis M et al (2015) Constitutive phosphorylated STAT3-associated gene signature is predictive for trastuzumab resistance in primary HER2-positive breast cancer. BMC Med 13:1–10

    CAS  Google Scholar 

  113. West NR, Murphy LC, Watson PH (2012) Oncostatin M suppresses oestrogen receptor- a expression and is associated with poor outcome in human breast cancer. Endocr Relat Cancer 4:181–195

    Google Scholar 

  114. Canatan D, Yılmaz Ö, Sönmez Y, Çim A, Coşkun HŞ, Göksu SS et al (2021) Circulating microRNAs as potential non-invasive biomarkers for breast cancer detection. Acta Biomed 92:1–7

    Google Scholar 

  115. Parashar D, Geethadevi A, Aure MR, Mills GB, Pradeep S (2019) miRNA551b-3p activates an oncostatin signaling module for the progression of triple-negative breast cancer. Cell Rep 29:4389–4406

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Chaluvally-raghavan P, Jin K, Pradeep S, George A, Sood AK, Mills GB et al (2016) Direct upregulation of STAT3 by MicroRNA-551b-3p deregulates growth and metastasis of ovarian. Cell Rep 15:1493–1504

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ji X, Lu Y, Tian H, Meng X et al (2019) Chemoresistance mechanisms of breast cancer and their countermeasures. Biomed Pharmacother 114:1–9

    Google Scholar 

  118. Wang T, Fahrmann JF, Lee H, Li Y-J et al (2018) JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab 27:136–150

    CAS  PubMed  Google Scholar 

  119. Ma J, Qin L, Li X (2020) Role of STAT3 signaling pathway in breast cancer. Cell Commun Signal 18:1–13

    Google Scholar 

  120. Qin JJ, Yan L, Zhang J, Zhang WD (2019) STAT3 as a potential therapeutic target in triple negative breast cancer: a systematic review. J Exp Clin Cancer Res 38:16

    Google Scholar 

  121. Kohandel Z, Farkhondeh T, Aschner M, Mohammad A, Shahri P (2021) STAT3 pathway as a molecular target for resveratrol in breast cancer treatment. Cancer Cell Int 21:1–9

    Google Scholar 

  122. Pohlmann PR, Mayer IA, Mernaugh R (2009) Resistance to trastuzumab in breast cancer. Clin Cancer Res 15(24):7479–7491

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Vu T, Claret FX (2012) Trastuzumab: updated mechanisms of action and resistance in breast cancer. Front Oncol 2:1–7

    Google Scholar 

  124. Chen AC, Migliaccio I, Rimawi M, Lopez-Tarruella S, Creighton CJ, Massarweh S, Huang C, Wang YC et al (2012) Upregulation of mucin4 in ER-positive/HER2-overexpressing breast cancer xenografts with acquired resistance to endocrine and HER2- targeted therapies. Breast Cancer Res Treat 134:583–593

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Price-Schiavi SA, Jepson S, Li P, Arango M, Rudland PS, Yee L, Carraway KL (2002) Rat Muc4 (sialomucin complex) reduces binding of anti-ErbB2 antibodies to tumor cell surfaces, a potential mechanism for herceptin resistance. Int J Cancer 99:783–791

    CAS  PubMed  Google Scholar 

  126. Luque-Cabal M, García-Teijido P, Fernández-Pérex Y et al (2016) Mechanisms behind the resistance to trastuzumab in HER2-amplified breast cancer and strategies to overcome it. Clinical Medicine Insights: Oncology 10:21–30

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Gagliato DM, Jardim DLF et al (2016) Mechanisms of resistance and sensitivity to anti-HER2 therapies in HER2+ breast cancer. Oncotarget 7:64431–64446

    Google Scholar 

  128. Arnould L, Gelly M, Penault-Llorca F et al (2006) Trastuzumab-based treatment of HER2-positive breast cancer : an antibody-dependent cellular cytotoxicity mechanism? Br J Cancer 94:259–267

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Miller TW, Rexer BN, Garrett JT, Arteaga CL (2011) Mutations in the phosphatidylinositol 3-kinase pathway: role in tumor progression and therapeutic implications in breast cancer. Breast Cancer Res 13:1–12

