Skip to main content
Log in

Thermodynamic Modeling and Experimental Study of Phase Transformations in Alloys Based on γ-TiAl

  • TITANIUM ALLOYS
  • Published:
Metal Science and Heat Treatment Aims and scope

Thermo-Calc software is used to model the composition diagram for alloys based on γ-TiAl of the systems Ti – Al – Mo – (4 – 10) at.% Nb and Ti – Al – Nb – X (X is Cr, Mo, V). The effect of alloying on critical points and sequence of phase transformations is established. Changes in phase composition in relation to alloy TNM-B1 temperature are analyzed using a polythermal section of the Ti – Al – Nb – Mo system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Here and subsequently through the text element content is shown

    in atomic fractions, expressed as a %.

References

  1. D. M. Dimiduk, “Gamma titanium aluminides alloys — an assessment within the competition of aerospace structural materials,” Mater. Sci. and Eng., A263, 281 – 288 (1999)

    Article  Google Scholar 

  2. F. Appel, J. D. H. Paul, and M. Oehring, Gamma Titanium Aluminide Alloys: Science and Technology, Wiley-VCH Verlag & Co. KGaA. (2011).

  3. C. M. Austin, T. J. Kelly, K. G. McAllister, and J. C. Chesnutt, “Aircraft engine applications for gamma titanium aluminide,” in: Structural Intermetallics, TMS, Warrendale, PA (1997).

  4. F. Preli and J. Eβlinger, “Materials for next generation commercial aircraft engines,” in: 4th International Workshop on Titanium Aluminides, Nuremberg, Germany (2011).

  5. S. Isobe and T. Noda, “Automotive application of TiAl intermetallics,” in: Structural Intermetallics, TMS, Warrendale, PA (1997).

  6. T. Tetsui, “Manufacturing technology for gamma-tial alloy in current and future application,” Rare Metals, 30, 29 – 299 (2011).

    Article  Google Scholar 

  7. D. Hu, X.Wu, and M. H. Loretto, “Advances in optimization of mechanical properties in cast TiAl alloys,” Intermetallics, 13, 914 – 919 (2005).

  8. H. Clemens and S. Mayer, “Design, processing, microstructure, properties and applications of advanced intermetallic TiAl alloys,” Adv. Eng. Mater., 15(4), 191 – 215 (2013).

    Article  Google Scholar 

  9. V. M. Imayev, G. A. Salishchev, M. R. Shagiev, et al., “Low-temperature superplasticity of submicrocrystalline Ti – 48Al – 2Nb – 2Cr alloy produced by multiple forging,” Scr. Mater., 40(2), 183 – 190 (1998).

    Article  Google Scholar 

  10. V. M. Imayev, R. M. Imayev, G. A. Salishchev, et al., “Effect of strain rate on twinning and room temperature ductility of TiAl with fine equiaxed microstructure,” Scr. Mater., 36(8), 891 – 897 (1997).

    Article  Google Scholar 

  11. R. Kainuma, Y. Fujita, H. Mitsui, et al., “Phase equilibria among α (hcp), β (bcc) and γ (L10) phases in Ti – Al base ternary alloys,” Intermetallics, 8, 855 – 867 (2000).

    Article  Google Scholar 

  12. D. Hu, “Effect of composition on grain refinement in TiAl-based alloys,” Intermetallics, 9, 1037 – 1043 (2001).

    Article  Google Scholar 

  13. Y. J. Wang, J. N. Wang, J. Yang, and Y. Wang, “Microstructure refinement of cast TiAl alloys by β solidification,” Scr. Mater., 51, 113 – 117 (2004).

    Article  Google Scholar 

  14. V. Imayev, T. Oleneva, R. Imayev, et al., “Microstructure and mechanical properties of low and heavy alloyed γ-TiAl +α2-Ti3 Al based alloys subjected to different treatments,” Intermetallics, 26, 91 – 97 (2012).

    Article  Google Scholar 

  15. J. O. Andersson, T. Helander, and T. Hoglund, “THERMOCALC & DICTRA. Computational tools for materials science,” CALPHAD, 26(2), 273 – 312 (2002).

