Skip to main content

Advertisement

Log in

Lactoferrin promotes the autophagy activity during osteoblast formation via BCL2-Beclin1 signaling

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Lactoferrin, as the main component of milk, can maintain osteoblast formation, which is conducive to the prevention and treatment of osteoporosis. Lactoferrin also serves as an autophagy regulator, especially in osteoblasts. This study aimed to explore the significance of autophagy in osteoblast formation regulated by lactoferrin and the internal mechanism.

Methods and results

In this study, we firstly explored the roles of lactoferrin in the autophagy activity of primary osteoblasts (LC3 transformation rate, autophagosome formation). Subsequently, we further investigated the effects of lactoferrin on the BCL2 expression and BCL2-Beclin1 complex. Ultimately, the significance of BCL2 overexpression and Beclin1 silencing on lactoferrin-regulated osteoblast autophagy and osteogenic parameters (ALP activity and mRNA expression of PCNA, Col1, BGLAP and OPN) was observed by gene processing, respectively. Our results showed that lactoferrin enhanced the autophagy activity of osteoblasts. Importantly, lactoferrin inhibited BCL2 expression and the co-immunoprecipitation of BCL2 and Beclin1 in osteoblasts. Moreover, lactoferrin-promoted autophagy and osteogenic parameters was reversed by BCL2 overexpression or Beclin1 silencing in osteoblasts.

Conclusions

In conclusion, lactoferrin can inhibit BCL2 expression in osteoblasts, further enhancing Beclin1-dependent autophagy activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Włodarski K (2009) Lactoferrin—a promising bone-growth promoting milk-derived glycoprotein. Chir Narzadow Ruchu Ortop Pol 74(257–259):322–323

    Google Scholar 

  2. Hou JM, Xue Y, Lin QM (2012) Bovine lactoferrin improves bone mass and microstructure in ovariectomized rats via OPG/RANKL/RANK pathway. Acta Pharmacol Sin 33:1277–1284. https://doi.org/10.1038/aps.2012.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guo HY, Jiang L, Ibrahim SA, Zhang L, Zhang H, Zhang M, Ren FZ (2009) Orally administered lactoferrin preserves bone mass and microarchitecture in ovariectomized rats. J Nutr 139:958–964. https://doi.org/10.3945/jn.108.100586

    Article  CAS  PubMed  Google Scholar 

  4. Shi P, Fan F, Chen H, Xu Z, Cheng S, Lu W, Du M (2020) A bovine lactoferrin-derived peptide induced osteogenesis via regulation of osteoblast proliferation and differentiation. J Dairy Sci 103:3950–3960. https://doi.org/10.3168/jds.2019-17425

    Article  CAS  PubMed  Google Scholar 

  5. Chen XW, Li YH, Zhang MJ, Chen Z, Ke DS, Xue Y, Hou JM (2019) Lactoferrin ameliorates aging-suppressed osteogenesis via IGF1 signaling. J Mol Endocrinol 63:63–75. https://doi.org/10.1530/JME-19-0003

    Article  CAS  PubMed  Google Scholar 

  6. Li Y, Wang J, Ren F, Zhang W, Zhang H, Zhao L, Zhang M, Cui W, Wang X, Guo H (2018) Lactoferrin promotes osteogenesis through TGF-β receptor II binding in osteoblasts and activation of canonical TGF-β signaling in MC3T3-E1 cells and C57BL/6J mice. J Nutr 148:1285–1292. https://doi.org/10.1093/jn/nxy097

    Article  PubMed  Google Scholar 

  7. Zhang JL, Han X, Shan YJ, Zhang LW, Du M, Liu M, Yi HX, Ma Y (2018) Effect of bovine lactoferrin and human lactoferrin on the proliferative activity of the osteoblast cell line MC3T3-E1 in vitro. J Dairy Sci 101:1827–1833. https://doi.org/10.3168/jds.2017-13161

    Article  CAS  PubMed  Google Scholar 

  8. Huang L, Yang Z, Liu R, Xiao X, Zhou C, Yin X, Zou S, Chen J (2021) Lactoferrin promotes osteogenesis of MC3T3-E1 cells induced by mechanical strain in an extracellular signal-regulated kinase 1/2-dependent manner. Am J Orthod Dentofac Orthop 159:e113–e121. https://doi.org/10.1016/j.ajodo.2020.08.015