    Google Scholar 

  130. Sato F, Saji S, Toi M (2016) Genomic tumor evolution of breast cancer. Breast Cancer 23:4–11

    PubMed  Google Scholar 

  131. Bertucci F, Ng CKY, Patsouris A, Droin N, Piscuoglio S, Carbuccia N et al (2019) Genomic characterization of metastatic breast cancers. Nature 569:560–564

    CAS  PubMed  Google Scholar 

  132. Reinhardt F, Franken A, Fehm T, Neubauer H (2017) Navigation through inter- and intratumoral heterogeneity of endocrine resistance mechanisms in breast cancer: a potential role for Liquid Biopsies? Tumor Biol 39:1–15

    Google Scholar 

  133. Nicolini A, Ferrari P, Duffy MJ (2018) Prognostic and predictive biomarkers in breast cancer: past, present and future. Semin Cancer Biol 52:56–73

    CAS  PubMed  Google Scholar 

  134. Zhang X, Ju S, Wang X, Cong H (2019) Advances in liquid biopsy using circulating tumor cells and circulating cell-free tumor DNA for detection and monitoring of breast cancer. Clin Exp Med 19:271–279

    CAS  PubMed  Google Scholar 

  135. Hench IB, Hench J, Tolnay M (2018) Liquid biopsy in clinical management of breast, lung, and colorectal cancer. Front Med 5:1–24

    Google Scholar 

  136. Appierto V, Di Cosimo S, Reduzzi C, Pala V, Cappelletti V, Daidone MG (2017) How to study and overcome tumor heterogeneity with circulating biomarkers: the breast cancer case. Semin Cancer Biol 44:106–116

    CAS  PubMed  Google Scholar 

  137. Fanning SW, Jeselsohn R, Dharmarajan V, Mayne CG, Karimi M, Buch-walter G, Houtman R, Toy W, Fowler CE, Han R et al (2018) The SERM/SERD bazedoxifene disrupts ESR1 helix 12 to overcome acquired hormone resistance in breast cancer cells. Elife. 2018(7):1–26

    Google Scholar 

  138. Kaklamani V, Bardia A, Wilks S, Weise A, Richards D, Harb W, Os-borne C, Wesolowski R, Karuturi M, Conkling P et al (2020) Abstract PD7-07: final analysis of phase 1 study of elacestrant (RAD1901), a novel selective estrogen receptor degrader (SERD), in estrogen receptor positive (ER+), human epidermal growth factor receptor 2 negative (HER2−) advanced breast cancer. Cancer Res. https://doi.org/10.1158/1538-7445.SABCS19-PD7-07

    Article  Google Scholar 

  139. Laine M, Fanning SW, Greene M, Chang YF, Phung L, Tan TT, Hii-pakka R, Komm B, Greene G (2019) Lasofoxifene as a potential treat- ment for ER plus metastatic breast cancer. J Clin Oncol 37:1056

    Google Scholar 

  140. Andreano KJ, Wardell SE, Baker JG, Desautels TK, Baldi R, Chao CA, Heetderks KA, Bae Y, Xiong R, Tonetti DA et al (2020) G1T48, an oral selective estrogen receptor degrader, and the CDK4/6 inhibitor leroci- clib inhibit tumor growth in animal models of endocrine-resistant breast cancer. Breast Cancer Res Treat. https://doi.org/10.1007/s10549-020-05575-9

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

FM, FM, DM and FS drafted the manuscript, performed literature search and created the figures; HP conceived the idea; DM helped in designing the manuscript; DM and FM and FS critically revised the article and helped in the edition of the figures.

Corresponding author

Correspondence to Diana Martins.

Ethics declarations

Conflict of interest

The authors have stated that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, F., Prazeres, H., Mendes, F. et al. Resistance to endocrine therapy in HR + and/or HER2 + breast cancer: the most promising predictive biomarkers. Mol Biol Rep 49, 717–733 (2022). https://doi.org/10.1007/s11033-021-06863-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06863-3

Keywords

Navigation