    Article  Google Scholar 

  16. N. A. Belov and M. E. Samoshina, “Influence of the thermal treatment temperature on the microstructure and phase composition of casts of β-solidifying TNM alloy based on the Ti – Al – Nb – Mo System,” Russ. J. Non-Ferr. Met., 55(1), 37 – 45 (2014).

    Article  Google Scholar 

  17. N. A. Belov and I. S. Chupakhin, “Quantitative analysis of the phase composition of TNM-B1 alloy based on titanium aluminide TiAl(γ),” Metalloved. Term. Obrab. Met., No. 9, 32 – 37 (2013).

  18. H. F. Chladil, H. Clemens, G. A. Zickler, et al., “Experimental studies and thermodynamic simulation of phase transformations in high Nb containing γ-TiAl based alloys,” Int. J. Mater. Res., 98, 1131 – 1137 (2007).

    Article  Google Scholar 

  19. H. Clemens,W.Wallgram, S. Kremmer, et al., “Design of novel β-solidifying TiAl alloys with adjustable β/B2 phase fraction and excellent hot-workability,” Adv. Eng. Mater., 10, 707 – 713 (2008).

  20. H. F. Chladil, H. Clemens, H. Leitner, et al., “Phase transformations in high niobium and carbon containing TiAl based alloys,” Intermetallics, 14, 1194 – 1198 (2006).

    Article  Google Scholar 

  21. V. Güther, C. Rothe, S. Winter, and H. Clemens, “Metallurgy, microstructure and properties of intermetallic TiAl ingots,” BHM, 155(7), 325 – 329 (2010).

    Google Scholar 

  22. J. C. Schuster and M. Palm, “Reassessment of the binary aluminum-titanium phase diagram,” J. Phase Equilib. Diffusion, 27(3), 255 – 277 (2006).

    Article  Google Scholar 

  23. X. Wu, “Review of alloy and process development of TiAl alloys,” Intermetallics, 14, 1114 – 1122 (2006).

    Article  Google Scholar 

  24. G. L. Chen,W. J. Zhang, Z. C. Liu, and S. J. Li, “Microstructure and properties of high-Nb containing TiAl-base alloys,” in: Gamma Titanium Aluminides, TMS, Warrendale, PA (1995).

  25. T. Schmoelzer, K.-D. Liss, G. Zickler, et al., “Phase fractions. transition and ordering temperatures in TiAl – Nb – Mo alloys: An in- and ex-situ study,” Intermetallics, 18, 1544 – 1552 (2010).

    Article  Google Scholar 

  26. R. Werner, M. Schloffer, E. Schwaighofer, et al., “Thermodynamic calculations of phase equilibria and phase fractions of a β-solidifying TiAl alloy using the CALPHAD approach,” Mater. Res. Soc. Symp. Proc., 1516, 59 – 64 (2012).

    Google Scholar 

  27. H. Clemens, B. Boeck, W. Wallgram, et al., “Experimental studies and thermodynamic simulations of phase transformations in Ti – (41 – 45)Al – 4Nb – lMo – 0.1B alloys,” Mater. Res. Soc., 115 – 120 (2009).

  28. A. V. Kartavykh, V. V. Tcherdyntsev, A. A. Stepashkin, et al., “High-temperature dilatometry of Ti – 46Al – 8Nb refractory alloy,” Russ. Metall. (Metally), 2013(7), 528 – 534 (2013).

    Article  Google Scholar 

Download references

The work was carried out within the scope of grant RFFI No. 13-08-12249 “Features of structure and phase state formation in alloys based on gamma titanium aluminide with deformation heat treatment and surface modification and its effect on physicomechanical and operating properties.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Sokolovskii.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 5, pp. 14 – 23, May, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, A.V., Sokolovskii, V.S., Salishchev, G.A. et al. Thermodynamic Modeling and Experimental Study of Phase Transformations in Alloys Based on γ-TiAl. Met Sci Heat Treat 58, 259–267 (2016). https://doi.org/10.1007/s11041-016-9999-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-016-9999-2

Key words

Navigation