    Article  Google Scholar 

  9. Xu D, Song W, Zhang J, Liu Y, Lu Y, Zhang X, Liu Q, Yuan T, Liu R (2021) Osteogenic effect of polymethyl methacrylate bone cement with surface modification of lactoferrin. J Biosci Bioeng 132:132–139. https://doi.org/10.1016/j.jbiosc.2021.04.006

    Article  CAS  PubMed  Google Scholar 

  10. Liu M, Fan F, Shi P, Tu M, Yu C, Yu C, Du M (2018) Lactoferrin promotes MC3T3-E1 osteoblast cells proliferation via MAPK signaling pathways. Int J Biol Macromol 107:137–143. https://doi.org/10.1016/j.ijbiomac.2017.08.151

    Article  CAS  PubMed  Google Scholar 

  11. Li Y, Huang J, Wang J, Ma M, Lu Y, Wang R, Guo H (2021) Lactoferrin is a potential activator of the vitamin D receptor in its regulation of osteogenic activities in C57BL/6J mice and MC3T3-E1 cells. J Nutr 151:2105–2113. https://doi.org/10.1093/jn/nxab105

    Article  PubMed  Google Scholar 

  12. Zhang Y, Zhang ZN, Li N, Zhao LJ, Xue Y, Wu HJ, Hou JM (2020) Nbr1-regulated autophagy in lactoferrin-induced osteoblastic differentiation. Biosci Biotechnol Biochem 84:1191–1200. https://doi.org/10.1080/09168451.2020.1737505

    Article  CAS  PubMed  Google Scholar 

  13. Kim SE, Choi S, Hong JY, Shim KS, Kim TH, Park K, Lee SH (2019) Accelerated osteogenic differentiation of MC3T3-E1 cells by lactoferrin-conjugated nanodiamonds through enhanced anti-oxidant and anti-inflammatory effects. Nanomaterials (Basel) 10:50. https://doi.org/10.3390/nano10010050

    Article  CAS  PubMed Central  Google Scholar 

  14. Weng YM, Ke CR, Kong JZ, Chen H, Hong JJ, Zhou DS (2018) The significant role of ATG5 in the maintenance of normal functions of MC3T3-E1 osteoblast. Eur Rev Med Pharmacol Sci 22:1224–1232. https://doi.org/10.26355/eurrev_201803_14462

    Article  PubMed  Google Scholar 

  15. Vidoni C, Ferraresi A, Secomandi E, Vallino L, Gardin C, Zavan B, Mortellaro C, Isidoro C (2019) Autophagy drives osteogenic differentiation of human gingival mesenchymal stem cells. Cell Commun Signal 17:98. https://doi.org/10.1186/s12964-019-0414-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kang C, Wei L, Song B, Chen L, Liu J, Deng B, Pan X, Shao L (2017) Involvement of autophagy in tantalum nanoparticle-induced osteoblast proliferation. Int J Nanomed 12:4323–4333. https://doi.org/10.2147/IJN.S136281

    Article  CAS  Google Scholar 

  17. Lian WS, Ko JY, Chen YS, Ke HC, Wu SL, Kuo CW, Wang FS (2018) Chaperonin 60 sustains osteoblast autophagy and counteracts glucocorticoid aggravation of osteoporosis by chaperoning RPTOR. Cell Death Dis 9:938. https://doi.org/10.1038/s41419-018-0970-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang YH, Li B, Zheng XF, Chen JW, Chen K, Jiang SD, Jiang LS (2014) Oxidative damage to osteoblasts can be alleviated by early autophagy through the endoplasmic reticulum stress pathway–implications for the treatment of osteoporosis. Free Radic Biol Med 77:10–20. https://doi.org/10.1016/j.freeradbiomed.2014.08.028

    Article  CAS  PubMed  Google Scholar 

  19. Huang Z, Wang Q, Zhang T, Fu Y, Wang W (2021) Hyper-activated platelet lysates prevent glucocorticoid-associated femoral head necrosis by regulating autophagy. Biomed Pharmacother 139:111711. https://doi.org/10.1016/j.biopha.2021.111711

    Article  CAS  PubMed  Google Scholar 

  20. Liu P, Cui Y, Liu M, Xiao B, Zhang J, Huang W, Zhang X, Song M, Li Y (2021) Protective effect of mitophagy against aluminum-induced MC3T3-E1 cells dysfunction. Chemosphere 282:131086. https://doi.org/10.1016/j.chemosphere.2021.131086

    Article  CAS  PubMed  Google Scholar 

  21. Wang N, Xu P, Wu R, Wang X, Wang Y, Shou D, Zhang Y (2021) Timosaponin BII improved osteoporosis caused by hyperglycemia through promoting autophagy of osteoblasts via suppressing the mTOR/NFκB signaling pathway. Free Radic Biol Med 171:112–123. https://doi.org/10.1016/j.freeradbiomed.2021.05.014

    Article  CAS  PubMed  Google Scholar 

  22. Huang L, Chen R, Liu L, Zhou Y, Chen Z (2021) Lactoferrin ameliorates pathological cardiac hypertrophy related to mitochondrial quality control in aged mice. Food Funct 12:7514–7526. https://doi.org/10.1039/d0fo03346d

    Article  CAS  PubMed  Google Scholar 

  23. Guo C, Xue H, Guo T, Zhang W, Xuan WQ, Ren YT, Wang D, Chen YH, Meng YH, Gao HL, Zhao P (2020) Recombinant human lactoferrin attenuates the progression of hepatosteatosis and hepatocellular death by regulating iron and lipid homeostasis in ob/ob mice. Food Funct 11:7183–7196. https://doi.org/10.1039/d0fo00910e

    Article  CAS  PubMed  Google Scholar 

  24. Hsu YH, Chiu IJ, Lin YF, Chen YJ, Lee YH, Chiu HW (2020) Lactoferrin contributes a renoprotective effect in acute kidney injury and early renal fibrosis. Pharmaceutics 12:434. https://doi.org/10.3390/pharmaceutics12050434

    Article  CAS  PubMed Central  Google Scholar 

  25. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 anti-apoptotic proteins inhibit Beclin1-dependent autophagy. Cell 122:927–939. https://doi.org/10.1016/j.cell.2005.07.002

    Article  CAS  PubMed  Google Scholar 

  26. Wei Y, Pattingre S, Sinha S, Bassik M, Levine B (2008) JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30:678–688. https://doi.org/10.1016/j.molcel.2008.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ke D, Ji L, Wang Y, Fu X, Chen J, Wang F, Zhao D, Xue Y, Lan X, Hou J (2019) JNK1 regulates RANKL-induced osteoclastogenesis via activation of a novel Bcl-2-Beclin1-autophagy pathway. FASEB J 33:11082–11095. https://doi.org/10.1096/fj.201802597RR

    Article  CAS  PubMed  Google Scholar 

  28. Yang P, Song R, Li N, Sun K, Shi F, Liu H, Shen F, Jiang S, Zhang L, Jin Y (2020) Silica dust exposure induces autophagy in alveolar macrophages through switching Beclin1 affinity from Bcl-2 to PIK3C3. Environ Toxicol 35:758–767. https://doi.org/10.1002/tox.22910

    Article  CAS  PubMed  Google Scholar 

  29. Guo QQ, Wang SS, Zhang SS et al (2020) ATM-CHK2-Beclin 1 axis promotes autophagy to maintain ROS homeostasis under oxidative stress. EMBO J 39:e103111. https://doi.org/10.15252/embj.2019103111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li S, Lin Z, Zheng W, Zheng L, Chen X, Yan Z, Cheng Z, Yan H, Zheng C, Guo P (2019) IL-17A inhibits autophagic activity of HCC cells by inhibiting the degradation of Bcl2. Biochem Biophys Res Commun 509:194–200. https://doi.org/10.1016/j.bbrc.2018.12.103

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Jiangmen Science and Technology Program in Basic and Theoretical Science Research (2020-159) and The Postdoctoral Science Foundation of China (2020M672731).

Author information

Authors and Affiliations

Authors

Contributions

DK, YL and SW conceived and designed the overall experiments; DK and SW carried out experiments, analyzed data, and prepared figures; XW assisted in experimental preparation and data analysis; DKand SW wrote the manuscript.

Corresponding authors

Correspondence to Yinquan Lin or Shengwang Wei.

Ethics declarations

Conflict of interest

None of the authors disclosed potential conflicts of interest.

Research involving human and/or animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, D., Wang, X., Lin, Y. et al. Lactoferrin promotes the autophagy activity during osteoblast formation via BCL2-Beclin1 signaling. Mol Biol Rep 49, 259–266 (2022). https://doi.org/10.1007/s11033-021-06866-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06866-0

Keywords

Navigation